Motivace: Poissonova rovnice

Rozměr: px
Začít zobrazení ze stránky:

Download "Motivace: Poissonova rovnice"

Transkript

1 Motivace: Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx x + D y y + D z z + dxdz[d y (y + dy) D y (y)] + dxdy[d z (z + dz) D z (z)] ) = dvε ( 2 φ x φ y φ z 2 kde ρ = dq/dv je hustota náboje a permitivita je konstantní. ) 1/15 aplaceùv operátor: symbol nebudeme ( ) 2 pou¾ívat, aby se nepletl x y z 2 2 s φ = φ vpravo φ vlevo Poissonova rovnice: 2 φ = ρ ε nebo v jedné dimenzi d 2 φ dx 2 = ρ ε

2 Motivace: aminární proudìní 2/15 Viskozita smyková síla f = ηa dv x dy A v +dv x x A = plocha dv x dy = gradient teèné rychlosti y dy v x η = dynamická viskozita, [η] = Pa s x aminární proudìní v trubici ^z, rozdíl tlakù = p. Síla na hranolek dx dy z je souètem smykových sil zpùsobeným gradienty rychlosti: [ vz (x + dx, y) v z (x, y) f z = η zdy v ] z(x, y) v z (x dx, y) dx dx η zdx [ + v z(x, y + dy) v z (x, y) dy f z η 2 v = zdxdy = p z v ] z(x, y) v z (x, y dy) dy

3 Motivace: Difuze 3/15 První Fickùv zákon: Tok J i látky i (jednotky: mol m 2 s 1 ) Pro J i = D i c i je úmìrný gradientu koncentrace ( c i = grad c i = x, y, ) c z i = ( ci x, c i y, c ) i z D i = koecient difuze (difuzivita) látky i, jednotky: m 2 s 1 Druhý Fickùv zákon: Nestacionární jev (koncentrace se mìní s èasem) { za dt do objemu dv = dxdydz pøiteèe: [J x (x) J x (x + dx)]dydz = dv J x,y,z J = D c c i t = D i 2 c i hmotnostní koncentraci (v kg m 3 ) vyjde tok v kg m 2 s 1... a stejnì pro teplo, proto se této rovnici øíká rovnice pro vedení tepla Stacionární pøípad: c i / t dáno na okrajích, nezávisí na èase

4 Motivace: vlnová rovnice Mechanický model: m m m m Výchylka = y i, vzdálenost záva¾í = x. Síla pùsobící na hmotnost m v bodì i: 4/15 F i = (y i+1 y i )K + (y i 1 y i )K = (y i+1 2y i + y i 1 )K x 2 2 y i x 2 K Newtonova pohyb.rov.: F i = m 2 y i t 2 vlnová rovnice y i x2 2 x 2 K = y i m 2 t 2 Dodatek: kolik je tuhost pru¾iny K pro plyn? Odeèteme sílu v klidu ( m m = x) a pøi výchylce ( x+dy) na plochu A: (NB: p(x) je funkce výchylky) kde f i = A[p( x + dy) p( x)] = A p p V dy = A y V y dy =! Kdy pv κ = konst p V = κp V, Dále m = ρv = pm RT xa, dohromady: 2 yκrt x 2 M = 2 y t 2 v zvuk = V V = A( x+dy) y = A κrt M, y = y(x ± v zvukt) K = Aκp x

5 Motivace: Kvantová teorie 5/15 Èasová Schödingerova rovnice ( i h t ψ = h ) 2 2m 2 + U ψ

6 Poèáteèní podmínky 6/15 Dirichletovy: hodnoty na hranici oblasti / D-dimensionální nadplo¹e Neumannovy: derivace (v normálovém smìru) Cauchyovy: obojí Pøíklady: f(x, y) x = 1, f(0, y) = sin(y), f(x, y) = sin(y) + x T(x, y, t) t = D 2 T(x, y, t), T(x, y, 0) = { 1 pro x 2 + y 2 < 1 0 pro x 2 + y 2 > 1 T(x, t) t Divný pøíklad: = D 2 T(x, t) x 2, T(x, 0) = { 1 pro x (0, 1) 0 pro x / (0, 1), T(x, t) x=±1 x = 0 2 y(x, t) t 2 = 2 y(x, t) x 2, y = 1 na pøímce x = t

7 Metoda konvoluce resp. Greenovy funkce 7/15 Druhý Fickùv zákon: Snadno se ovìøí, ¾e øe¹ení je: 1D: c g (x, t) = (4πDt) 1/2 exp 3D: c g ( r, t) = (4πDt) 3/2 exp c t = D 2 c ( ) x2 4Dt ( ) r2 4Dt c(x,t) 0.5 t=0 t=1 0.4 t=2 t=3 0.3 t=4 t= x Platí c(x, t)dx = 1 (¾ádná èástice se neztratí). Dodenuji δ(x) = c(x, 0) ve smyslu limity (Diracova delta funkce). Interpretace: jednotkový impuls. Alternativní pøístup: teorie distribucí. Platí (pro slu¹nì vychovanou funkci f): δ(x a)f(x)dx = δ(a x)f(x)dx = f(a)

8 [xmaple../maple/.mw] Metoda konvoluce resp. Greenovy funkce 8/15 c g (x, t) vý¹e øe¹í èasový vývoj jednotkového impulsu, tj. poèáteèní podmínku c g (x, 0) = δ(x). Mám-li na zaèátku c 0 (x) = c(x, 0): c(x, 0) = c g (x x, 0)c 0 (x )dx c(x, t) = c g (x x, t)c 0 (x )dx Cvièení: c 0 (x) = 1 pro x < 1/2, c 0 (x) = 0 jinde; D = 1. 1/2 c(x, t) = c g (x x, t)c 0 (x, 0)dx = c g (x x, t)dx 1/2 Problém: Greenova funkce v jiných okrajových podmínkách

9 Elektrostatika: Greenova funkce 9/15 Pole náboje Q je (ve 3D) tedy pole hustoty náboje ρ( r) je: Q 4πɛr φ( r) = 1 4πɛ ρ( r ) r r d r Cvièení: uka¾te, ¾e 2 (1/r) = 0 pro r 0 (nejlépe Maple)

10 Fourierova metoda: difuze 10/15 Coca-Colu ve válci (vý¹ka sloupce 10 cm) opatrnì pøevrstvíme èistou vodou (10 cm). Za jak dlouho bude koncentrace u hladiny rovna polovinì koncentrace u dna? Konvekci neuva¾ujte. D sacharoza (25 C) = cm 2 s 1. c t = D 2 c x 2 c(x, 0) = { c0 x < /2 0 x > /2 c x x=0, = 0 Trknutí: Kdyby platilo c(x, 0) = cos ( π x ), bylo by to jednoduché: ( π ) [ ( ] π 2 c(x, t) = cos x exp Dt ) Obecnì: Nech» c k (x) je vlastním vektorem rovnice 2 c k x 2 c k (x, t) = c k (x) exp[dλ k t] øe¹í pùvodní rovnici. Zde [ ] [ (2k + 1)πx (2k + 1)π c k (x, 0) = cos, λ k = = λ kc k, pak ] 2 4 mìsíce Zbývá najít rozvoj poèáteèní podmínky c(x, 0) do c k { zde Fourierova øada

11 Fourierova øada 11/15 Mìjme funkci f(x) periodickou s periodou. Platí (ve smyslu, který je¹tì upøesním) f(x) = a [ ( ) ( )] 2πnx 2πnx a n cos + b n sin kde a n = 2 0 n=1 ( ) 2πnx f(x) cos dx, b n = 2 0 ( ) 2πnx f(x) sin dx Je-li f integrovatelná s kvadrátem, konverguje øada (bodovì) skoro v¹ude. Je-li f diferencovatelná, konverguje v¹ude. Norma rozdílu f n f konverguje k 0 (f n = èásteèný souèet) báze {1, cos(2πx/), sin(2πx/),...} je úplná (v prostoru funkcí integrovatelných s kvadrátem na [0, )) a n, b n : znásobte øadu kterýmkoliv prvkem báze s aplikujte 0 dx

12 Fourierova metoda: difuze II [plot/cukr.sh] 12/15 Pou¾ijeme {1, cos(πx/), cos(3πx/),...}, které vyhovují poèáteèní podmínce a symetrii. { 1 c(x, 0) = c ( πx ) π cos 2 ( ) } 3πx 3π cos + Pro jednotlivé èleny (módy) øe¹íme rovnici a seèteme. c(x, t) = c c 0 π 1 ( ) ( ) 3πx 3 cos exp 32 π 2 2 Dt [ cos Pozn. Animace byla øe¹ena numericky. ( ) ( πx ) exp π2 2Dt + 1 ( ) ( 5πx 5 cos exp 52 π 2 2 Dt ) ]

13 Fourierova metoda: tok trubicí ètvercového prùøezu 13/15 Jaký je prùtok kapaliny o viskozitì η trubicí prùøezu a délce z, je- -li na koncích tlakový rozdíl p? (= stacionární tok tepla rovnomìrnì zahøívanou deskou, která je ukotvena v ledu na okrajích) 2 v = p zη = α v(okraj) = 0 v = u+v 0, u 0 = αx( x)/2 2 u = 0 (ale zmìní se okrajové podmínky) rozvineme okrajové podmínky do Fourierovy øady ( ) π(2k + 1)x u(x, 0) = u(x, ) = u 0 = a k sin ( ) π(2k + 1)x øe¹ení hledáme ve tvaru u = a k sin w k (y) k=0 [ ( ) ( )] π(2k + 1)y π(2k + 1)( y) [ ] w k (y) = exp + exp / e π(2k+1) + 1 prùtok I = A2 p zη, A = 2 ; kruhový prùøez A: I = A2 p zη k=0

14 Fourierova transformace [xmaple../maple/.mw] 14/15 pøímá: FT[f](k) ^f(k) = f(x)e ikx dx zpìtná: f(x) = 1 2π ^f(k)e ikx dk Dùkaz: staèí pro funkci δ(x) = lim σ 0 exp( x 2 /2σ 2 )/ 2π { viz Maple. U¾iteèné: Gaussova funkce Gaussova funkce ^δ(k) = 1, ve smyslu distribuce: δ(x) = 1 2π e ik(x x ) dx FT pøevádí derivaci na dìlení (pro f(± ) = 0), násobení sin èi cos na posun frekvence: ^f = i k^f, FT[e ik x f(x)](k) = ^f(k + k ) Pozn.: Podobnì se chová aplaceova transformace (s je komplexní èíslo) ~f(s) = f(x)e sx dx lze vyu¾ít pro øe¹ení soustavy lin.dif. rovnic (el. obvody, kinetika)

15 FT konvoluce resp. Greenovy funkce 15/15 FT konvoluce vede na násobení obrazù c(x, t) = c g (x x, t)c 0 (x )dx ^c(k, t) = ^c g (k, t)^c 0 (k) Cvièení: Opìt rovnice difuze pro c 0 (x) = 1 pro x < 1/2, c 0 (x) = 0 jinde; D = 1 { viz Maple. Numerický výpoèet Pøevádíme na diskrétní FT: X k = N 1 n=0 x n e ±i2πkn/n kterou poèítáme algoritmem þrychlá Fourierova transformaceÿ (FFT), jen¾ je øádu O(N log N), pokud je N souèinem malých prvoèísel (typicky 2 k ).

Matematika II Aplikace derivací

Matematika II Aplikace derivací Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

Transportní jevy. J = konst F

Transportní jevy. J = konst F Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)

Více

Maxwellovo({Boltzmannovo) rozdìlení rychlostí

Maxwellovo({Boltzmannovo) rozdìlení rychlostí Maxwellovo({Boltzmannovo) rozdìlení rychlostí Pravdìpodobnost, ¾e molekulu nalezneme 1/32 4. listopadu 2016 v krychlièce o velikosti dxdydz se souøadnicemi v intervalech [x, x + dx), [y, y + dy) a [z,

Více

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího.

