6 Reprezentace a zpracování neurčitosti



Podobné dokumenty
pseudopravděpodobnostní Prospector, Fel-Expert

Vybrané přístupy řešení neurčitosti

Usuzování za neurčitosti

Fuzzy množiny, Fuzzy inference system. Libor Žák

Fuzzy logika. Informační a znalostní systémy

Zpracování neurčitosti

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

0. ÚVOD - matematické symboly, značení,

Matematika B101MA1, B101MA2

1. Matematická logika

Matematická analýza 1

MATEMATICKÁ TEORIE ROZHODOVÁNÍ

Základy fuzzy řízení a regulace

Fuzzy logika. Posibilistická teorie (1) Systémy s umělou inteligencí

Dobývání znalostí. Doc. RNDr. Iveta Mrázová, CSc. Katedra teoretické informatiky Matematicko-fyzikální fakulta Univerzity Karlovy v Praze

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

Výroková logika. Teoretická informatika Tomáš Foltýnek

Popis zobrazení pomocí fuzzy logiky

Každé formuli výrokového počtu přiřadíme hodnotu 0, půjde-li o formuli nepravdivou, a hodnotu 1, půjde-li. α neplatí. β je nutná podmínka pro α

Míry podobnosti, základy fuzzy matematiky

teorie logických spojek chápaných jako pravdivostní funkce

postaveny výhradně na syntaktické bázi: jazyk logiky neinterpretujeme, provádíme s ním pouze syntaktické manipulace důkazy

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Matematická logika. Miroslav Kolařík

1. Matematická logika

3. Podmíněná pravděpodobnost a Bayesův vzorec

Fuzzy logika a reálný svět, aneb jsou všechny hromady skutečně malé?

Funkce a lineární funkce pro studijní obory

Princip rozšíření a operace s fuzzy čísly

FUNKCE POJEM, VLASTNOSTI, GRAF

Formální systém výrokové logiky

Matematická logika. Miroslav Kolařík

9 Kolmost vektorových podprostorů

Organizace. Zápočet: test týden semestru (pátek) bodů souhrnný test (1 pokus) Zkouška: písemná část ( 50 bodů), ústní část

analytické geometrie v prostoru s počátkem 18. stol.

Jak je důležité být fuzzy

Logika. 6. Axiomatický systém výrokové logiky

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

Intuitivní pojem pravděpodobnosti

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

Teorie pravěpodobnosti 1

Binární logika Osnova kurzu

TEORIE PRAVDĚPODOBNOSTI. 2. cvičení

1 Báze a dimenze vektorového prostoru 1

Fuzzy regulátory Mamdaniho a Takagi-Sugenova typu. Návrh fuzzy regulátorů: F-I-A-D v regulátorech Mamdaniho typu. Fuzzifikace. Inference. Viz. obr.

Bakalářská matematika I

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

Úvod do logiky (VL): 5. Odvození výrokových spojek z jiných

MATURITNÍ TÉMATA Z MATEMATIKY

Stavební fakulta Katedra mechaniky. Jaroslav Kruis, Petr Štemberk

0.1 Úvod do matematické analýzy

Matematická logika. Miroslav Kolařík

1 Základní pojmy. 1.1 Množiny

PRAVDĚPODOBNOST A STATISTIKA. Bayesovské odhady

Funkce. Definiční obor a obor hodnot

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

5. Lokální, vázané a globální extrémy

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

VEKTORY. Obrázek 1: Jediný vektor. Souřadnice vektoru jsou jeho průměty do souřadných os x a y u dvojrozměrného vektoru, AB = B A

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

Úvod do informatiky. Miroslav Kolařík

Cvičení z Lineární algebry 1

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od podzimu 2016

ANALYTICKÁ GEOMETRIE V ROVINĚ

Výroková logika dokazatelnost

Úvod do logiky (presentace 2) Naivní teorie množin, relace a funkce

Průvodce studiem. do bodu B se snažíme najít nejkratší cestu. Ve firmách je snaha minimalizovat

Pravděpodobnost a statistika

Funkce - pro třídu 1EB

1 Výroková logika 1. 2 Predikátová logika 3. 3 Důkazy matematických vět 4. 4 Doporučená literatura 7

Zadání a řešení testu z matematiky a zpráva o výsledcích přijímacího řízení do magisterského navazujícího studia od jara 2016

