ALGEBRA. Téma 4: Grupy, okruhy a pole



Podobné dokumenty
grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

ALGEBRA. Téma 5: Vektorové prostory

Teorie grup 1 Příklad axiomatické teorie

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x

Teoretická informatika Tomáš Foltýnek Algebra Struktury s jednou operací

Lineární algebra Kapitola 1 - Základní matematické pojmy

Úlohy k procvičování textu o svazech

Algebra I Cvičení. 4) Množina všech matic s nulou v levém dolním rohu a s jedničkami na diagonále.

1 Báze a dimenze vektorového prostoru 1

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

Vektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

Algebra II pro distanční studium

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

7 Analytické vyjádření shodnosti

DEFINICE Z LINEÁRNÍ ALGEBRY

18. První rozklad lineární transformace

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Matematická analýza 1

Věta o dělení polynomů se zbytkem

Algebraické struktury s jednou binární operací

Co je to univerzální algebra?

Matematika pro informatiku 2

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

Aritmetika s didaktikou I.

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Matematika IV - 3. přednáška Rozklady grup

1 Lineární prostory a podprostory

Matematika B101MA1, B101MA2

Karel Klouda c KTI, FIT, ČVUT v Praze 28. února, letní semestr 2010/2011

Matematika IV - 2. přednáška Základy teorie grup

Matematika IV - 3. přednáška Rozklady grup

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

Operace s maticemi

Kapitola 11: Vektory a matice 1/19

Operace s maticemi. 19. února 2018

6. Vektorový počet Studijní text. 6. Vektorový počet

8 Matice a determinanty

Matice. a m1 a m2... a mn

1. Pologrupy, monoidy a grupy

(1) Dokažte, že biprodukt je součin (a tím pádem i součet). Splňují-li homomorfismy. A B je izomorfismus stejně jako A B i+j

Množinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).

Matematika 2 pro PEF PaE

Základy matematiky pro FEK

7. Lineární vektorové prostory

Střípky z LA Letem světem algebry

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.

Cvičení z Lineární algebry 1

GRUPY SBÍRKA PŘÍKLADŮ

1 Vektorové prostory a podprostory

Kapitola 11: Vektory a matice:

ZÁKLADY ARITMETIKY A ALGEBRY I

1. Základní příklady a poznatky o monoidech a grupách

Matematika B101MA1, B101MA2

Program SMP pro kombinované studium

2. Test 07/08 zimní semestr

Základy maticového počtu Matice, determinant, definitnost

10. DETERMINANTY " # $!

RELACE, OPERACE. Relace

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Matematika pro informatiku 1

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Vlastní čísla a vlastní vektory

Cílem kapitoly je opakování a rozšíření středoškolských znalostí v oblasti teorie množin.

KATEDRA INFORMATIKY UNIVERZITA PALACKÉHO LINEÁRNÍ ALGEBRA 1 OLGA KRUPKOVÁ VÝVOJ TOHOTO UČEBNÍHO TEXTU JE SPOLUFINANCOVÁN

Charakteristika tělesa

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.

3. Algebraické systémy

V: Pro nulový prvek o lineárního prostoru L platí vlastnosti:

ALGEBRA. Téma 1: Matice a determinanty

MPI - 5. přednáška. 1.1 Eliptické křivky

ALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =

Aritmetika s didaktikou I.

Číselné vektory, matice, determinanty

Západočeská univerzita v Plzni FAKULTA PEDAGOGICKÁ

ÚVOD DO ARITMETIKY. Michal Botur

Úlohy k přednášce NMAG 101 a 120: Lineární algebra a geometrie 1 a 2,

Množiny, relace, zobrazení

Státní závěrečná zkouška z oboru Matematika a její použití v přírodních vědách

Zavedení a vlastnosti reálných čísel

Základní pojmy teorie množin Vektorové prostory

Pavel Horák LINEÁRNÍ ALGEBRA A GEOMETRIE 1 UČEBNÍ TEXT

Základy teorie grup. Martin Kuřil

Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague

Lineární algebra Operace s vektory a maticemi

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

a + b + c = 2 b + c = 1 a b = a 1 2a 1 + a a 3 + a 5 + 2a 2 + a 2 + a

α 1 α 2 + α 3 = 0 2α 1 + α 2 + α 3 = 0

Matice lineárních zobrazení

Transkript:

SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita, komutativita, distributivita; grupa, neutrální prvek, inverzní prvek, inverzní operace; komutativní (Abelova) grupa, aditivní grupa, multiplikativní grupa; podgrupa; homomorfismus grup, jádro a obraz homomorfismu, izomorfismus grup; triviální grupa, číselné grupy, maticové grupy, cyklické grupy, symetrické grupy; okruh, komutativní okruh, asociativní okruh, nulový prvek okruhu, jednotkový prvek okruhu, dělitelé nuly, invertibilní prvek; podokruh; homomorfismus a izomorfismus okruhů, triviální okruh, číselné okruhy, okruh polynomů, okruh zbytkových tříd modulo n, okruh funkcí; pole (těleso), charakteristika pole, podpole; číselná pole; Základní úlohy Vyšetřit vlastnosti dané operace, rozhodnout, zda množina s danými operacemi je grupa, okruh, pole; rozhodnout, zda podmnožina grupy (okruhu, pole) je podgrupa (podokruh, podpole), rozhodnout, zda dané zobrazení je homomorfismus (izomorfismus), určit jádro a obraz homomorfismu, určit charakteristiku pole. Základní vzorce asociativní zákon: a (b c) = (a b) c komutativní zákon: a b = b a distributivní zákony: a) a (b + c) = a b + b c, b) (a + b) c = a c + b c. Kontrolní otázky 1. Definujte grupu. 2. Bud G grupa. Je {e} podgrupou G? Je G podgrupou G? 3. Je množina R s operací sčítání reálných čísel grupa? Je R s operací násobení reálných čísel grupa? 4. Je dělení binární operace na množině R? 5. Je sčítání binární operace na množině sudých čísel? 6. Je sčítání binární operace na množině lichých čísel? 7. Na množině R zaved te strukturu (a) grupy, (b) okruhu, (c) pole.

8. Vyjmenujte některé podgrupy aditivní grupy reálných čísel (R, +). 9. Lze zavést strukturu okruhu na jednoprvkové množině? Lze zavést na jednoprvkové množině strukturu okruhu s jednotkou? 10. Uved te příklady okruhů, které nejsou poli. 11. Uved te příklady polí. 12. Jakou charakteristiku má pole Q? 13. Uved te příklady podokruhů okruhu R. 14. Je-li f : G G izomorfismus grup, určete podgrupy Ker f G a Im f G. 15. Uved te příklad okruhu na dvouprvkové množině. Příklady 1. Rozhodněte, která z uvedených dvojic (množina, operace) má strukturu grupy, případně Abelovské grupy: (+ značí sčítání, násobení) (Z, +), (Q, +), (R, +), (C, +), (Z, ), (Q, ), (R, ), (C, ), (R +, ), (R \ {0}, ), (C \ {0}, ), (Q \ {0}, ), (matice m/n, +), (matice n/n, ), (regulární čtvercové matice, ). 2. Dokažte, že množina všech sudých čísel s operací sčítání je izomorfní s aditivní grupou celých čísel. 3. Dokažte, že grupy (R +, ) a (R, +) jsou izomorfní. 4. Uvažujme tyto grupy: (Z, +), (C, +), (R +, ), (Q, +), (R, +), (R \ {0}, ). Vyberte všechny dvojice A, G tak, aby platilo, že A je podgrupou G. 5. Dokažte, že je-li f : G G homomorfismus grup a e(e ) je jednotka grupy G(G ), pak f (e) = e. 6. Dokažte, že průnikem dvou podgrup grupy G je podgrupa grupy G. Platí analogické tvrzení pro konečný systém podgrup? A pro libovolný systém podgrup? Dokažte. 7. Cyklické podgrupy. Bud G grupa, a G. Necht n N. n-tou mocninou prvku a nazýváme prvek a a a } {{ } n a označujeme a n. (Dohoda: a 0 = e; je-li G aditivní grupa, nazýváme a n n-násobkem prvku a a píšeme na.) Zápornou mocninu prvku a definujeme vztahem a } 1 a 1 {{ a 1 } = (a 1 ) n ; značíme ji a n. n Dokažte, že (a 1 ) n = (a n ) 1. Dokažte: pro m, n: a n a m = a m a n = a n+m, (a n ) m = a nm. Označme {a} podmnožinu grupy G tvořenou všemi mocninami prvku a. Dokažte, že {a} je podgrupa grupy G nazývá se cyklická podgrupa grupy G vytvořená prvkem a. Je tato podgrupa abelovská? Grupa G se nazývá cyklická, jestliže existuje a G tak, že G = {a}. Ukažte, že (Z, +) je nekonečná cyklická grupa. Dokažte, že všechny nekonečné cyklické grupy jsou navzájem izomorfní. (Návod: Zkoumejte izomorfismus s cyklickou grupou (Z, +).) 8. Prvek a grupy G se nazývá prvek řádu n, jestliže a n = e. Necht v grupě G existuje právě jeden prvek x řádu 2. Pak pro a G platí ax = xa. Dokažte. 2

