Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.7/1.5./34.5 Šablona: III/ Přírodovědné předměty Sada: 3 Matematika Číslo materiálu v sadě: 7 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
Název: Kvadratická rovnice Jméno autora: Ondřej Holpuch Předmět: matematika Jazyk: český Klíčová slova: nerovnice, diskuse Cílová skupina: žáci 1. ročníku SOŠ Stupeň a typ vzdělání: 1. stupeň, SOŠ
Metodický list/anotace Tento digitální učební materiál slouží jako průvodce řešením kvadratických rovnic. S jeho pomocí učitel provede žáky metodou řešení obecného případu kvadratické rovnice a také případů speciálních. Spolu s žáky vyřeší příklady úloh. Na závěr žáci již samostatně řeší vybrané kvadratické rovnice popsanými metodami. Datum vytvoření: 5.11. 1
Kvadratická rovnice
Kvadratická rovnice v základním tvaru Kvadratickou rovnicí rozumíme každou rovnici, kterou lze zapsat ve tvaru: a + b + c a, b, cî R základní tvar kvadratické rovnice kde konstanty jsou tzv. koeficienty kvadratické rovnice a proměnná je tzv. neznámá. Aby šlo skutečně o rovnici kvadratickou, musí se v ní vyskytovat neznámá ve. mocnině a musí tedy platit: a¹ Příklady: + 5-3 je kvadratická rovnice o neznámé s koeficienty: a b 5 c-3-3+ je kvadratická rovnice o neznámé s koeficienty: a1 b-3 c 4-1 je ryze kvadratická rovnice o neznámé s koeficienty: a 4 b c-1
Kořeny kvadratické rovnice Kořenem kvadratické rovnice je každé reálné číslo, které po dosazení za neznámou vyhovuje rovnici. Rovnice tím přejde v číselnou rovnost. Například: -3+ Kořeny této rovnice jsou čísla 1 a : 1-3 1+ -3 + - + číselná rovnost 4-6 + číselná rovnost Řešení a počet kořenů kvadratické rovnice Řešit kvadratickou rovnici znamená vypočítat její kořen(y). Reálné kořeny kvadratické rovnice mohou být až. Skutečný počet reálných kořenů zjistíme už v průběhu řešení rovnice.!! Metoda řešení závisí na typu kvadratické rovnice.!!
Jednotlivé případy kvadratických rovnic Nejprve ekvivalentními úpravami rovnici převedeme na základní tvar. Podle podoby rovnice v základním tvaru rozlišujeme 3 případy kvadratické rovnice: Obecný případ a + b+ c Rovnice bez absolutního členuc c a + b c Ryze kvadratická rovnice a + c b Každý z těchto 3 případů se řeší jinou metodou.
Řešení obecného případu kvadratické rovnice a + b+ c Obecný případ kvadratické rovnice řešíme výpočtem tzv. diskriminantu D a následným užitím vzorce pro výpočet kořenů. Nejprve určíme hodnotu diskriminantu D podle vzorce: D b - 4ac Hodnota diskriminatu nám prozradí, kolik reálných kořenů rovnice má: D> D D< různé reálné kořeny 1 reálný kořen, tzv. dvojnásobný reálný kořen neeistuje Jestliže kořeny eistují, vypočítáme je podle tohoto vztahu: 1, - b± a D - b a
Příklad 1 Řešme v R kvadratickou rovnici: Řešení + 3-4 Jde o obecný případ kvadratické rovnice. Nejdříve vypíšeme koeficienty: a1 b 3 c-4 Vypočítáme diskriminant: D b - 4ac 3-4 1 (- 4) 9+ 16 5 Diskriminant je kladné číslo, proto má naše rovnice různé reálné kořeny. Určíme je: 1, - b± a D - 3± 5-3± 5-3+ 5-3- 5 1-4 Závěr Množina kořenů naší rovnice je: P { 1; - 4}
Příklad Řešme v R kvadratickou rovnici: Řešení Závěr 4-4+ 1 Jde opět o obecný případ kvadratické rovnice. Nejdříve vypíšeme koeficienty: a 4 b-4 c 1 Vypočítáme diskriminant: D b - 4ac (- 4) - 4 4 1 16-16 Diskriminant je roven nule, proto má naše rovnice 1 tzv dvojnásobný reálný kořen. Ten určíme užitím vztahu: - b a (- 4) - 4 Množina kořenů naší rovnice je: Poznámka 1, 1 ì1ü P í ý î þ Vzorec pro výpočet kořenů jsme mohli použít i v tomto případě. Vzorec automaticky přejde ve výpočet dvojnásobného kořene.
Příklad 3 Řešme v R kvadratickou rovnici: Řešení Závěr - + Jde opět o obecný případ kvadratické rovnice. Vypíšeme koeficienty: a b-1 c Vypočítáme diskriminant: D b - 4ac (-1) - 4 1-16 -15 Diskriminant je záporný, proto naše rovnice žádný reálný kořen nemá. Rovnice nemá řešení v oboru R. Množina kořenů naší rovnice je prázdná: Poznámka PÆ Kdybychom přesto chtěli použít vztah pro výpočet, dostali bychom: 1, - b± a D - (-1) ± -15 1± 1, -15 4!! Druhá odmocnina ze záporného čísla však v oboru R nemá smysl.
Řešení kvadratické rovnice bez absolutního členu c a + b Vyřešit tento případ je velmi snadné. Nejprve vytkneme neznámou : Tím tedy získáváme kořeny rovnice: a + b ( a+ b) Uvedená rovnost je splněna právě tehdy, když je nebo. 1 - b a a+ b Příklad 3 Řešme v R kvadratickou rovnici: Řešení Vytkneme: Kořeny jsou následující: Množina kořenů naší rovnice: 4 - ( 4 1) - 1 ì 1ü P í; ý î 4þ 1 4
Řešení ryze kvadratické rovnice a + c Vyřešit tento případ je vůbec nejsnadnější. Nejprve vyjádříme : a + c - c a Nyní odmocníme. Nezapomínáme, že druhá odmocnina z kladného čísla dává výsledky lišící se znaménkem. 1, ± - c a Příklad 4 Řešme v R kvadratickou rovnici: Řešení Vyjádříme : Odmocníme a zapíšeme kořeny: Množina kořenů naší rovnice: 4-1 P 1 4 1,5 -, 5 { ±,5}
Úlohy k samostatnému řešení + 9-1 -9+ 1 6 + -1 + - 4 [ P { 1; -1}] [ P {,5; -1}] é ì1 1üù êp í ;- ýú ë î3 þ û [ P {-1± 5} ] é ì1üù 36-1+ 1 êp í ýú ë î 6 þû [ P { ;,3} ] -9 [ P { ±,3} ] + 9 [ PÆ] 1-3 1 1
Odkazy: