PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ



Podobné dokumenty
PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ

Úvod. Cílová skupina: 2 Planimetrie

5. P L A N I M E T R I E

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

PLANIMETRIE úvodní pojmy

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

1. Planimetrie - geometrické útvary v rovině

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

P L A N I M E T R I E

Opakování ZŠ - Matematika - část geometrie - konstrukce

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Rozpis výstupů zima 2008 Geometrie

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

Planimetrie úvod, základní pojmy (teorie)

Kružnice, úhly příslušné k oblouku kružnice

ZÁKLADNÍ PLANIMETRICKÉ POJMY

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

Planimetrie. Příklad 1. Zapište vztahy mezi body a přímkami, které jsou vyznačeny na obrázku. Příklad 2. Určete body K, L, M pomocí přímek p, r, s.

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

GEOMETRIE PLANIMETRIE Úlohy k rozvoji geometrické představivosti Úlohy početní. Růžena Blažková

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika planimetrie. Mgr. Tomáš Novotný

DIDAKTIKA MATEMATIKY

M - Planimetrie pro studijní obory

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Základy geometrie - planimetrie

Digitální učební materiál

GEODETICKÉ VÝPOČTY I.

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Syntetická geometrie II

Sčítání a odčítání Jsou-li oba sčítanci kladní, znaménko výsledku je = + 444

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/

M - Pythagorova věta, Eukleidovy věty

SHODNÁ A PODOBNÁ ZOBRAZENÍ V ROVINĚ

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

SHODNÁ ZOBRAZENÍ V ROVINĚ GEOMETRICKÁ ZOBRAZENÍ V ROVINĚ SHODNÁ ZOBRAZENÍ

16. Trojúhelník vlastnosti, prvky, konstrukční úlohy Vypracovala: Ing. Ludmila Všetulová, prosinec 2013

6. Úhel a jeho vlastnosti

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

UNIVERZITA KARLOVA V PRAZE

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

Obrázek 13: Plán starověké Alexandrie,

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

Základní geometrické tvary

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Gymnázium Jiřího Ortena, Kutná Hora

Úlohy domácí části I. kola kategorie C

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

od zadaného bodu, vzdálenost. Bod je střed, je poloměr kružnice. Délka spojnice dvou bodů kružnice, která prochází středem

Témata absolventského klání z matematiky :

Univerzita Karlova v Praze Pedagogická fakulta

Základní poznatky, Rovnice a nerovnice, Planimetrie 1. část

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

Gymnázium Jiřího Ortena, Kutná Hora

Planimetrie pro studijní obory

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Přípravný kurz - Matematika

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

3. Racionální čísla = celá čísla + zlomky + desetinná čísla 4. Iracionální čísla = čísla, která nelze zapsat konečným desetinným rozvojem

8 Podobná (ekviformní) zobrazení v rovině

Dvěma různými body prochází právě jedna přímka.

64. ročník matematické olympiády Řešení úloh krajského kola kategorie A

GEOMETRIE. Projekt byl podpořen z Evropského sociálního fondu. Praha & EU: Investujeme do vaší budoucnosti

ÚVOD... 5 CÍLE PŘEDMĚTU ROVINNÉ ÚTVARY ZÁKLADNÍ PLANIMETRICKÉ POJMY ZNAČENÍ A ZÁPIS ZÁKLADNÍCH PLANIMETRICKÝCH ÚTVARŮ...

9. Planimetrie 1 bod

ANALYTICKÁ GEOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

ARITMETIKA - TERCIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

Obrázek 101: Podobné útvary

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

Metrické vlastnosti v prostoru

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Pracovní listy MONGEOVO PROMÍTÁNÍ

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

Transkript:

PLANIMETRIE, KONSTRUKČNÍ ÚLOHY V ROVINĚ Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století - využití ICT ve vyučování matematiky na gymnáziu INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Prostějov 2009

2 Planimetrie Úvod Vytvořený výukový materiál pokrývá předmět matematika, která je vyučována v osnovách a tematických plánech na gymnáziích nižšího a vyššího stupně. Mohou ho však využít všechny střední a základní školy, kde je vyučován předmět matematika, a které mají dostatečné technické vybavení a zázemí. Cílová skupina: Podle chápání a schopností studentů je stanovena úroveň náročnosti vzdělávacího plánu a výukových materiálů. Zvláště výhodné jsou tyto materiály pro studenty s individuálním studijním plánem, kteří se nemohou pravidelně zúčastňovat výuky. Tito studenti mohou s pomocí našich výukových materiálů částečně kompenzovat svou neúčast ve vyučovaném předmětu matematika, formou e-learningového studia.

Planimetrie 3 Obsah Rovinné útvary... 8 Přímka a její části... 8 Přímka a její části... 10 Varianta A... 10 Přímka a její části... 13 Varianta B... 13 Přímka a její části... 14 Varianta C... 14 Polorovina, úhel, dvojice úhlů... 15 Polorovina, úhel, dvojice úhlů... 19 Varianta A... 19 Polorovina, úhel, dvojice úhlů... 21 Varianta B... 21 Polorovina, úhel, dvojice úhlů... 23 Varianta C... 23 Dvě přímky, rovnoběžnost přímek, kolmost přímek... 25 Dvě přímky, rovnoběžnost přímek, kolmost přímek... 28 Varianta A... 28 Dvě přímky, rovnoběžnost přímek, kolmost přímek... 30 Varianta B... 30 Dvě přímky, rovnoběžnost přímek, kolmost přímek... 33 Varianta C... 33 Trojúhelník... 36 Trojúhelník... 41 Varianta A... 41 Trojúhelník... 42

4 Planimetrie Varianta B... 42 Trojúhelník... 43 Varianta C... 43 Shodnost a podobnost trojúhelníků... 45 Shodnost a podobnost trojúhelníků... 47 Varianta A... 47 Shodnost a podobnost trojúhelníků... 49 Varianta B... 49 Shodnost a podobnost trojúhelníků... 53 Varianta C... 53 Mnohoúhelníky... 57 Mnohoúhelníky... 60 Varianta A... 60 Mnohoúhelníky... 61 Varianta B... 61 Mnohoúhelníky... 63 Varianta C... 63 Čtyřúhelníky... 65 Čtyřúhelníky... 68 Varianta A... 68 Čtyřúhelníky... 70 Varianta B... 70 Čtyřúhelníky... 71 Varianta C... 71 Kružnice, kruh... 73 Kružnice, kruh... 78 Varianta A... 78

Planimetrie 5 Kružnice, kruh... 79 Varianta B... 79 Kružnice, kruh... 81 Varianta C... 81 Úhly v kružnici... 83 Úhly v kružnici... 85 Varianta A... 85 Úhly v kružnici... 87 Varianta B... 87 Úhly v kružnici... 89 Varianta C... 89 Obvody a obsahy rovinných obrazců... 91 Obvody a obsahy rovinných obrazců... 94 Varianta A... 94 Obvody a obsahy rovinných obrazců... 96 Varianta B... 96 Obvody a obsahy rovinných obrazců... 97 Varianta C... 97 Euklidovy věty, věta Pythagorova... 98 Euklidovy věty, věta Pythagorova... 99 Varianta A... 99 Euklidovy věty, věta Pythagorova... 100 Varianta B... 100 Euklidovy věty, věta Pythagorova... 102 Varianta C... 102 Konstrukční úlohy... 104 Množiny bodů dané vlastnosti, jednoduché geometrické konstrukce... 104

6 Planimetrie Množiny bodů dané vlastnosti, jednoduché geometrické konstrukce... 109 Varianta A... 109 Množiny bodů dané vlastnosti, jednoduché geometrické konstrukce... 114 Varianta B... 114 Množiny bodů dané vlastnosti, jednoduché geometrické konstrukce... 118 Varianta C... 118 Konstrukční úlohy... 122 Konstrukce trojúhelníků a čtyřúhelníků... 122 Konstrukce trojúhelníků a čtyřúhelníků... 123 Varianta A... 123 Konstrukce trojúhelníků a čtyřúhelníků... 127 Varianta B... 127 Konstrukce trojúhelníků a čtyřúhelníků... 132 Varianta C... 132 Konstrukce kružnic... 137 Konstrukce kružnic... 138 Varianta A... 138 Konstrukce kružnic... 143 Varianta B... 143 Konstrukce kružnic... 148 Varianta C... 148 Konstrukce na základě výpočtu... 153 Konstrukce na základě výpočtu... 154 Varianta A... 154 Konstrukce na základě výpočtu... 158 Varianta B... 158 Konstrukce na základě výpočtu... 162

Planimetrie 7 Varianta C... 162

8 Planimetrie Rovinné útvary Přímka a její části Základní pojmy Věta: Dvěma různými body prochází jediná přímka. D C B p A Zápis: bod C náleží přímce p bod D nenáleží přímce p Věta: Jeden bod rozděluje přímku na dvě navzájem opačné polopřímky a jejich společným počátkem. C B p A Zápis:, bod C dělí přímku p na dvě opačné polopřímky Věta: Úsečka AB je tvořena všemi body přímky AB, které leží mezi body A, B a body A a B.

Planimetrie 9 B A A, B krajní body úsečky, všechny ostatní body úsečky nazýváme vnitřní body úsečky. Všechny vnitřní body tvoří vnitřek úsečky AB. Platí:,, Věta: Délka (velikost) úsečky AB je vzdálenost bodů A a B. Zápis: Věta: Dvě shodné úsečky mají stejné délky. Zápis: shodné úsečky AB a CD Poznámka: Platí-li, říkáme, že úsečka AB je větší než úsečka CD, nebo také, že úsečka CD je menší než úsečka AB. Bod S, který dělí úsečku AB na dvě shodné úsečky, se nazývá střed úsečky.

10 Planimetrie Přímka a její části Varianta A Na základě obrázku zapište symbolicky následující skutečnosti. X Y P=Q Q R S a) bod Y náleží polopřímce b) bod Y neleží na úsečce RS c) úsečky XY a RS nemají žádný společný bod a) b) c) Varianta A Varianta B Varianta C Výsledek řešení: a) b) c)

Planimetrie 11 Příklady k procvičení: 1) Na základě obrázku zapište symbolicky následující skutečnosti. X Y P=Q Q R S a) bod R náleží polopřímce b) úsečka YP je částí polopřímky c) úsečka XY neleží na polopřímce [a), b), c) ] 2) Na základě obrázku zapište symbolicky následující skutečnosti. X Y P=Q Q R S a) polopřímky a mají jediný společný bod b) velikost úsečky YP je shodná s velikostí úsečky c) úsečka YR je částí úsečky [a), b), c) ] 3) Na základě obrázku rozhodněte, zda platí následující tvrzení. X Y P=Q Q R S

12 Planimetrie a) b) c) [a) ano, b) ano, c) ne] 4) Na základě obrázku rozhodněte, zda platí následující tvrzení. X Y P=Q Q R S a) b) c) [a) ne, b) ne, c) ano]

Planimetrie 13 Přímka a její části Varianta B Na přímce p zvolte čtyři různé body K, L, M, N v uvedeném pořadí a zapište všechny polopřímky určené těmito body. Polopřímka je jednoznačně určena dvěma body a navíc záleží na pořadí. Pomocí čtyř bodů K, L, M, N tedy vlastně utvoříme všechny uspořádané dvojice:,,,,,,,,,,, Varianta A Varianta B Varianta C Výsledek řešení:,,,,,,,,,,, Příklady k procvičení: 1) Na přímce p zvolte čtyři různé body K, L, M, N v uvedeném pořadí a zapište všechny úsečky určené těmito body. [ KL, KM, KN, LM, LN, MN] 2) Na přímce p zvolte čtyři různé body K, L, M, N v uvedeném pořadí a zapište všechny dvojice úseček, které nemají žádné společné body. [KL, MN] 3) Na přímce p zvolte čtyři různé body K, L, M, N v uvedeném pořadí a zapište všechny dvojice polopřímek, které nemají žádné společné body. [, ] 4) Na přímce p zvolte pět různých bodů K, L, M, N, O v uvedeném pořadí a zapište, kolik různých polopřímek je těmito body určeno. [20]

14 Planimetrie Přímka a její části Varianta C V rovině je zvoleno 6 různých bodů, z nichž žádné tři neleží v jedné přímce. Kolik různých přímek je těmito body určeno? Každý z šesti bodů můžeme spojit s pěti zbývajícími body. Vznikne tak 30 takových dvojic bodů. Jelikož ale při určení přímky pomocí dvou bodů nezáleží na pořadí těchto bodů, je mezi těmito 30 dvojice každá přímka zastoupená dvakrát. Celkový počet různých přímek je tedy poloviční, tzn. 15. Varianta A Varianta B Varianta C Výsledek řešení: 15 Příklady k procvičení: 1) V rovině je zvoleno 10 různých bodů, z nichž žádné tři neleží v jedné přímce. Kolik různých přímek je těmito body určeno? [45] 2) V rovině je zvoleno 20 různých bodů, z nichž žádné tři neleží v jedné přímce. Kolik různých přímek je těmito body určeno? [190] 3) Na základě výsledků řešeného příkladu a předcházejících dvou příkladů určete obecný vztah pro n různých bodů v rovině, z nichž žádné tři neleží v jedné přímce. [ ] 4) Je dáno osm různých bodů v rovině (A, B, C, D, E, F, G, H). Čtveřice A, B, C, D a E, F, G, H leží v přímkách. Kolik různých přímek je danými body určeno? [18]

Planimetrie 15 Polorovina, úhel, dvojice úhlů Základní pojmy Věta: Přímka dělí rovinu na dvě navzájem opačné poloroviny a jejich společnou hranicí, tzv. hraniční přímkou. D B p A C Zápis: nebo nebo Hraniční přímka p patří do obou polorovin. Bod, který neleží na přímce p, je vnitřním bodem jedné z polorovin. Věta: Dvě různé polopřímky, dělí rovinu na dva úhly AVB.

16 Planimetrie B V A Zápis: konvexní úhel AVB nekonvexní úhel AVB Jsou-li polopřímky, opačné, je každý z obou úhlů AVB úhel přímý. Totožné polopřímky určují jednak nulový úhel AVB a jednak plný úhel AVB. Jsou-li dva úhly AVB a CUD shodné, zapisujeme to následujícím způsobem: Věta: Osa úhlu je polopřímka s počátkem ve vrcholu úhlu, která dělí daný úhel na dva úhly shodné. A V o B Věta: Dva konvexní úhly AVB a AVC se společným ramenem, a jejichž zbylá ramena, jsou navzájem opačné polopřímky, se nazývají úhly vedlejší.

Planimetrie 17 A C V B Věta: Dva konvexní úhly AVB a CVD, jejichž ramena, a, jsou navzájem opačné polopřímky, se nazývají vrcholové úhly. A C V B D Věta: Pravý úhel je takový úhel, který se shoduje se svým úhlem vedlejším. Všechny pravé úhly jsou shodné. A C V B

18 Planimetrie Výsledkem měření úhlu je nezáporné číslo nazývané velikost úhlu. Zápis: velikost konvexního úhlu AVB velikost nekonvexního úhlu AVB Velikost úhlu měříme v planimetrii zpravidla v úhlových stupních, v teorii goniometrických funkcí a ve fyzice spíše v radiánech. Z úhlového stupně jsou dále odvozeny i menší jednotky úhlová minuta a úhlová vteřina. jeden úhlový stupeň jedna úhlová minuta jedna úhlová vteřina Konvexní úhel o velikosti menší než Konvexní úhel o velikosti větší než se nazývá ostrý úhel. se nazývá tupý úhel.

Planimetrie 19 Polorovina, úhel, dvojice úhlů Varianta A Vyjádřete dané úhly ve stupních, minutách a vteřinách. d) e) Při převodu postupujeme tak, že desetinnou část čísla vyjádřenou ve stupních převedeme na minuty vynásobením číslem 60 a dále desetinnou část takto získaného čísla vyjádřenou v minutách převedeme na vteřiny vynásobením opět číslem 60. a) b) Varianta A Varianta B Varianta C Výsledek řešení: d) e)

20 Planimetrie Příklady k procvičení: 1) Vyjádřete dané úhly ve stupních, minutách a vteřinách. a) b) [a), b) ] 2) Vyjádřete dané úhly ve stupních, minutách a vteřinách. a) b) [a), b) ] 3) Vyjádřete dané úhly jako desetinné číslo. a) b) [a), b) ] 4) Vyjádřete dané úhly jako desetinné číslo. a) b) [a), b) ]

Planimetrie 21 Polorovina, úhel, dvojice úhlů Varianta B Určete velikost vedlejšího úhlu k danému úhlu. a) b) Součet dvou vedlejších úhlů je. Velikost vedlejšího úhlu k danému úhlu tedy určíme, tak, že velikost tohoto úhlu odečteme od. a) b) Varianta A Varianta B Varianta C Výsledek řešení: a) b) Příklady k procvičení: 1) Určete velikost vedlejšího úhlu k danému úhlu. a) b) [a), b) ] 2) Určete velikost vedlejšího úhlu k danému úhlu. a) b) [a), b) ]

22 Planimetrie 3) Určete velikost vedlejšího úhlu k danému úhlu. a) b) [a), b) ] 4) Určete velikost vedlejšího úhlu k danému úhlu. a) b) [a), b) ]

Planimetrie 23 Polorovina, úhel, dvojice úhlů Varianta C Určete velikost úhlu, který na kompasu svírá se směrem S směr a) SZ b) SSZ Tzv. směrovou růžici můžeme znázornit následujícím obrázkem: SSZ S SSV SZ SV ZSZ VSV Z V ZJZ VJV JZ JV JJZ J JJV Nejmenší úhel ve směrové růžici určíme např. jako. a) Úhel mezi směrem S a SZ je tvořen dvěma těmito nejmenšími úhly, tedy, b) Úhel mezi směrem S a SSZ je tvořen jedním tímto nejmenším úhlem, tedy. Varianta A Varianta B Varianta C Výsledek řešení: a), b)

24 Planimetrie Příklady k procvičení: 1) Určete velikost úhlu, který na kompasu svírá se směrem J směr a) SZ b) JJZ [a), b) ] 2) Určete velikost úhlu, který na kompasu svírá se směrem SV směr a) SZ b) VJV [a), b) ] 3) Určete velikost úhlu, který na kompasu svírá se směrem JZ směr a) SV b) JJV [a), b) ] 4) Určete velikost úhlu, který na kompasu svírá se směrem SSZ směr a) SZ b) JJZ [a), b) ]

Planimetrie 25 Dvě přímky, rovnoběžnost přímek, kolmost přímek Základní pojmy Pro vzájemnou polohu dvou přímek v rovině mohou nastat tři případy: a) přímky jsou různoběžné (mají jeden společný bod) p q b) přímky jsou rovnoběžné různé (nemají žádný společný bod p q c) přímky jsou totožné (mají nekonečně mnoho společných bodů) Věta: Daným bodem A lze vést v dané přímce p jedinou rovnoběžku.

26 Planimetrie Část roviny ohraničená dvěma rovnoběžkami se nazývá rovinný pás. p q Jsou-li dány dvě rovnoběžné přímky a, b a třetí přímka p, která je obě protíná, říkáme, že přímky a a b jsou proťaty příčkou p. p a b Dvojice úhlů Dvojice úhlů se nazývají úhly souhlasné. se nazývají úhly střídavé. Věta: a) Je-li jedna dvojice souhlasných (střídavých) úhlů vyťatých příčkou p na přímkách a, b úhly shodné, pak jsou přímky a a b rovnoběžné. b) Jsou-li přímky a a b rovnoběžné, pak každá dvojice souhlasných (střídavých) úhlů vyťatých příčkou p na přímkách a, b jsou úhly shodné.

Planimetrie 27 Odchylkou dvou různoběžných přímek a, b je velikost každého s ostrých nebo pravých úhlů, které přímky spolu svírají. a b Zápis: Jsou-li přímky a a b rovnoběžné, je jejich odchylka. Jsou-li přímky a a b kolmé, je jejich odchylka. ( ) Věta: a) Každým bodem A lze vést k dané přímce p jedinou kolmici k. b) Je-li a, pak je. c) Je-li a, pak je. Věta: Přímka, která prochází středem úsečky a je k ní kolmá, se nazývá osa úsečky. Vzdáleností bodu A od přímky p nazýváme nejkratší vzdálenost tohoto bodu od přímky, tedy vzdálenost tohoto bodu od paty kolmice vedené bodem A k přímce p.

28 Planimetrie Dvě přímky, rovnoběžnost přímek, kolmost přímek Varianta A Jsou dány 4 navzájem různoběžné přímky p, q, r, s, z nichž žádné tři neprocházejí jedním bodem. Určete počet všech průsečíků daných přímek. Celý problém můžeme znázornit na obrázku: q p s r Z obrázku je patrné, že celkový počet průsečíků je 6. Varianta A Varianta B Varianta C Výsledek řešení: Celkový počet průsečíků je 6.

Planimetrie 29 Příklady k procvičení: 1) Jsou dány 3 navzájem různoběžné přímky, z nichž žádné tři neprocházejí jedním bodem. Určete počet všech průsečíků daných přímek. [3] 2) Je dáno 5 navzájem různoběžných přímek, z nichž žádné tři neprocházejí jedním bodem. Určete počet všech průsečíků daných přímek. [10] 3) Je dáno 8 navzájem různoběžných přímek, z nichž žádné tři neprocházejí jedním bodem. Určete počet všech průsečíků daných přímek. [28] 4) Je dáno n navzájem různoběžných přímek, z nichž žádné tři neprocházejí jedním bodem. Na základě výsledků předcházejících příkladů určete počet všech průsečíků daných přímek. [ ]

30 Planimetrie Dvě přímky, rovnoběžnost přímek, kolmost přímek Varianta B Jsou dány dvě rovnoběžné přímky p, q a jejich příčka r. Velikost úhlu je. Určete velikosti všech zbývajících vyznačených úhlů dle obrázku. r p q Úhly jsou úhly vrcholové a tedy shodné. Velikost úhlu je tedy. Úhly jsou úhly souhlasné a tedy shodné. Velikost úhlu je tedy. Úhly jsou úhly vedlejší a součet jejich velikostí je. Velkost úhlu tedy určíme jako:. Varianta A Varianta B Varianta C Výsledek řešení:

Planimetrie 31 Příklady k procvičení: 1) Jsou dány dvě rovnoběžné přímky p, q a jejich příčka r. Velikost úhlu je. Určete velikosti všech zbývajících vyznačených úhlů dle obrázku. r p q [ ] 2) Jsou dány dvě rovnoběžné přímky p, q a jejich příčka r. Velikost úhlu je. Určete velikosti všech zbývajících vyznačených úhlů dle obrázku. r p q [ ]

32 Planimetrie 3) Jsou dány dvě rovnoběžné přímky p, q a jejich příčka r. Velikost úhlu je. Určete velikosti všech zbývajících vyznačených úhlů dle obrázku. r p q [ ] 4) Jsou dány dvě rovnoběžné přímky p, q a jejich příčka r. Velikost úhlu je. Určete velikosti všech zbývajících vyznačených úhlů dle obrázku. r p q [ ]

Planimetrie 33 Dvě přímky, rovnoběžnost přímek, kolmost přímek Varianta C Na obrázku jsou přímky a a b rovnoběžné. Určete velikosti úhlů. c d a b Úhly jsou úhly vedlejší a součet jejich velikostí je. Velkost úhlu tedy určíme jako:. Úhly jsou úhly střídavé a tedy shodné. Velikost úhlu je tedy. Úhly jsou úhly souhlasné a tedy shodné. Velikost úhlu je tedy. Úhly jsou úhly vedlejší a součet jejich velikostí je. Velkost úhlu tedy určíme jako:. Varianta A Varianta B Varianta C Výsledek řešení:

