1 Pravděpodobnostní prostor

Podobné dokumenty
Pravděpodobnost a statistika I KMA/K413

Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Téma 22. Ondřej Nývlt

NMAI059 Pravděpodobnost a statistika

Matematika III. 4. října Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Náhodná veličina Číselné charakteristiky diskrétních náhodných veličin Spojitá náhodná veličina. Pravděpodobnost

I. D i s k r é t n í r o z d ě l e n í

pravděpodobnosti Pravděpodobnost je teorií statistiky a statistika je praxí teorie pravděpodobnosti.

p(x) = P (X = x), x R,

Pravděpodobnost a aplikovaná statistika

Někdy lze výsledek pokusu popsat jediným číslem, které označíme X (nebo jiným velkým písmenem). Hodíme dvěma kostkami jaký padl součet?

Základy teorie pravděpodobnosti

1 Rozptyl a kovariance

Pravděpodobnost a její vlastnosti

Náhodné jevy. Teorie pravděpodobnosti. Náhodné jevy. Operace s náhodnými jevy

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

Náhodná veličina. Michal Fusek. 10. přednáška z ESMAT. Ústav matematiky FEKT VUT, Michal Fusek

Pravděpodobnost a statistika (BI-PST) Cvičení č. 4

Náhodná veličina a rozdělení pravděpodobnosti

PRAVDĚPODOBNOST A STATISTIKA

Inovace bakalářského studijního oboru Aplikovaná chemie

10. N á h o d n ý v e k t o r

Rozdělení náhodné veličiny. Distribuční funkce. Vlastnosti distribuční funkce

Intuitivní pojem pravděpodobnosti

Pravděpodobnost a statistika

Matematika III. 27. září Vysoká škola báňská - Technická univerzita Ostrava. Matematika III

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

Pravděpodobnost a statistika, Biostatistika pro kombinované studium. Jan Kracík

2. přednáška - PRAVDĚPODOBNOST

Diskrétní náhodná veličina. November 12, 2008

5.1. Klasická pravděpodobnst

NÁHODNÁ VELIČINA. 3. cvičení

a způsoby jejího popisu Ing. Michael Rost, Ph.D.

Výběrové charakteristiky a jejich rozdělení

Pravděpodobnost a statistika

5. Náhodná veličina. 2. Házíme hrací kostkou dokud nepadne šestka. Náhodná veličina nabývá hodnot z posloupnosti {1, 2, 3,...}.

JAK MODELOVAT VÝSLEDKY NÁH. POKUSŮ? Martina Litschmannová

Cvičení ze statistiky - 5. Filip Děchtěrenko

2. Definice pravděpodobnosti

Teorie pravěpodobnosti 1

Diskrétní náhodná veličina

PRAVDĚPODOBNOST A STATISTIKA

8.1. Definice: Normální (Gaussovo) rozdělení N(µ, σ 2 ) s parametry µ a. ( ) ϕ(x) = 1. označovat písmenem U. Její hustota je pak.

Charakterizace rozdělení

Množiny, relace, zobrazení

Diskrétní matematika. DiM /01, zimní semestr 2016/2017

Základy teorie pravděpodobnosti

Téma 2: Pravděpodobnostní vyjádření náhodných veličin

PRAVDĚPODOBNOST A STATISTIKA aneb Krátký průvodce skripty [1] a [2]

IB112 Základy matematiky

Diskrétní matematika. DiM /01, zimní semestr 2018/2019

Matematika I 2a Konečná pravděpodobnost

Statistika II. Jiří Neubauer

Poznámky k předmětu Aplikovaná statistika, 4. téma

Náhodná veličina a její charakteristiky. Před provedením pokusu jeho výsledek a tedy ani sledovanou hodnotu neznáte. Proto je proměnná, která

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika

Lékařská biofyzika, výpočetní technika I. Biostatistika Josef Tvrdík (doc. Ing. CSc.)

MATEMATICKÁ STATISTIKA

Poznámky k předmětu Aplikovaná statistika, 4. téma

Tomáš Karel LS 2012/2013

Matematika III 10. týden Číselné charakteristiky střední hodnota, rozptyl, kovariance, korelace

Rovnoměrné rozdělení

Kapitola Základní množinové pojmy Princip rovnosti. Dvě množiny S a T jsou si rovny (píšeme S = T ) prvek T je také prvkem S.

PŘEDNÁŠKA 2 POSLOUPNOSTI

7. Rozdělení pravděpodobnosti ve statistice

Definice 7.1 Nechť je dán pravděpodobnostní prostor (Ω, A, P). Zobrazení. nebo ekvivalentně

Jevy, které za daných podmínek mohou, ale nemusí nastat, nazýváme náhodnými jevy. Příklad: při hodu hrací kostkou padne trojka

NÁHODNÉ VELIČINY JAK SE NÁHODNÁ ČÍSLA PŘEVEDOU NA HODNOTY NÁHODNÝCH VELIČIN?

KMA/P506 Pravděpodobnost a statistika KMA/P507 Statistika na PC

Náhodný vektor a jeho charakteristiky

8 Střední hodnota a rozptyl

JAK MODELOVAT VÝSLEDKY

Příklady: - počet členů dané domácnosti - počet zákazníků ve frontě - počet pokusů do padnutí čísla šest - životnost televizoru - věk člověka

ROZDĚLENÍ SPOJITÝCH NÁHODNÝCH VELIČIN

Náhodný vektor. Náhodný vektor. Hustota náhodného vektoru. Hustota náhodného vektoru. Náhodný vektor je dvojice náhodných veličin (X, Y ) T = ( X

Náhodný pokus Náhodným pokusem (stručněji pokusem) rozumíme každé uskutečnění určitého systému podmínek resp. pravidel.

MATEMATICKÁ STATISTIKA - XP01MST

Střední hodnota a rozptyl náhodné. kvantilu. Ing. Michael Rost, Ph.D.

Přednáška. Diskrétní náhodná proměnná. Charakteristiky DNP. Základní rozdělení DNP

Náhodné (statistické) chyby přímých měření

Úvod do teorie pravděpodobnosti

letní semestr Katedra pravděpodobnosti a matematické statistiky Matematicko-fyzikální fakulta Univerzity Karlovy Matematická statistika vektory

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

1 Náhodný výběr a normální rozdělení 1.1 Teoretická a statistická pravděpodobnost

Pravděpodobnost je. Martina Litschmannová Katedra aplikované matematiky, FEI, VŠB-TU Ostrava

Matematická analýza 1

1 Báze a dimenze vektorového prostoru 1

Definice spojité náhodné veličiny zjednodušená verze

Minikurz aplikované statistiky. Minikurz aplikované statistiky p.1

Limitní věty teorie pravděpodobnosti. Jiří Neubauer. Katedra ekonometrie, FVL, UO Brno kancelář 69a, tel

Základy teorie pravděpodobnosti

4. ZÁKLADNÍ TYPY ROZDĚLENÍ PRAVDĚPODOBNOSTI DISKRÉTNÍ NÁHODNÉ VELIČINY

Pojmy z kombinatoriky, pravděpodobnosti, znalosti z kapitoly náhodná veličina, znalost parciálních derivací, dvojného integrálu.

1. Statistická analýza dat Jak vznikají informace Rozložení dat

Určete zákon rozložení náhodné veličiny, která značí součet ok při hodu a) jednou kostkou, b) dvěma kostkami, c) třemi kostkami.

prof. RNDr. Roman Kotecký DrSc., Dr. Rudolf Blažek, PhD Pravděpodobnost a statistika Katedra teoretické informatiky Fakulta informačních technologií

5 Pravděpodobnost. Sestavíme pravděpodobnostní prostor, který modeluje vytažení dvou ponožek ze šuplíku. Elementární jevy

Transkript:

PaS 1.-10. přednáška 1 Pravděpodobnostní prostor Náhodný pokus je takový pokus, jehož výsledek nelze s jistotou předpovědět. Pokud jsme schopni pokus za stále stejných podmínek opakovat (například házíme stále stejnou kostkou ze stejné výšky na stejný stůl) a výsledky si zaznamenáváme, zkušenost říká, že relativní četnost jednot- livých výsledků pokusu se bude pohybovat blízko nějaké hodnoty. Teorie pravděpodobnosti se snaží tuto zkušenost matematizovat. První krok tímto směrem je uvážit vůbec všechny možné dále nedělitelné výsledky náhodného pokusu. To nás vede k následující definici. Definice 1.1. Prostorem elementárních jevů nazýváme libovolnou neprázdnou množinu Ω. Prvky množiny Ω (elementární jevy) reprezentují všechny myslitelné výsledky náhodného po- kusu. Příklad 1.2. Všechny možné výsledky hodu šestistěnnou kostkou můžeme reprezentovat pomocí množiny Ω = {1, 2, 3, 4, 5, 6}. Pokud náhodný pokus spočívá v tom, že náhodně přijdeme na zastávku autobusu, který jezdí v pětiminutových intervalech a výsledek pokusu je doba čekání na autobus, můžeme všechny možné výsledky pokusu reprezentovat intervalem Ω = 0, 5. Pokud nám v předchozím pokusu chybí na hodinkách vteřinová ručička (jsme schopni měřit čas jen s přesností na minuty), byl by vhodný prostor elementárních jevů Ω = {1, 2, 3, 4, 5}. Výsledky dvou hodů mincí (zajímá nás, zda padla pana či orel) bude vhodně reprezentovat tato množina uspořádaných dvojic prvků R a L: Ω = {[L, L], [L, R], [R, L], [R, R]}. Budeme chtít zkoumat i komplikovanější jevy než jen elementární. Při již popisovaném hodu kostkou nás může zajímat, zda padne liché číslo případně zda nastane jev opačný t.j. padne sudé číslo. To nás vede k následující definici. Definice 1.3. Mějme prostor elementárních jevů Ω. Množinu β naýváme prostorem jevů na Ω, pokud její prvky (jevy) jsou podmnožiny množiny Ω (jevy se skládají z elementárních jevů podobně, jako molekuly z atomů) a splňují následující podmínky: 1. Ω β (celá Ω je jev, kterému říkáme jev jistý); 2. Pokud A je jev (t.j. A β), pak i jeho doplněk (komplement) A C je jev (t.j. A C β), který nazýváme jev opačný k jevu A. 3. Pokud A i je jev z β pro všechna i N, pak i sjednocení i N A i je jev z β (sjednocení spočetně mnoha jevů je jev). Poznámka 1.4. Ač definice prostoru jevů dovoluje i extrémní případ, kdy jevy jsou jen Ω a, v praxi se setkáme jen s prostory jevů, které obsahují mimo jiné i každý elementární jev (tedy Ω β). Pomocí de Morganových zákonů lze snadno dokázat následující: Tvrzení 1.5. Nechť β je prostorem jevů na Ω. Potom platí:

1. β (prázdná množin je jev, kterému říkáme jev nemožný) 2. Pokud A i je jev z β pro všechna i N, pak i průnik in A i je jev z β (průnik spočetně mnoha jevů je jev). Konečně, máme-li prostor elementárních jevů i prostor jevů na něm, které reprezentují výsledky náhodného pokusu, budeme u každého jevu chtít vyjádřit šanci, že nastane - pravděpodobnost jevu. Bude to číslo mezi nulou a jednou. Čím blíže je pravděpodobnost jevu jedničce, tím by měl jev při opakování náhodného pokusu nastávat častěji (pokud je naše matematizace náhodného pokusu povedená). Definice 1.6. Mějme množinu elementárních jevů Ω a prostor jevů β na Ω. Nechť P : β [0, 1] je zobrazení, které splňuje následující podmínky: (P1) P (Ω) = 1 (pravděpodobnost jevu jistého je 1). (P2) Pokud A 1, A 2,..., A i,... jsou po dvou disjunktní jevy (prvky z β), pak platí ( ) P A i = P (A i ). i N i N (pravděpodobnost sjednocení spočetně mnoha jevů, kde každé dva mají prázdný průnik, je rovna součtu pravděpodobností jednotlivých jevů). Trojici [Ω; β; P ] nazýváme pravděpodobnostní prostor. Máme-li jev A β, pak číslo P (A) nazýváme pravděpodobností jevu A. Tvrzení 1.7. V pravděpodobnostním prosotru [Ω; β; P ] platí: 1. P ( ) = 0 (pravděpodobnost nemožného jevu je 0); 2. Jsou-li A a B jevy, které mají prázdný průnik, pak P (A B) = P (A) + P (B); 3. Obecněji, pro každé dva jevy A, B platí P (A B) = P (A) + P (B) P (A B); 4. P (A C ) = 1 P (A). Příklad 1.8. Tento příklad dobře modeluje hod šestistěnnou kostkou. Ω = {1, 2, 3, 4, 5, 6}. Elementární jevy jsou tedy jednotlivá čísla, která mohou padnout; β je tvořena všemi podmnožinami množiny Ω. Jev {1, 3, 5} reprezentuje případ, kdy padne liché číslo, jev padlo číslo větší než 4 je pak množina {5, 6}; P přiřazuje jevu počet jeho prvků dělený šesti. Pravděpodobnost, že padne liché číslo je tedy 3/6 = 0, 5. Pravděpodobnost jevu Ω (to jest, pravděpodobnost, že padne nějaké číslo) je 6/6 = 1, pravděpodobnost, že padne jednička je 1/6. Příklad 1.9. Tento příklad může modelovat dobu čekání na trolejbus, který jezdí každých 10 minut, v případě, že na zastávku přicházíme náhodně. Ω je interval [0, 10]. β je tvořena mimo jiné podintervaly intevalu [0, 10]. P přiřadí intervalu jeho délku dělenou deseti. Například P ([2, 4]) = 2/10 = 0, 2, tedy pravděpodobnost, že budeme čekat od dvou do čtyř minut je 0, 2. Definice 1.10. Tojice [Ω, β, P ] se nazývá klasický pravděpodobnostní prostor pokud Ω je ko- nečná, β je množina všech podmnožin Ω a pro A β máme P (A) = A / Ω. Pravděpodobnostní prostor z Příkladu 1.8 je klasický pravděpodobnostní prostor.

2 Náhodná veličina Definice 2.1. Uvažujme pravděpodobnostní prostor [Ω; β; P ]. Pak náhodná veličina je každé zobrazení X : Ω R, které splňuje formální podmínku 1 {ω Ω : X(w) < r} β pro každé reálné číslo r R. Neformálně řečeno je náhodná veličina očíslování elementárních jevů. Toto očíslování děláme tak, aby náhodná veličina vystihovala zkoumaný jev. Množina Ω může například odpovídat množině studentů UJEP. Ten který elementární jev pak odpovídá náhodnému zvolení konkrétního studenta. Pokud nás zajímá výška studentů, bude náhodná veličina každému elementárnímu jevu přiřazovat číslo, které odpovídá jeho výšce. Toto zobrazení bude jiné, než kdyby nás zajímala studentova hmotnost či jeho IQ. Příklad 2.2. Uvažme klasický pravděpodobnostní prostor Ω = {,,,,, } a definujme náhodnou veličinu X : Ω R jako: X( ) = 1 a X(ω) = 0 pro ω Ω \ { }. Očíslování je pěkná věc, ale je třeba též nějak přenést informaci o pravděpodobnosti do světa čísel. To nás vede k následující definici. Definice 2.3. Distribuční funkce F X náhodné veličiny X je definována vztahem F X (x) = P (X < x), kde X < x je zkrácený zápis pro jev {ω Ω : X(ω) < x}. Příklad 2.4. V případě náhodné veličiny z Příkladu 2.2 vypadá její distribuční funkce takto: 0 pro x 0 F X (x) = 5 6 pro x (0, 1] 1 pro x > 1 Věta 2.5. Distribuční funkce je neklesající a může nabývat pouze hodnot z intervalu [0, 1]. Věta 2.6.. lim F X(x) = 0 a x lim F X(x) = 1 x Věta 2.7. Distribuční funkce je zleva spojitá v každém bodě. Věta 2.8. Pro každé x 0 R platí lim F X (x) = F X (x 0 ) + P (X = x 0 ). x x + 0 Definice 2.9. Náhodná veličina X definivaná na pravděpodobnostním prostoru [Ω, β, P ] se nazývá diskrétní náhodná veličina, pokud nabývá pouze konečně případně spočetně mnoha hodnot x 1,..., x n,.... Poznámka 2.10. Náhodná veličina definovaná na konečném či spočetně nekonečném pravděpodobnostním prostoru je nutně diskrétní. Příklad 2.11. Uvažme pravděpodobnostní prostor z Příkladu??, který modeluje čekání na trolejbus. Dejme tomu, že pokud trolejbus přijede do tří minut, stihneme přípojný rychlík, pokud přijede do sedmi minut, stihneme alespoň přípojný osobní vlak, a pokud přijede později zmeškáme veškeré přípoje. Tuto situaci dobře popíšeme následující náhodnou veličinou: 1 Tuto podmínku nebudeme dále používat.

0 pro ω [0; 3] X(ω) = 1 pro ω (3, 7] 2 pro ω (7, 10]. Protože nabývá pouze tří (tedy konečně mnoha) hodnot, jedná se o diskrétní náhodnou veličinu. Definice 2.12. Pro diskrétní náhodnou veličinu X nabývající hodnot x 1,..., x n,... definujeme její pravděpodobnostní funkci P X vztahem Příklad 2.13. P X (x i ) = P (X = x i ). Věta 2.14. Pro diskrétní náhodnou veličinu X nabývající hodnot x 1,..., x n,... platí (i) n P X(x n ) = 1; (ii) F X (x) = x n<x P X(x n ). Věta 2.15. Lze-li hodnoty x 1,..., x n,... náhodné veličiny X uspořádat tak, že x 1 < x 2 < x 3 <... < x n <..., je distribuční funkce F X konstantní v každém intervalu (x n, x n+1 ]. Definice 2.16. Náhodná veličina X definivaná na pravděpodobnostním prostoru [Ω, β, P ] se nazývá spojitá náhodná veličina, pokud existuje nezáproná funkce f X taková, že platí F X (x) = Funkci f X nazýváme hustota náhodné veličiny X. Příklad 2.17. Trolejbus a identita x f X (t)dt. Věta 2.18. Pro spojitou náhodnou veličinu X s hustotou f X platí (i) f X(t)dt = 1; (ii) V bodech, kde existuje derivace distribuční funkce platí F X (x) = f X(x); (iii) Pro každé x R platí P (X = x) = 0; (iv) Distribuční funkce F X (x) je spojitá v každém bodě; (v) Platí P (x 1 < X < x 2 ) = P (x 1 X x 2 ) = F X (x 2 ) F X (x 1 ) = x 2 x 1 Příklad 2.19. Příklad 2.20. f X (t)dt. 3 Charakteristiky náhodných veličin V této kapitole se naučíme přiřazovat náhodným veličinám čísla, která dávají jakousi základní představu o jejich chování. Definice 3.1. Střední hodnotou diskrétní náhodné veličiny X nabývající hodnot x 1,..., x n,... nazýváme číslo EX = x n P X (x n ). n Poznámka 3.2. Dobře význam pojmu střední hodnota vysvětlují její dva anglické názvy: expected value tedy očekávaná hodnota a mean value tedy průměrná hodnota.

Příklad 3.3. Uvažme klasický pravděpodobnostní prostor (Ω, β, P ), kde Ω = {1, 2, 3, 4, 5, 6}, který dobře modeluje hod pravidelnou šestistněnnou kostkou. Definujme na něm náhodnou veličinu X : Ω R vztahem X(ω) = ω pro ω Ω. Protože všechna čísla mohou padnout se stejnou pravděpodobností, očekávaná průměrná hodnota by měla být 3,5. To potvrzuje výpočet střední hodnoty: EX = 6 ωp X (ω) = ω=1 6 ω 1 = 3, 5. 6 Příklad 3.4. Uvažme konečný pravděpodobnostní prostor (Ω, β, P ), kde Ω = {1, 2, 3, 4, 5, 6}, β = 2 Ω a { 0, 02 pro ω Ω \ {6} P (ω) = 0, 9 pro ω = 6, který modeluje hod nepravidelnou šestistněnnou kostkou. Definujme na něm náhodnou veličinu X : Ω R vztahem X(ω) = ω pro ω Ω. Zřejmě bude na kostce padat šestka s daleko větší frekvencí než ostatní čísla. Očekávaná průměrná hodnota tak oproti Příkladu 3.3 bude blíže číslu 6. To potvrzuje výpočet střední hodnoty: EX = ω=1 ( 6 5 ) ωp X (ω) = ω 0, 02 + 6 0, 9 = 5, 7. ω=1 ω=1 Střední hodnotu spojité náhodné veličiny definujeme podobně, akorát pravděpodobnostní funkci nahradí hustota a sumu integrál: Definice 3.5. Střední hodnotou spojité náhodné veličiny X s hustotou f X nazýváme číslo EX = tf X (t)dt. Příklad 3.6. Uvažme spojitou náhodnou veličinu z Příkladu 2.17. Vypočtěme její střední hodnotu: EX = Příklad 3.7. střelba na terč xf X (x)dx = 0 0dx + 10 Věta 3.8. Pro náhodné veličiny X a Y a reálné číslo k platí 1. Ek = k 2. EkX = kex 3. E(X + Y) = EX + EY Obecněji: 0 x 1 10 xdx + Věta 3.9. Pro náhodné veličiny X 1,..., X n a reálné čísla k 1,..., k n platí ( n ) n E k i X i = k i EX i. Věta 3.10. Pro nezávislé náhodné veličiny X a Y platí E(XY) = EXEY. Definice 3.11. Rozptylem náhodné veličiny X nazýváme číslo i=1 i=1 D(X) = E(X EX) 2. Definice 3.12. Směrodatnou odchylkou náhodné veličiny X nazýváme číslo σ(x) = D(X). Věta 3.13. Pro náhodnou veličinu X a konstantu k R platí 10 0dx = 5.

1. D(k) = 0 2. D(kX) = k 2 D(X). Definice 3.14. Kovariancí náhodných veličin X, Y nazýváme číslo cov(x, Y) = E((X EX)(Y EY)). Věta 3.15. Jsou-li X, Y nezávislé náhodné veličiny, pak cov(x, Y) = 0. Věta 3.16. Pro náhodné veličiny X a Y platí D(X ± Y) = D(X) + D(Y) ± 2cov(X, Y). Důsledek 3.17. Pro nezávislé náhodné veličiny X a Y platí D(X + Y) = D(X) + D(Y). Uveďme si vzoreček vhodný pro výpočet rozptylu: Věta 3.18. D(X) = E(X 2 ) (EX) 2. Příklad 3.19. Definice 3.20. Pro n N nazýváme číslo M n (X) = E(X n ) n-tým momentem náhodné veličiny X; CM n (X) = E(X EX) n n-tým centrálním momentem náhodné veličiny X; ( ) n NM n (X) = E n-tým normovaným momentem náhodné veličiny X. X EX σ(x) Definice 3.21. Pro 0 < p < 1 nazveme p-kvantilem náhodné veličiny X číslo x p = inf{r R : F X (r) p}. Tvrzení 3.22. Nechť distribuční funkce F X je ostře rostoucí na intervalu (a, b) a F ((a, b)) = (0, 1). Pak pro každé p (0, 1) platí F (x p ) = p. Jinak řečeno, funkce, která každému p (0, 1) přiřadí x p, je inverzní k distribuční funkci F X na intervalu (a, b). Příklad 3.23. Příklad 3.24. Příklad 3.25. 4 Některá rozdělení pravděpodobnosti diskrétního typu Definice 4.1. Náhodná veličina X má alternativní rozdělení pokud nabývá pouze hodnot 0 a 1 a existuje reálné čislo p (0, 1) takové, že pro její pravděpodobnostní funkci platí P X (x) = p x (1 p) 1 x, pro x {0, 1}. Tento fakt zapisujeme symbolicky jako X A(p). Příklad 4.2. Náhodná veličina z Příkladu 2.2 má alternativní rozdělení A( 1 6 ). Věta 4.3. Pro náhodnou veličinu X A(p) platí EX = p, D(X) = p(1 p).

Definice 4.4. Náhodná veličina X má binomické rozdělení s parametry n, p, kde n N a p (0, 1), pokud nabývá jen hodnot x = 0, 1,..., n a pro její pravděpodobnostní funkci platí ( ) n P X (x) = p x (1 p) n x pro x {0, 1,..., n}. x Tento fakt značíme X Bi(n, p). Věta 4.5. Pro X Bi(n, p) platí: EX = n p a D(X) = n p (1 p). Příklad 4.6 (Těsto s rozinkami). Do 100 kg těsta na vánočku bylo přimýcháno 10 000 rozinek. Jaká je pravděpodobnost, že v kilogramové vánočce z těsta vyrobené bude právě n rozinek? Definice 4.7. Diskrétní náhodná veličina X má Poissonovo rozdělení P o(λ) pro λ > 0 (značíme X P o(λ)), pokud její pravděpodobnostní funkce má tvar P X (n) = e λ λn, pro n N. n! Poissonovo rozdělení dobře modeluje výskyt událostí (například počet rozpadů dané částice v čase, počet hovorů spojených danou telefonní ústřednou v daném čase) během procesů, které splňují následující podmínky Počet jevů závisí jen na délce časového intervalu, nikoli na konkrétním čase pozorování a průběh procesu v minulosti neovlivňuje průběh v budoucnosti. Sledované jevy se vyskytují v čase izolovaně. To jest, pravděpodobnost že v krátkém čase nastane více než jeden sledovaný jev je zanedbatelně malá vůči pravděpodobnosti, že nastane právě jeden jev. Příklad 4.8. Při provozu telefonní ústředny dochází v průměru k pěti spojením za minutu. Jaká je pravděpodobnost, že během 3 minut nedojde k žádnému spojení? Věta 4.9. Pro X P o(λ) platí EX = D(X) = λ. Věta 4.10. Pro nezávislé náhodné veličiny X 1,..., X n takové, že X i P o(λ i ), platí n n X i P o(λ), kde λ = λ i. i=1 i=1 Příklad 4.11 (Těsto s rozinkami II). Mějme nekonečný přísun těsta na vánočku, v němž je průměrně 100 hrozinek na 1 kg. Jaká je pravděpodobnost, že v kilogramové vánočce z těsta vyrobené bude právě n rozinek? 5 Některá rozdělení pravděpodobnosti spojitého typu Definice 5.1. Náhodná veličina X má Rovnoměrné rozdělení Ro(a, b),kde a < b jsou reálná čísla, pokud má hustotu Příklad 5.2 (Pravítko). f X (x) = { 0 pro x (a, b) 1 b a pro x (a, b)

Věta 5.3. Pro náhodnou veličinu X Ro(a, b) platí: EX = a + b 2, D(X) = (b a)2. 12