ALGEBRA. Téma 4: Grupy, okruhy a pole

Množiny, relace, zobrazení

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

Funkce pro studijní obory

7. Funkce jedné reálné proměnné, základní pojmy

Pravděpodobnost a její vlastnosti

Logika a logické programování

Matematika B101MA1, B101MA2

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

Základy logiky a teorie množin

9. přednáška 26. listopadu f(a)h < 0 a pro h (0, δ) máme f(a 1 + h, a 2,..., a m ) f(a) > 1 2 x 1

Bakalářská matematika I

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

Matematika (KMI/PMATE)

Základní pojmy teorie množin Vektorové prostory

Okruh č.3: Sémantický výklad predikátové logiky

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

= je prostý orientovaný graf., formálně c ( u, v) 0. dva speciální uzly: zdrojový uzel s a cílový uzel t. Dále budeme bez

Diskrétní matematika. DiM /01, zimní semestr 2017/2018

Doporučené příklady k Teorii množin, LS 2018/2019

Jazyk matematiky Matematická logika Množinové operace Zobrazení Rozšířená číslená osa

3 Množiny, Relace a Funkce

Výroková a predikátová logika - III

LOGIKA VÝROKOVÁ LOGIKA

8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

Výroková a predikátová logika - II

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Transkript:

6 Reprezentace a zpracování neurčitosti Většina našich znalostí o reálném světě je zatížena ve větší či menší míře neurčitostí. Na druhou stranu, schopnost rozhodovat se i v situacích, kdy nejsou všechny informace dostupné, je běžnou vlastností lidského rozumu. Vezměme si následující čtyři tvrzení: 1. Žadatel o úvěr má měsíční příjem 20 500 korun, 2. Žadatel o úvěr má vysoký měsíční příjem, 3. Žadatel o úvěr má měsíční příjem asi 20 000 korun, 4. Žadatel o úvěr má asi vysoký měsíční příjem. rvní tvrzení žádnou neurčitost neobsahuje. Tvrzení číslo dvě používá vágní pojem vysoký příjem ; není přesně specifikováno, jaké částky už jsou vysoké a jaké ještě nízké navíc pojem vysoký příjem může být různými lidmi chápán různě. Ve třetím tvrzení se objevuje nejistota; neznáme přesnou výši příjmu víme jen, že je okolo 20000. Ve čtvrtém tvrzení se pak objevuje jak vágnost, tak nejistota. Zpočátku byla problematika neurčitosti umělou inteligencí přehlížena, výzkum se zaměřoval především na symbolické manipulace. Své explicitní vyjádření našla neurčitost až v polovině 70. let v souvislosti s expertními systémy. Vedle ad hoc přístupů, navržených pro práci s neurčitostí v konkrétních expertních systémech např. MYCIN nebo ROSCTOR se vychází i z propracovaných teorií. istoricky první je teorie pravděpodobnosti, jejíž základy spadají do sedmnáctého století. ravděpodobnostní přístup bychom mohli použít pro vyjádření nejistoty. V současnosti je tato teorie nejpropracovanější a existuje celá řada jejích aplikací v oblasti umělé inteligence. Za všechny zmiňme bayesovské sítě umožňující reprezentovat znalosti o částečně nezávislých evidencích a tyto znalosti použít při usuzování. Z dalších teorií našly své uplatnění v umělé inteligenci teorie možnosti possibility theory a teorie fuzzy množin a fuzzy logiky. Zatímco axiomy teorie možnosti jsou velice podobné axiomům teorie pravděpodobnosti, teorie ale umožňuje vyjadřovat vágnost přirozeného jazyka, fuzzy množiny rovněž nabízející formalismus pro vyjádření vágnosti vycházejí ze zcela odlišných základů. odrobněji je této problematika zpracována např. v [Mařík a kol., 1997] nebo [Giarratano, Riley, 1993]. Důraz na zpracování neurčitosti dostal v posledních letech v kontextu umělé inteligence nový impuls v oblasti nazývané soft computing. Soft computing je termín souhrnně označující metody, které umožňují rychle nalézat řešení byť ne zcela optimální vágně a neúplně popsaných problémů [Zadeh, 1994]. Do oblasti soft computing bývají z metod umělé inteligence řazeny fuzzy logika, neuronové sítě a genetické algoritmy. atří sem ale i pravděpodobnostní metody nebo teorie chaosu. odstatné je, že tyto metody se nepoužívají izolovaně ale ve vzájemné kombinaci; nalezneme tak například celou řadu neuro-fuzzy nebo fuzzy-genetických systémů. Do oblasti soft computing se přesouvá i práce s neurčitostí z expertních a znalostních systémů. 1

6.1 Způsoby vyjádření neurčitosti 6.1.1 Vágnost 6.1.1.1 Fuzzy množiny Fuzzy množiny představují zobecnění klasických množin nazývaných pak crisp. Def: Crisp množina A je definována pomocí charakteristické funkce ϕ A : U {0,1} takové, že 0, x U;ϕ A x = 1, právě když právě když x A x A Def: Fuzzy množina A je definována pomocí charakteristické funkce též nazývané funkce příslušnosti µ A : U [0,1] tak, že každému prvku x je přiřazena hodnota z intervalu [0,1]. ro fuzzy množiny obsahující konečný počet prvků se používá zápis A = {x, µ A x} Obr. 1 Crisp resp. fuzzy množina zvýšená teplota lavní rozdíl mezi oběma typy množin je patrný z obr. 1. Zatímco u crisp množiny A, A U můžeme o každém prvku x z univerza U říci, že do množiny A jistě patří nebo jistě nepatří viz charakteristická funkce vlevo, v případě fuzzy množiny může x prvek do množiny A patřit jen do jisté míry viz funkce příslušnosti vpravo. S využitím funkce příslušnosti jsou definovány všechny množinové operace: kardinalita počet prvků fuzzy množiny A A = µ x doplněk fuzzy množiny A x U µ x = 1 A U \ A µ A x průnik fuzzy množin A a B µ x = min µ x, x A B A µ B sjednocení fuzzy množin A a B µ x = max µ x, x A B A µ B A fuzzy podmnožina B A B právě když x; µ A x < µ B x 2

Obr. 2 Fuzzy množinové operace Kromě těchto klasických operací lze pro fuzzy množiny definovat: α-řez fuzzy množiny A nosič support fuzzy množiny A jádro kernel fuzzy množiny A [µ] α = {x; µ A x > α} suppa = {x; µ A x > 0} kera = {x; µ A x = 1} Neboli podpora A jsou ty prvky univerza, které do množiny A alespoň trochu patří a jádro jsou ty prvky univerza, které do A jistě patří, a α-řez jsou ty prvky univerza, jejíchž míra příslušnosti k A je větší nebo rovna α. 1 α 0 jádro α řez nosič Obr. 3 Jádro, nosič a alfa řez Často se v souvislosti s fuzzy množinami mluví o počítání se slovy. Mají se tím na mysli tzv. lingvistické proměnné např. velký, malý apod., vyjádřené pomocí fuzzy intervalů. 3

Obr. 4 Linguistické proměnné 6.1.1.2 Fuzzy relace Fuzzy relace jsou definovány na kartézském součinu crisp množin: R: X Y [0, 1], X = {x}, Y = {y}. odnota µ R x,y odpovídá stupni relace mezi x X a y Y. říklad zvířata: odobnost mezi zvířaty X = {kůň, osel}, Y = {mula, kráva} může být definována následující tabulkou: Y = {mula kráva} X = {kůň 0.8 0.4 osel} 0.9 0.2 Def: Kompozice relace pro crisp relaci R: X Y {0, 1} a crisp množinu M X je definována jako M R = {y Y; x M x, y R} Def: Kompozice relace pro fuzzy relaci R: X Y [0, 1] a fuzzy množinu M X je definována jako M R = {y, µ M R y}, kde µ M R y = max min µ M x, µ R x,y říklad zvířata pokračování: Je-li M = {kůň, 0.7}, pak M R = {mula, 0.7,kráva, 0.4} Analogicky, tedy s využitím max-min kompozice můžeme skládat relace. 4