9. Symetrické grupy. Dokažte, že množina všech permutací množiny {1, 2,..., n} s operací skládání permutací je grupa. Nazývá se symetrická grupa stupně n a označuje se S n. Je S n abelovská? Určete parity permutací, složenou permutaci σ τ, resp. τ σ a jejich paritu, je-li σ = ( 1 2 3 4 5 6 3 5 6 1 2 4 ), τ = ( 1 2 3 4 5 6 6 1 5 3 4 2 Popište tyto podmnožiny grupy S 4 : všechny permutace, které zobrazují množinu {1, 2} do množiny {1, 2}, všechny permutace, které zobrazují {1, 2} bud do {1,2} nebo do {3, 4}. Najděte 4 různé podgrupy grupy S 4 izomorfní s S 3. Uvažujme grupu S 4 a její podmnožinu A = {( 1 2 3 4 2 1 3 4 Rozhodněte, zda A je podgrupa. ) ( 1 2 3 4, 1 2 3 4 )}. 10. Uvažujme aditivní grupu celých čísel (Z, +). Dokažte, že podmnožina A všech sudých čísel je podgrupa v (Z, +). 11. Označme GL(n, R) multiplikativní grupu všech regulárních matic řádu n nad R (nazývá se obecná lineární grupa řádu n nad R). Matice A GL(n, R) se nazývá ortogonální, jestliže A 1 = A T. Dokažte, že množina všech ortogonálních matic řádu n je podgrupa grupy G L(n, R); označuje se O(n, R) a nazývá se ortogonální grupa. Dokažte, že pro prvky a i j ortogonální matice A platí ). nk=1 a i k a j k = δi j, nk=1 a k i ak j = δ i j (relace ortogonality). Určete determinant ortogonální matice. 12. Označme GL(n, C) multiplikativní grupu všech regulárních matic řádu n nad C. Matice A GL(n, C) se nazývá unitární, jestliže platí A 1 = A T. Dokažte, že množina U(n, C) všech unitárních matic řádu n je podgrupa grupy GL(n, C) (unitární grupa). Co platí pro determinant unitární matice? Je O(n, R) podgrupa U(n, C)? 13. Označme SL(n, R) množinu všech matic A GL(n, R) pro které det A = 1. Dokažte, že SL(n, R) je podgrupa GL(n, R) (speciální lineární grupa). 14. Euklidova grupa transformací R 3. Uvažujme množinu všech transformací Euklidova prostoru R 3 do sebe, definovaných rovnicemi r = A r + u, ( ) kde r je polohový vektor částice r = (x, y, z), u je libovolný konstantní vektor a A je ortogonální matice (tj. taková, že AA T = E). Pro A = E dostáváme r = r + u a příslušné transformace nazýváme translace. Pro u = 0 máme r = A r a transformace nazýváme rotace). Dokažte, že množina transformací (*) s operací skládání transformací je grupa (Euklidova grupa prostoru R 3 ). Určete její neutrální prvek a k libovolnému prvku prvek inverzní. Je tato grupa abelovská? Stejné otázky zkoumejte pro množinu translací a pak pro množinu rotací. 15. Dokažte, že složením homomorfismu grup a izomorfismu grup vzniká homomorfismus a složením dvou izomorfismů grup vzniká izomorfismus. Co můžete říci o složení dvou homomorfismů? 16. Uved te příklady číselných okruhů. 17. Dokažte, že pole racionálních čísel je nejmenší číselné pole, tj. že je celé obsaženo v každém číselném poli. 18. Rozhodněte, které z uvedených množin mají strukturu podokruhu okruhu reálných čísel: (a) sudá čísla (b) lichá čísla (c) Z (d) R \ Q 3

(e) {a + b 2, a, b Q} (f) {a + b 3 2, a, b Q} (g) {a + bi, a, b Q} Které z nich mají strukturu pole? 19. Dokažte, že množina všech polynomů s komplexními koeficienty s operacemi sčítání a násobení polynomů je okruh. Má tento okruh jednotku? Má dělitele nuly? Je polem? 20. Okruh zbytkových tříd modulo n. Uvažujme okruh celých čísel (Z, +, ). Zvolme n N, n 1 pevně. Řekneme, že čísla z 1, z 2 Z jsou ekvivalentní, jestliže jejich zbytky při dělení číslem n jsou si rovny. Prověřte, že takto definovaná relace je ekvivalence na množině Z. Zřejmě tato ekvivalence definuje rozklad množiny Z na n disjunktních tříd Z 0, Z 1,... Z n 1, kde Z i je třída ekvivalence obsahující všechna celá čísla, jejichž zbytek po dělení číslem n je roven i. Vypište rozklad množiny Z pro případy (a) n = 2 (b) n = 3 (c) n = 5 Označme O(n) množinu {Z 0,..., Z n 1 } a definujme operace + a na O(n) takto: Necht z 1, z 2 Z, z 1 Z i, z 2 Z j. Pak platí z 1 = p 1 n + i, z 2 = p 2 n + j, tedy z 1 + z 2 = (p 1 + p 2 )n + (i + j) z 1 z 2 = (p 1 p 2 n + p 1 j + p 2 i)n + i j, což znamená, že součet (součin) libovolných dvou prvků z třídy Z i a Z j padne do téže třídy Z k, kde k je zbytek při dělení čísla i + j číslem n (resp. Z l, kde l je zbytek při dělení čísla i j číslem n). Klademe: Z i + Z j = Z k, Z i Z j = Z l, kde k, l jsou stejné jako výše. Dokažte, že množina O(n) s takto definovanými operacemi sčítání a násobení je komutativní a asociativní okruh s jednotkou (určete jednotku tohoto okruhu!); nazývá se okruh zbytkových tříd modulo n. Určete nulový prvek a inverzní prvek k Z i vzhledem ke sčítání. Dokažte, že pro n = 2 je O(n) pole. Vyšetřete, zda jsou poli okruhy O(3), O(4), O(5). 21. Určete charakteristiku (a) číselného pole, (b) pole O(2). 22. Dokažte, že zobrazení: det GL(n, R) (R \ {0}, ) je homomorfismus grup. Určete jeho jádro Ker(det) a obraz Im(det). Zápočtové příklady 1. Dokažte, že množina A G je podgrupa když pro a, b A platí ab 1 A. 2. Galileiho grupa transformací. Dokažte, že množina transformací R R 3 R R 3 typu r = r + vt, t = t ( ) kde v je konstantní vektor, tvoří grupu s operací skládání transformací. (Transformace (**) nazýváme Galileiho transformace). Dokažte dále, že transformace prostoru R R 3 definované vztahy r = A r + vt + u, t = t tvoří grupu (Galileiho grupa). Ukažte, že libovolnou transformaci z Galileiho grupy lze vyjádřit jako složení rotace, translace a Galileiho transformace. Rozhodněte, zda grupa Galileiho transformací, resp. Galileiho grupa je Abelova. 3. Dokažte, že množina spojitých reálných funkcí s operací sčítání a násobení funkcí je okruh. Rozhodněte, zda tento okruh je (a) komutativní, (b) asociativní Má tento okruh jednotku? Má dělitele nuly? 4

4. Uvažujme množinu všech vektorů v R 3 s operacemi sčítání vektorů a vektorového součinu vektorů, definovanými takto: je-li u = (u 1, u 2, u 3 ), v = (v 1, v 2, v 3 ), klademe u + v = (u 1 + v 1, u 2 + v 2, u 3 + v 3 ) u v = (u 2 v 3 u 3 v 2, u 1 v 3 + v 1 u 3, u 1 v 2 u 2 v 1 ); (někdy píšeme také e 1 e 2 e 3 u v = u 1 u 2 u 3 v 1 v 2 v 3, kde e 1, e 2, e 3 jsou jednotkové vektory ve směru souřadnicových os ). Dokažte, že (R 3, +, ) je okruh. Je tento okruh komutativní? Je asociativní? Má dělitele nuly? Má jednotku? 5. Dokažte, že existuje surjektivní homomorfismus obecné lineární grupy G L(n, R) na multiplikativní grupu reálných čísel (R \ {0}, ). 6. Necht f : G G je homomorfismus grup. Dokažte, že Ker f je podgrupa v G a Im f je podgrupa v G. 5