34 Planimetrie Příklady k procvičení: 1) Na obrázku jsou přímky a a b rovnoběžné. Určete velikosti úhlů. c d a b [ ] 2) Na obrázku jsou přímky a a b rovnoběžné. Určete velikosti úhlů. c d a b [ ]

Planimetrie 35 3) Na obrázku jsou přímky a a b rovnoběžné. Určete velikosti úhlů. c d a b [ ] 4) Na obrázku jsou přímky a a b rovnoběžné. Určete velikosti úhlů. c d a b [ ]

36 Planimetrie Trojúhelník Základní pojmy Definice: Tři různé body A, B, C, které neleží na jedné přímce, určují trojúhelník ABC. C b a A c B A, B, C vrcholy trojúhelníku a, b, c strany trojúhelníku,, vnitřní úhly trojúhelníku,, vnější úhly trojúhelníku Podle délek stran rozlišujeme trojúhelníky na: - různostranné (žádné dvě strany nejsou shodné), - rovnoramenné (dvě strany shodné), - rovnostranné (všechny strany shodné). Podle velikosti vnitřních úhlů dělíme trojúhelníky na: Věta: - ostroúhlé (všechny úhly ostré), - pravoúhlé (jeden úhel pravý), - tupoúhlé (jeden úhel tupý). a) Součet vnitřních úhlů trojúhelníku je. b) Součet vnitřního a příslušného vnějšího úhlu je. c) Velikost vnějšího úhlu je rovna součtu vnitřních úhlů u zbývajících dvou vrcholů.

Planimetrie 37 Věta: Součet velikostí každých dvou stran trojúhelníku je větší než velikost strany třetí. V každém trojúhelníku tedy platí tři tzv. trojúhelníkové nerovnosti: Věta: V každém trojúhelníku leží proti větší straně větší vnitřní úhel a naopak, proti většímu vnitřnímu úhlu větší strana. Definice: Střední příčka trojúhelníku je úsečka spojující středy dvou stran trojúhelníku. Je rovnoběžná s tou stranou trojúhelníku, jejíž střed nespojuje a její velikost je rovna polovině délky této strany. C B 1 A 1 A C 1 B

38 Planimetrie Definice: Spojnice vrcholu trojúhelníku s patou kolmice vedené tímto bodem k protilehlé straně trojúhelníku se nazývá výška trojúhelníku. Všechny tři přímky, na nichž leží výšky trojúhelníku, se protínají v jediném bodě zvaném ortocentrum. C B 0 v b V A 0 v a v c A C 0 B Definice: Spojnice vrcholu trojúhelníku se středem protilehlé strany trojúhelníku se nazývá těžnice trojúhelníku. Všechny tři přímky, na nichž leží těžnice trojúhelníku, se protínají v jediném bodě zvaném těžiště trojúhelníku. Vzdálenost těžiště od každého vrcholu trojúhelníku je rovna dvěma třetinám délky příslušné těžnice.

Planimetrie 39 C B 1 t c T A 1 t a t b A C 1 B Věta: a) Osy stran trojúhelníku se protínají v jediném bodě, středu kružnice trojúhelníku opsané. b) Osy vnitřních úhlů trojúhelníku se protínají v jediném bodě, středu kružnice trojúhelníku vepsané. C k o B 1 A 1 S o A C 1 B

40 Planimetrie C k v S v A B

Planimetrie 41 Trojúhelník Varianta A Strany trojúhelníku mají délky 16 cm, 20 cm a 25 cm. Rozhodněte, zda tento trojúhelník lze sestrojit. Pro strany trojúhelníku musí být splněny všechny tzv. trojúhelníkové nerovnosti, tedy součet délek každých dvou stran musí být větší než délka strany třetí. a) tato nerovnost je splněna. b) tato nerovnost je splněna. c) tato nerovnost je splněna. Jelikož jsou splněny všechny tři trojúhelníkové nerovnosti, lze tento trojúhelník sestrojit. Varianta A Varianta B Varianta C Výsledek řešení: Trojúhelník lze sestrojit. Příklady k procvičení: 1) Strany trojúhelníku mají délky 1,6 cm, 20 mm a 0,11 dm. Rozhodněte, zda tento trojúhelník lze sestrojit. [ano] 2) Strany trojúhelníku mají délky 11 mm, 5 mm a 6 mm. Rozhodněte, zda tento trojúhelník lze sestrojit. [ne] 3) Strany trojúhelníku mají délky 2,6 cm, 20 mm a 0,01 dm. Rozhodněte, zda tento trojúhelník lze sestrojit. [ne] 4) Strany trojúhelníku mají délky 3,6 m, 2 m a 1,7 m. Rozhodněte, zda tento trojúhelník lze sestrojit. [ano]

42 Planimetrie Trojúhelník Varianta B Velikosti vnitřních úhlů trojúhelníku jsou v poměru úhlů trojúhelníku.. Určete velikosti všech vnitřních Součet vnitřních úhlů trojúhelníku je. Řešit tuto úlohu tedy znamená rozdělit v poměru. Celkový počet dílů určíme jako. Velikost jednoho dílu určíme vydělením: Nejmenšímu úhlu trojúhelníku přísluší jeden díl, tedy má velikost. Prostřednímu úhlu přísluší dva díly, tedy jeho velikost určíme jako. Největšímu úhlu trojúhelníku přísluší šest dílů, takže jeho velikost určíme jako. Daný trojúhelník má tedy vnitřní úhly o velikostech. Varianta A Varianta B Varianta C Výsledek řešení: Daný trojúhelník má vnitřní úhly o velikostech. Příklady k procvičení: 1) Velikosti vnitřních úhlů trojúhelníku jsou v poměru. Určete velikosti všech vnitřních úhlů trojúhelníku. [ ] 2) Velikosti vnitřních úhlů trojúhelníku jsou v poměru. Určete velikosti všech vnitřních úhlů trojúhelníku. [ ] 3) Velikosti vnějších úhlů trojúhelníku jsou v poměru. Určete velikosti všech vnějších úhlů trojúhelníku. [ ] 4) Velikosti vnějších úhlů trojúhelníku jsou v poměru. Určete velikosti všech vnějších úhlů trojúhelníku. [ ]

Planimetrie 43 Trojúhelník Varianta C Jsou dány délky dvou stran trojúhelníku ABC: musí vyhovovat délka třetí strany?. Jakým podmínkám Pro strany trojúhelníku musí být splněny všechny tzv. trojúhelníkové nerovnosti, tedy součet délek každých dvou stran musí být větší než délka strany třetí. a) b) c) Po dosazení dostáváme následující soustavu nerovnic: a) b) c) Po úpravě dostáváme: a) b) c) Řešením této soustavy nerovnic jsou všechna c, pro která platí:. Varianta A Varianta B Varianta C Výsledek řešení:

44 Planimetrie Příklady k procvičení: 1) Jsou dány délky dvou stran trojúhelníku ABC:. Jakým podmínkám musí vyhovovat délka třetí strany? [ ] 2) Jsou dány délky dvou stran trojúhelníku ABC:. Jakým podmínkám musí vyhovovat délka třetí strany? [ ] 3) Jsou dány délky dvou stran trojúhelníku ABC:. Jakým podmínkám musí vyhovovat délka třetí strany? [ ] 4) Jsou dány délky dvou stran trojúhelníku ABC:. Jakým podmínkám musí vyhovovat délka třetí strany? [ ]

Planimetrie 45 Shodnost a podobnost trojúhelníků Základní pojmy Definice: Dva trojúhelníky nazveme shodné, lze-li je navzájem přemístit tak, že se oba překrývají. Pokud postačuje trojúhelník pouze přemístit, hovoříme o shodnosti přímé, pokud je trojúhelník nutné nejen přemístit, ale i překlopit, hovoříme o shodnosti nepřímé. O shodnosti trojúhelníků ovšem zpravidla nerozhodujeme pomocí přemísťování, nýbrž používáme důležité věty o shodnosti trojúhelníků. Věta: (sss) Dva trojúhelníky, které se shodují ve všech třech stranách, jsou shodné. Věta: (usu) Dva trojúhelníky, které se shodují v jedné straně a úhlech přilehlých k této straně, jsou shodné. Věta: (sus) Dva trojúhelníky, které se shodují ve dvou stranách a úhlu jimi sevřeném, jsou shodné. Věta: (Ssu) Dva trojúhelníky jsou shodné, shodují-li se ve dvou stranách a úhlu proti větší z nich.

46 Planimetrie Definice: Pro každé dvě úsečky AB a CD můžeme stanovit kladné reálné číslo k, pro které platí: Můžeme také psát:. Číslo k se nazývá poměr úseček AB a CD. Definice: Trojúhelník A B C je podobný trojúhelníku ABC, existuje-li kladné reálné číslo k takové, že pro jejich strany platí: Číslo k se nazývá poměr podobnosti trojúhelníků ABC a A B C. Je-li, hovoříme o zvětšení, je-li, hovoříme o zmenšení. Pro se jedná o shodnost trojúhelníků. Zápis podobnosti: Z výše uvedené definice podobnosti trojúhelníků také vyplývá: Věta: Dva trojúhelníky jsou podobné, jestliže poměr délek každých dvou stran jednoho trojúhelníku je roven poměru délek příslušných stran trojúhelníku druhého. O podobnosti trojúhelníků můžeme také rozhodnout pomocí vět o podobnosti trojúhelníků. Věta: (uu) Dva trojúhelníky jsou podobné, shodují-li se ve dvou úhlech. Věta: (sus) Dva trojúhelníky jsou podobné, shodují-li se v jednom úhlu a v poměru délek stran ležících na jeho ramenech.

Planimetrie 47 Shodnost a podobnost trojúhelníků Varianta A Jsou dány trojúhelníky ABC: a A B C :. Rozhodněte, zda jsou dané trojúhelníky shodné. Při řešení je vhodné oba trojúhelníky načrtnout. C C A B B A V trojúhelníku A B C můžeme dopočítat velikost úhlu jako. Jelikož po převodu jednotek platí, je na základě obrázku patrné, že oba dva trojúhelníky jsou shodné podle věty usu. Varianta A Varianta B Varianta C Výsledek řešení: (usu) Příklady k procvičení: 1) Jsou dány trojúhelníky ABC: a MNO:. Rozhodněte, zda jsou dané trojúhelníky shodné. [ (sus)]

48 Planimetrie 2) Jsou dány trojúhelníky KLM: a OPQ:. Rozhodněte, zda jsou dané trojúhelníky shodné. [ (sss)] 3) Jsou dány trojúhelníky DEF: a RST:. Rozhodněte, zda jsou dané trojúhelníky shodné. [ (usu)] 4) Jsou dány trojúhelníky ABC: a A B C :. Rozhodněte, zda jsou dané trojúhelníky shodné. [ (Ssu)]

Planimetrie 49 Shodnost a podobnost trojúhelníků Varianta B Danou úsečku AB zvětšete v poměru. Úsečku AB doplníme na konvexní úhel BAX. Na polopřímku označíme je např. body 1, 2, 3. naneseme tři jednotky a 3 2 1 A B B Koncový bod úsečky AB spojíme s bodem 2 a bodem 3 vedeme s touto spojnicí rovnoběžku. Tato rovnoběžka určí na polopřímce bod B. Trojúhelníky AB2 a AB 3 jsou podobné podle věty uu s koeficientem podobnosti. Pro úsečky AB a AB tedy platí: Varianta A Varianta B Varianta C

50 Planimetrie Výsledek řešení: 3 2 1 A B B Příklady k procvičení: 1) Danou úsečku AB zvětšete v poměru. 5 3 4 2 1 A B B

Planimetrie 51 2) Danou úsečku AB zvětšete v poměru. 1 2 3 A B B 3) Danou úsečku AB zmenšete v poměru. 3 2 1 A B B

52 Planimetrie 4) Danou úsečku AB zmenšete v poměru. 7 6 5 4 3 2 1 A B B

Planimetrie 53 Shodnost a podobnost trojúhelníků Varianta C Danou úsečku AB rozdělte v poměru. Úsečku AB doplníme na konvexní úhel BAX. Na polopřímku (celkový počet dílů) a označíme je např. body 1, 2, 3, 4, 5. naneseme pět jednotek 5 4 3 2 1 A X B Koncový bod úsečky AB spojíme s posledním bodem 5 a bodem 3 (první člen poměru) vedeme s touto spojnicí rovnoběžku. Tato rovnoběžka určí na polopřímce bod X. Trojúhelníky AB5 a AX3 jsou podobné podle věty uu s koeficientem podobnosti. Pro poměr úseček AX a XB tedy platí stejný poměr jako pro úsečky A3 a 35 (tedy ) : Varianta A Varianta B Varianta C

54 Planimetrie Výsledek řešení: 5 4 3 2 1 A X B Příklady k procvičení: 1) Danou úsečku AB rozdělte v poměru. 7 6 5 4 3 2 1 A X B

Planimetrie 55 2) Danou úsečku AB rozdělte v poměru. 7 6 5 4 3 2 1 A X B 3) Danou úsečku AB rozdělte v poměru. 7 6 5 4 3 2 1 A X Y B

56 Planimetrie 4) Danou úsečku AB rozdělte v poměru. 9 10 8 7 6 5 4 1 2 3 A X Y Z B

Planimetrie 57 Mnohoúhelníky Základní pojmy Definice: Uzavřená lomená čára spolu s částí roviny ohraničené touto lomenou čárou se nazývá mnohoúhelník. Délka lomené čáry ohraničující mnohoúhelník se nazývá obvod mnohoúhelníku. Vrcholy lomené čáry se nazývají vrcholy mnohoúhelníku. Strany lomené čáry se nazývají strany mnohoúhelníku. Mnohoúhelníku o n vrcholech říkáme n-úhelník (pro trojúhelník, pro čtyřúhelník, ). Každý vrchol n-úhelníku má dva sousední vrcholy. Spojnice dvou nesousedních vrcholů mnohoúhelníku se nazývá úhlopříčka mnohoúhelníku. Věta: Počet úhlopříček v n-úhelníku je dán vztahem. Definice: Mnohoúhelník, který celý leží v jedné z polorovin určených kteroukoliv jeho stranou, se nazývá konvexní mnohoúhelník. Mnohoúhelník, který není konvexní, se nazývá nekonvexní mnohoúhelník.

58 Planimetrie Konvexní šestiúhelník Nekonvexní pětiúhelník E D D F E C B C A B A Definice: Každá taková polorovina, v níž daný konvexní mnohoúhelník leží, se nazývá opěrná polorovina konvexního mnohoúhelníku. Definice: Vnitřní úhel konvexního mnohoúhelníku je průnik opěrných polorovin sousedních stran. Každý vnitřní úhel konvexního mnohoúhelníku je konvexní. Věta: Součet velikostí všech vnitřních úhlů konvexního n-úhelníku jed dán vztahem. Definice: Pravidelný n-úhelník je takový konvexní mnohoúhelník, jehož všechny vnitřní strany i úhly jsou shodné

Planimetrie 59 Pravidelný (rovnostranný) trojúhelník Pravidelný čtyřúhelník (čtverec) Pravidelný pětiúhelník Pravidelný šestiúhelník

60 Planimetrie Mnohoúhelníky Varianta A V jakém konvexním n-úhelníku je součet vnitřních úhlů? Pro součet s vnitřních úhlů konvexního n-úhelníku platí vztah: Odtud pro n dostáváme: V konvexním šestiúhelníku je součet vnitřních úhlů. Varianta A Varianta B Varianta C Výsledek řešení: V konvexním šestiúhelníku je součet vnitřních úhlů. Příklady k procvičení: 1) Určete součet vnitřních konvexního osmiúhelníku. [ ] 2) Určete součet vnitřních konvexního dvanáctiúhelníku. [ ] 3) V jakém konvexním n-úhelníku je součet vnitřních úhlů? [v pětiúhelníku] 4) V jakém konvexním n-úhelníku je součet vnitřních úhlů? [v dvacetiúhelníku]

Planimetrie 61 Mnohoúhelníky Varianta B Který konvexní n-úhelník má 35 úhlopříček? Pro počet úhlopříček u v konvexním n-úhelníku platí vztah: Odtud po dosazení dostáváme: Jedná se o kvadratickou rovnici, kterou postupně upravíme na anulovaný tvar. Jelikož řešením je počet úhlů mnohoúhelníku, je řešením dané úlohy pouze číslo 10. V konvexním desetiúhelníku je 35 úhlopříček. Varianta A Varianta B Varianta C Výsledek řešení: V konvexním desetiúhelníku je 35 úhlopříček.

62 Planimetrie Příklady k procvičení: 1) Kolik úhlopříček má konvexní osmiúhelník? [ ] 2) Kolik úhlopříček má konvexní šestnáctiúhelník? [ ] 3) Který konvexní n-úhelník má 14 úhlopříček? [sedmiúhelník] 4) Který konvexní n-úhelník má 77 úhlopříček? [čtrnáctiúhelník]

Planimetrie 63 Mnohoúhelníky Varianta C Kolik vrcholů má pravidelný n-úhelník, jehož všechny vnitřní úhly mají velikost? Pro součet s vnitřních úhlů konvexního n-úhelníku platí vztah: Jelikož se současně jedná o pravidelný n-úhelník, lze součet s vnitřních úhlů vyjádřit také vztahem: Z výše uvedených dvou rovnic tedy vyplývá: Jedná se o lineární rovnici, kterou řešíme následujícím způsobem: Varianta A Varianta B Varianta C Výsledek řešení:

64 Planimetrie Příklady k procvičení: 1) Kolik vrcholů má pravidelný n-úhelník, jehož všechny vnitřní úhly mají velikost? [ ] 2) Kolik vrcholů má pravidelný n-úhelník, jehož všechny vnitřní úhly mají velikost? [ ] 3) Určete velikost vnitřních úhlů v pravidelném desetiúhelníku. [ ] 4) Určete velikost vnitřních úhlů v pravidelném dvacetiúhelníku. [ ]