Def: ro dvě fuzzy relace R: X Y [0, 1] a S: Y Z [0, 1] je R S fuzzy relace X Z [0, 1] taková, že µ R S x,z = max y min µ R x,y, µ S y,z Relaci mezi linguistickými proměnnými tj. mezi fuzzy množinami můžeme chápat jako fuzzy podmíněný příkaz if X is A then Y is B kde A je fuzzy množina na X a B je fuzzy množina na Y např. IF BMI vysoké TN krevní tlak vysoký. 6.1.2 Nejistota 6.1.2.1 rubé množiny rubé množiny rough sets představují jakési aproximace klasických crisp množin. Def: Nechť pro universum U existuje jeho rozklad tvořený množinami B i. množiny tvořící rozklad jsou navzájem disjunktní a jejich sjednocení tvoří celou množinu U. ak pro každou množinu A; A U definujme dolní aproximaci A L jako horní aproximaci A U jako a hranici A U L jako A L = { B i ; B i A}, A U = { B i ; B i A }, A U L = A U A L. Obr. 5 rubé množiny 5

Základní myšlenku hrubých množin ilustruje Obr. 5. ro množinu A na obrázku žlutě a množiny B i tvořené jednotlivými obdélníky je její dolní aproximace znázorněna zeleně a hranice znázorněna modře. orní aproximace je pak vše, co je barevné. 6.1.2.2 Vícehodnotové logiky Klasická dvouhodnotová logika pracuje se dvěma pravdivostními hodnotami TRU a FALS často značené 1 a 0. U vícehodnotových logik je pravdivostních hodnot více. Nejjednodušší vícehodnotovou logikou je tříhodnotová logika. K hodnotám 1 a 0 se zde přidává hodnota X, která má význam UNKNOWN ve smyslu tvrzení může být TRU nebo FALS. Tomu odpovídá i příslušné rozšíření definic jednotlivých logických spojek: 1. nezáleží-li na neznámé hodnotě, pravdivostní hodnota logické spojky je příslušná standardní hodnota, 2. záleží-li na neznámé hodnotě, je pravdivostní hodnota logické spojky X. Obr. 6 Negace a konjunkce v trojhodnotové logice Obr. 7 Disjunkce a implikace v trojhodnotové logice ravé vícehodnotové logiky pracují s pravdivostními hodnotami z celého intervalu [0, 1]. Často se v této souvislosti mluví o fuzzy logice, i když ne každá vícehodnotová logika je inspirována fuzzy teorií. Def: Funkce : [0, 1] [0, 1] [0, 1] se nazývá t-norma, právě když: 1. a, 1 = a 2. a, b = b, a 3. a, b,c = a, b, c 4. pro b < c a, b < a, c lze dokázat, že a, 0 = 0 6

říklady t-norem: Gődelova min a, b = mina, b součinová prod a, b = a b Lukasiewiczova Luk a, b = max0, a + b 1 Def: Funkce : [0, 1] [0, 1] [0, 1] se nazývá t-konorma, právě když: 1. a, 0 = a 2. a, b = b, a 3. a, b,c = a, b, c 4. pro b < c a, b < a, c lze dokázat, že a, 1 = 1 říklady t-konorem: Gődelova min a, b = maxa, b součinová prod a, b = a + b - a b Lukasiewiczova Luk a, b = min1, a + b Vztah mezi t-normou a t-konormou je definován následující rovností: a, b = 1-1 - a, 1 - b Def: Nechť a, b [0, 1] jsou pravdivostní hodnoty dvou fuzzy tvrzení. Logické spojky ve fuzzy logice jsou pak definovány následujícím způsobem: 1. negace a pro a < b a = a b < a uvedeným požadavkům vyhovuje standardní negace a = 1 - a 2. konjunkce 3. disjunkce 4. implikace a b a b = a, b a b = a, b je definována jako tzv. reziduum t-normy, tedy tak, že a b = maxc, a, c < b Věta: Nechť fuzzy implikace je definována jako reziduum t-normy. ak 7

1. pro a < b je a b = 1 neboť a, 1 = a < b 2. pro a > b je Gődelova implikace součinová implikace a b = b a b = b/a Lukasiewiczova implikace a b = 1 a + b 6.1.2.3 ravděpodobnost Teorie pravděpodobnosti představuje klasický způsob jak pracovat s neurčitostí. řipomeňme zde některé základní pojmy dle Jiroušek. Def: Nechť X je konečná množina, tx je potenční množina množina všech podmnožin. ravděpodobnostní distribuce je takové zobrazení že, X = 1 = 0 : tx [0, 1] pro A, B tx takové, že A B = platí A B = A + B Def: odmíněná pravděpodobnost jevu A při jevu B je definována jako A B = A B B Věta: Je-li A > 0 a B > 0, potom A B = B A A B Výše uvedený vztah se nazývá Bayesův vzorec. Def: Jevy A a B jsou nezávislé právě když A B = A B Def: Jevy A a B jsou podmíněně nezávislé při jevu C právě když A BC = AC BC 8

odívejme se nyní na situaci, kdy množina X je kartézský součin hodnot, které mohou nabývat náhodné veličiny X 1, X 2,, X n. otom pravděpodobnostní rozložení definované na X 1 X 2 X n budeme též nazývat pravděpodobnostní distribuce náhodných veličin X 1, X 2,, X n. Místo X 1 =x 1, X 2 =x 2, budeme pro jednoduchost psát x 1, x 2,. Def: Uvažujme dvě náhodné veličiny X 1, X 2 a nějakou jejich sdruženou pravděpodobnostní distribuci X 1, X 2. Marginální pravděpodobnostní distribuce veličiny X 1 je dána vztahem X x =, 1 1 x1 x2 x2 X 2 Def: Uvažujme dvě náhodné veličiny X 1, X 2 a nějakou jejich sdruženou pravděpodobnostní distribuci X 1, X 2. Veličiny X 1, X 2 jsou nezávislé, právě když x, x = x 1 2 1 x2 Def: Uvažujme tři náhodné veličiny X 1, X 2, X 3. Veličiny X 1, X 2 jsou podmíněně nezávislé při veličině X 3, právě když x1, x2 x3 = x1 x3 x2 x3 6.1.2.4 Možnost Základy teorie možnosti possibility theory formuloval v roce 1978 L.A: Zadeh jako nástroj umožňující usuzovat na základě nepřesné či vágní znalosti a brát přitom do úvahy neurčitost těchto znalostí. Formálně vzato tato teorie představuje alternativu k teorii pravděpodobnosti. Uvidíme tedy podobné definice jako v předcházející podkapitole. Def: Nechť X je konečná množina, tx je potenční množina množina všech podmnožin. ossibilistická distribuce Π je takové zobrazení že, Π X = 1 Π = 0 Π: tx [0, 1] pro A, B tx takové, že A B = platí Π A B = max Π A, Π B Věta: Nechť A, B tx. otom Π A B = max Π A, Π B Zatímco definice pravděpodobnostní distribuce požaduje, aby množiny A a B byly disjunktní, to že možnost sjednocení odpovídá maximální možnosti jednotlivých členů platí pro jakékoliv množiny A a B. Věta: Nechť A, B tx. otom Π A B min Π A, Π B 9

Def: Uvažujme dvě náhodné veličiny X 1, X 2 a nějakou jejich sdruženou pravděpodobnostní distribuci X 1, X 2. Marginální possibilistická distribuce veličiny X 1 je dána vztahem Π x1 = max Π x1, 2 X x 1 x2 X 2 Def: Uvažujme dvě náhodné veličiny X 1, X 2 a nějakou jejich sdruženou possibilistickou distribuci ΠX 1, X 2. Veličiny X 1, X 2 jsou nezávislé, právě když Π x1, x2 = Π x1 Π x2 Def: Uvažujme tři náhodné veličiny X 1, X 2, X 3. Veličiny X 1, X 2 jsou podmíněně nezávislé při veličině X 3, právě když Π x1, x2 x3 = Π x1 x3 Π x2 x3 Ve výše uvedených definicích značí symbol t-normu, kterou jsme poznali v souvislosti s fuzzy množinami. Operace tedy může ale nemusí být klasické násobení, tak jak je tomu v případě pravděpodobnosti. Dalším a ještě významnějším rozdílem je to, že požadujeme aby součet pravděpodobností všech prvků množiny X byl 1, zatímco u možnosti požadujeme, aby nějaký prvek množiny X byl jistě možný. Možnost tedy klade méně omezujících podmínek na formulování expertem, než pravděpodobnost. 6.2 Usuzování s využitím neurčitosti 6.2.1 Fuzzy inference Odvozovací pravidlo R: if X is A then Y is B X is A Y is B kde A a A nemusí být stejné, využívá tzv. kompozicionální pravidlo inference µ B y = max x min µ A x, µ R x,y 6.2.1.1 Mamdaniho model Takzvaný Mamdaniho model je jazykový model pracující s fuzzy podmíněnými příkazy typu R i : if X is A i then Y is B i kde A i x a B i y jsou fuzzy množiny. Stupeň pravdivosti případné konjunkce v předpokladu se vyhodnotí jako minimum. 10

Fuzzy podmíněného příkazu pravidlo chápeme jako fuzzy relaci, kde µ R x,y = µ A x, µ B y kde jako t-norma se nejčastěji používá minimum. Výstup y fuzzy systému spočítáme ze vstupu x a relace R jako max min obecněji kompozici y = x R tedy µ B y = max x min µ A x, µ R x,y říklad: Jsou dány crisp množiny X = {1, 2, 3}, Y = {1, 2, 3, 4}, fuzzy množina Xlow = {1, 1, 2, 0.7, 3, 0.3} a fuzzy množina Yhigh = {1, 0.2, 2, 0.5, 3, 0.8, 4, 1}. ravidlo if X is low then Y is high lze vyjádřit relací 1 2 3 4 1 0.2 0.5 0.8 1 R: low high = 2 0.2 0.5 0.7 0.7 3 0.2 0.3 0.3 0.3 Je-li nyní fuzzy množina Xmedium = {1, 0.5, 2, 1, 3, 0.5}, potom y * = medium R = {1, 0.2, 2, 0.5, 3, 0.7, 4, 0.7} říklad: balancování tyče Balancování tyče na vozíku neboli převrácené kyvadlo viz Obr. 8 je klasická úloha fuzzy regulace, jejíž popis je převzat z Nauck, Klawonn, Kruse. Cílem je udržet tyč ve svislé poloze pomocí síly F, která je závislá na úhlu Θ mezi kyvadlem a svislou osou, a na úhlové rychlosti Θ = d Θ/ dt. Uvažujme rozsah velikostí úhlu Θ od 90 o do 90 o, rozsah hodnot úhlové rychlosti od 45 o s -1 do 45 o s -1 a rozsah hodnot síly F od 10N do 10N. řiřaďme každé z těchto veličin fuzzy intervaly velký záporný vz, střední záporný sz, malý záporný mz, asi nula an, malý kladný mk, střední kladný sk a velký kladný vk způsobem analogickým Obr. 4. ravidla použitá pro řešení této úlohy mají podobu: R i : if Θ is A i and Θ is B i then F is C i Celkem se použije 19 pravidel, souhrnně ukázaných v Tab. 1. Tedy pravidlo je např. if Θ is malý záporný and Θ is velký záporný then F is malý kladný 11

ři odvozování se nejprve určí stupeň pravdivosti předpokladu každého pravidla jako minimum stupňů pravdivosti jednotlivých linguistických proměnných v předpokladu. ak se pro každé pravidlo určí hodnota závěru jako minimum stupně pravdivosti předpokladu a linguistické proměnné v závěru. Nakonec se získá výstupní hodnota jako maximum ze závěrů počítaných pro jednotlivá pravidla. Schematicky je celý postup znázorněn na Obr. 9. Analytické řečení celé úlohy vede na soustavu nelineárních diferenciálních rovnic Obr. 8 řvrácené kyvadlo Θ vz sz mz an mk sk vk vz mk vk sz sk mz sz mz mk Θ an vz sz mz an mk sk vk mk mz mk sk sk sz vk vz mz Tab. 1 Fuzzy pravidla pro kyvadlo 12

Obr. 9 Fuzzy inference Nauck, Klawonn, Kruse V případě fuzzy regulace musíme tento odvozovací postup ještě doplnit o fuzzyfikaci vstupů a defuzzyfikaci výstupu. ři fuzzyfikaci se konkrétní číselná hodnota převádí na fuzzy množinu fuzzy interval, při defuzzyfikaci se výsledek odvozování na základě fuzzy inference fuzzy množina převádí na konkrétní číselnou hodnotu. Obecné schéma fuzzy regulace podle kterého pracují různé spotřebiče typu fuzzy pračka, fuzzy mikrovlnná trouba apod. je na Obr. 10. ro defuzzyfikaci výstupu y se nabízí několik možností. Numerické výstupní veličině se přiřadí hodnota odpovídající těžišti odvozené fuzzy množiny středu maxima odvozené fuzzy množiny váženému průměru odvozené fuzzy množiny Obr. 10 Fuzzy regulace 13

6.2.1.2 Takagiho Sugenův model Takzvaný Takagiho - Sugenův model je jazykový model pracující s fuzzy podmíněnými příkazy typu R i : if X is A i then y = f i x kde fx je obvykle lineární funkcí x, tedy fx = a T x + b. Začátek výpočtu fuzzyfikace, inference je stejný jako u Mamdaniho modelu. Výstupní hodnota y se ale spočítá jako akt i i f i x y = akt kde akt i je stupeň pravdivosti předpokladu i-tého pravidla. Stupeň pravdivosti případné konjunkce v předpokladu se opět vyhodnotí jako minimum. i i 6.2.1.3 Dedukce ve vícehodnotové logice Jinou variantou fuzzy odvozování je odvozování ve vícehodnotové fuzzy logice. Zde vycházíme z klasického dedukčního pravidla ϕ ϕ ψ ψ Ze stupně a pravdivosti formule ϕ ψ stupně b pravdivosti formule ϕ pak počítáme stupeň pravdivosti formule ψ. oužijeme-li Lukasiewiczovu logiku, která má vlastnost úplnosti logické vyplývání v sémantickém smyslu odpovídá dokazatelnosti chápané syntakticky, stupeň pravdivosti formule ψ spočítáme jako Luk a, b = max0, a + b 1. 6.2.2 ravděpodobnostní inference Základním pojmem tohoto přístupu, známého především ze systému ROSCTOR [Duda, Gasching, 1979], je pojem šance. Ta je pro libovolný výrok A definována jako podíl počtu jevů příznivých A a jevů nepříznivých A: O A = A A = A 1 A ráce s neurčitostí vychází z Bayesovy věty, známé z teorie pravděpodobnosti: =, 14

15 kde je podmíněná, nebo aposteriorní pravděpodobnost hypotézy, víme-li, že evidence jistě platí, a je apriorní pravděpodobnost hypotézy. odobně můžeme definovat aposteriorní pravděpodobnost negace hypotézy, víme-li, že evidence jistě platí jako = Vydělíme-li výše uvedené rovnice, dostaneme =, což můžeme, s využitím pojmu šance vyjádřit jako O O =. Definujeme-li výrazem L = míru postačitelnosti, dostáváme pro aposteriorní šanci hypotézy výraz O L O = Míra postačitelnosti L je kvantitativní ocenění pravidla a zadává ji expert. Velká hodnota L>>1 říká, že evidence je postačující k dokázání hypotézy, protože z indiferentní apriorní šance O udělá velkou aposteriorní šanci O. Obdobným způsobem můžeme definovat míru nezbytnosti L = a aposteriorní šanci hypotézy jako O L O =. Bayesova věta dává návod jak stanovit vliv jedné evidence na uvažovanou hypotézu. Jak ale postupovat, pokud je evidencí více? Tedy, jak stanovit aposteriorní pravděpodobnost 1,, K? Jsou v zásadě dvě možnosti, jak postupovat: 1. Naivní bayesovský přístup vychází z předpokladu, že jednotlivé evidence 1,, K jsou podmíněně nezávislé při platnosti hypotézy [Duda, art, 1973]. Tento zjednodušující předpoklad umožňuje spočítat aposteriorní pravděpodobnost hypotézy při platnosti všech evidencí

1,, K = vyjádřeno jako šance dostáváme 1,,K 1,,K O 1 n = L1 Ln O O 1 n = L1 L n O 2. Bayesovské sítě též nazývané pravděpodobnostní sítě umožňují reprezentovat znalosti o částečně nezávislých evidencích a tyto znalosti použít při usuzování. Bayesovská síť je acyklický orientovaný graf zachycující pomocí hran pravděpodobnostní závislosti mezi náhodnými veličinami. Ke každému uzlu u náhodné veličině je přiřazena pravděpodobnostní distribuce tvaru urodičeu, kde rodičeu jsou uzly, ze kterých vycházejí hrany do uzlu u. To umožňuje spočítat sdruženou pravděpodobnostní distribuci celé sítě jako n u 1,.,u n = u i rodičeu i i=1 Má-li tedy bayesovská síť podobu uvedenou na Obr. 11, bude mít sdružená distribuce tvar Z,K,D,M = Z KZ DZ MK,D Obr. 11 říklad bayesovské sítě 6.2.3 ossibilistická inference Odvozování založené na teorii možnosti je analogické s odvozováním založeným na teorii pravděpodobnosti. Zhruba se dá říci, že sčítání je nahrazeno hledáním maxima a násobení je nahrazeno použitím nějaké t-normy například násobením. odobně jako bayesovskou síť lze definovat posibilistickou síť jako acyklický orientovaný graf zachycující pomocí hran posibilistické závislosti mezi náhodnými veličinami. Každému uzlu můžeme 16

přiřadit podmíněnou posibilistickou distribuci Πurodičeu. Sdruženou posibilistickou distribuci celé sítě pak definujeme jako n Π u 1,.,u n = Π u i rodičeu i i=1 Bude-li tedy mít posibilistická síť stejnou podobu jako bayesovská síť uvedená na Obr. 11, bude sdružená posibilistická distribuce dána výrazem Π Z,K,D,M = ΠZ ΠKZ ΠDZ ΠMK,D 6.2.4 Nemonotonní usuzování Všechny doposud zmíněné způsoby práce s neurčitostí vycházejí z toho, že neurčitost je vyjádřena pomocí číselné hodnoty. Zajímavou alternativu nabízí logika, konkrétněji tzv. nemonotónní usuzování. Klasickou logickou inferenci můžeme chápat jako odvozování důsledků plynoucích y formulí v prostředí, které je statické. Označíme-li CnX množinu všech důsledků množiny formulí X, pak 1. X CnX 2. X Y CnX CnY 3. CnCnX = CnX Nemonotonní usuzování je takový způsob inference, kdy dříve učiněný závěr může být zpochybněn ve světle nové informace neplatí tedy podmínka č. 2. Klasickým příkladem je formule každý pták létá. Závěr, který můžeme učinit na základě této formule o leteckých schopnostech libovolného ptáka ale bude zpochybněn, přidáme-li dodatečnou formuli znalost, že tučňák nelétá. 6.2.5 Kompozicionální vs. nekompozicionální přístup Výše uvedené přístupy buď skládají dílčí příspěvky k celkové neurčitosti = jsou tedy kompozicionální pravděpodobnostní, possibilistická inference, fuzzy inference, nebo hledají jeden způsob odvození závěru tříhodnotová logika, nemonotónní usuzování. 17

Cvičení: 1 říklad: Jsou dány množiny X = {1, 2}, Y = {1, 2, 3} a fuzzy relace R: X Y Y 1 2 3 R: X 1 0.3 0.8 1 2 0.9 0.7 0.4 ro A = {1, 0.5, }2, 0.7} spočítejte kompozici A R. 2 říklad: Jsou dány tři crisp množiny X = {1, 2}, Y = {1, 2, 3}, Z = {1, 2, 3, 4}, a dvě fuzzy relace R: X Y a S: Y Z Y 1 2 3 1 2 3 4 R: X 1 0.3 0.8 1 1 0.7 0.6 0.4 0.1 Spočítejte kompzozici R S 2 0.9 0.7 0.4 S: Y 2 0.4 1 0.7 0.2 Z 3 0.5 0.9 0.6 0.8 3 říklad: Na základě definice t-normy dokažte, že a, 0 = 0 4 říklad: Na základě definice t-konormy dokažte, že a, 1 = 1 5 říklad: rověřte, že Lukasiewiczovo dedukční pravidlo uvedené v 6.2.1.3 vychází z Lukasiewiczovy implikace. 18

Literatura: 1. Duda R.O., Gasching J..: Model Design in the rospector Konsultant System for Mineral xploration. in: Michie,D. ed., xpert Systems in the Micro lectronic Age, dinburgh University ress, UK, 1979. 2. Giarratano J., Riley G.: xpert Systems. rinciples and rogramming. WS ublishing Co. 1993. 3. Konar A.: Computational Inteligence. Springer, 2005 4. Mařík V., Štěpánková O., Katanský J a kol. Umělá inteligence II. Academia, 1997. 5. Nauk D., Klawonn F., Kruse R.: Foundations of Neuro-fuzzy systems. John Wiley, 1997 19