Planimetrie 65 Čtyřúhelníky Základní pojmy Čtyřúhelníky můžeme rozdělit do tří skupin, na různoběžníky, lichoběžníky a rovnoběžníky. Definice: Různoběžník je čtyřúhelník, jehož žádné dvě strany nejsou rovnoběžné. Definice: Lichoběžník je čtyřúhelník, jehož dvě strany jsou rovnoběžné a zbývající dvě strany nejsou rovnoběžné. Rovnoběžné strany se nazývají základny, zbývající dvě ramena. Lichoběžník, jehož ramena jsou shodná, nazýváme rovnoramenný lichoběžník. Lichoběžník, jehož jedno rameno je kolmé k základně, nazýváme pravoúhlý lichoběžník. Věta: Střední příčka lichoběžníku je spojnice středů jeho ramen. Je rovnoběžná s oběma základnami a její délka je rovna aritmetickému průměru délek obou základen. Definice: Rovnoběžník je čtyřúhelník, jehož obě dvě dvojice protilehlých stran jsou rovnoběžné. Podle velikosti úhlů můžeme rovnoběžníky dělit na pravoúhlé (obdélník, čtverec) a kosoúhlé (kosodélník, kosočtverec). Podle délek stran dělíme rovnoběžníky na rovnostranné (čtverec, kosočtverec) a různostranné (obdélník, kosodélník).

66 Planimetrie Věta: a) Protější strany rovnoběžníku jsou shodné. b) Protější vnitřní úhly rovnoběžníku jsou shodné. c) Úhlopříčky rovnoběžníku se navzájem půlí a jejich společný střed je středem rovnoběžníku. Definice: Čtyřúhelník, jemuž lze opsat kružnici, se nazývá tětivový čtyřúhelník. Věta: Součet protějších úhlů tětivového čtyřúhelníku je. Definice: Čtyřúhelník, jemuž lze vepsat kružnici, se nazývá tečnový čtyřúhelník. Věta: Součty délek dvojic protějších stran tečnového čtyřúhelníku jsou si rovny. Definice: Čtyřúhelník, jemuž lze opsat i vepsat kružnici, se nazývá dvojstředový čtyřúhelník. Definice: Deltoid je čtyřúhelník, jehož úhlopříčky jsou navzájem kolmé a jedna z nich prochízí středem druhé.

Deltoid Planimetrie 67

68 Planimetrie Čtyřúhelníky Varianta A V lichoběžníku ABCD ( ) platí: Vypočtěte velikosti zbylých vnitřních úhlů lichoběžníku. Jelikož v daném lichoběžníku platí, je zřejmé, že součet úhlů a je vždy (viz. souhlasné a vedlejší úhly). Pro velikost úhlu tedy platí: Pro úhly pak platí následující soustava rovnic: Při řešení můžeme např. využít dosazovací metodu a z druhé rovnice dosadit do první za. Varianta A Varianta B Varianta C Výsledek řešení: Příklady k procvičení: 1) V lichoběžníku ABCD ( ) platí: Vypočtěte velikosti zbylých vnitřních úhlů lichoběžníku. [ ]

Planimetrie 69 2) V lichoběžníku ABCD ( ) platí: Vypočtěte velikosti zbylých vnitřních úhlů lichoběžníku. [ ] 3) V lichoběžníku ABCD ( ) platí: Vypočtěte velikosti zbylých vnitřních úhlů lichoběžníku. [ ] 4) V lichoběžníku ABCD ( ) platí: Vypočtěte velikosti zbylých vnitřních úhlů lichoběžníku. [ ]

70 Planimetrie Čtyřúhelníky Varianta B V tětivovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících vnitřních úhlů čtyřúhelníku. V tětivovém čtyřúhelníku je součet velikostí protějších vnitřních úhlů úhel přímý, platí tedy: Pro velikosti zbylých vnitřních úhlů tedy platí: Varianta A Varianta B Varianta C Výsledek řešení: Příklady k procvičení: 1) V tětivovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících vnitřních úhlů čtyřúhelníku. [ ] 2) V tětivovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících vnitřních úhlů čtyřúhelníku. [ ] 3) V tětivovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících vnitřních úhlů čtyřúhelníku. [ ] 4) V tětivovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících vnitřních úhlů čtyřúhelníku. [ ]

Planimetrie 71 Čtyřúhelníky Varianta C V tečnovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících stran čtyřúhelníku, je-li obvod čtyřúhelníku 80 cm. V tečnovém čtyřúhelníku je součet velikostí protějších stran shodný, platí tedy: Pro obvod čtyřúhelníku dále platí: Dostáváme tak soustavu dvou lineárních rovnic se dvěma neznámými: Z první rovnice můžeme vyjádřit c: Z tohoto vyjádření dosadíme do druhé rovnice: Pro velikost strany c pak platí: Varianta A Varianta B Varianta C Výsledek řešení:

72 Planimetrie Příklady k procvičení: 1) V tečnovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících stran čtyřúhelníku, je-li obvod čtyřúhelníku 100 mm. [ ] 2) V tečnovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících stran čtyřúhelníku, je-li obvod čtyřúhelníku 15,1 m. [ ] 3) V tečnovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících stran čtyřúhelníku, je-li obvod čtyřúhelníku 11,6 cm. [ ] 4) V tečnovém čtyřúhelníku ABCD platí,. Vypočtěte velikosti zbývajících stran čtyřúhelníku, je-li obvod čtyřúhelníku 78 mm. [ ]

Planimetrie 73 Kružnice, kruh Základní pojmy Definice: Je dán bod S a kladné číslo r. Kružnice k (S; r) je množina všech bodů (roviny), které mají od bodu S vzdálenost r. Bod S se nazývá střed kružnice, číslo r je poloměr kružnice. Definice: Množina všech bodů roviny, které mají od bodu S vzdálenost menší nebo rovnu r, se nazývá kruh K (S; r). Bod S se nazývá střed kruhu, číslo r je poloměr kruhu. Body, jejichž vzdálenost od středu S je menší (větší) než poloměr, tvoří vnitřní (vnější) oblast kruhu, popř. kružnice.