Dnešní látka: Literatura: Kapitoly 3 a 4 ze skript Karel Rektorys: Matematika 43, ČVUT, Praha, Text přednášky na webové stránce přednášejícího. Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu

MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z. Obsah. 1. Parciální diferenciální rovnice obecně. 2. Kvaazilineární rovnice prvního řádu MATEMATIKA IV - PARCIÁLNÍ DIFERENCIÁLNÍ ROVNICE - ZÁPISKY Z PŘEDNÁŠEK JAN MALÝ Obsah 1. Parciální diferenciální rovnice obecně 1. Kvaazilineární rovnice prvního řádu 1 3. Lineární rovnice druhého řádu

Více

nazvu obecnou PDR pro neznámou funkci

nazvu obecnou PDR pro neznámou funkci Denice. Bu n N a Ω R d otev ená, d 2. Vztah tvaru F (x, u(x), Du(x),..., D (n 1) u(x), D (n) u(x)) = 0 x Ω (1) nazvu obecnou PDR pro neznámou funkci u : Ω R d R Zde je daná funkce. F : Ω R R d R dn 1 R

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Přednáška č. 5: Jednorozměrné ustálené vedení tepla

Přednáška č. 5: Jednorozměrné ustálené vedení tepla Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace

Více

18 Fourierovy řady Úvod, základní pojmy

18 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika III kap. 18: Fourierovy řady 7 18 Fourierovy řady 18.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 9. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}.

1. Náhodný vektor (X, Y ) má diskrétní rozdělení s pravděpodobnostní funkcí p, kde. p(x, y) = a(x + y + 1), x, y {0, 1, 2}. VIII. Náhodný vektor. Náhodný vektor (X, Y má diskrétní rozdělení s pravděpodobnostní funkcí p, kde p(x, y a(x + y +, x, y {,, }. a Určete číslo a a napište tabulku pravděpodobnostní funkce p. Řešení:

Více

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné

Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné . Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x

Více

Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 )

Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 ) Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 ) 1/16 Síla na náboj q zpùsobená nábojem Q: F = 1 qq r 4πε 0 r 2 r Intenzita pole: E = F q = 1 Q r 4πε 0 r 2 r Potenciál: φ = 1 Q 4πε 0 r, platí φ ( r φ

Více

22 Základní vlastnosti distribucí

22 Základní vlastnosti distribucí M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 22: Základní vlastnosti distribucí 5 22 Základní vlastnosti distribucí 22.1 Temperované distribuce Definice. O funkci ϕ C (R m ) řekneme, že je rychle klesající

Více

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána Fourierova věta (připomeňte si, že f(x = (f(x + + f(x /2: VĚTA Necht f je po částech hladká na R a R f konverguje

Více

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus

Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus Zkoušková písemná práce č 1 z předmětu 1RMF čtvrtek 16 ledna 214, 9: 11: ➊ 11 bodů) Ve třídě zobecněných funkcí vypočítejte itu x ) n n2 sin 2 P 1 n x) ➋ 6 bodů) Aplikací Laplaceovy transformace vypočtěte

Více

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce

Úvod do parciálních diferenciálních rovnic. 2 Kanonický tvar lineárních PDR 2. řádu pro funkce Příklady na cvičení k přednášce NMMA334 Úvod do parciálních diferenciálních rovnic 1 Kanonický tvar lineárních PDR 2. řádu pro funkce dvou proměnných 1. Určete typ parciální diferenciální rovnice u xx

Více

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu.

Jméno: P íjmení: Datum: 17. ledna 2018 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Jméno: P íjmení: Datum: 7. ledna 28 Nechci zápo et p i hodnocení niº²ím neº (nezávazné): vadí mi vystavení mého hodnocení na internetu. Rotující nádoba Otev ená válcová nádoba napln ná do poloviny vý²ky

Více

24. Parciální diferenciální rovnice

24. Parciální diferenciální rovnice 24. Parciální diferenciální rovnice Aplikovaná matematika IV, NMAF074 M. Rokyta, KMA MFF UK LS 2011/12 24.1 Rovnice vedení tepla Definice (Rovnice vedení tepla) Parciální diferenciální rovnici c(x)ρ(x)

Více

Kapitola 8: Dvojný integrál 1/26

Kapitola 8: Dvojný integrál 1/26 Kapitola 8: vojný integrál 1/26 vojný integrál - osnova kapitoly 2/26 dvojný integrál přes obdélník definice výpočet (Fubiniova věta pro obdélník) dvojný integrál přes standardní množinu definice výpočet

Více

FOURIEROVA TRANSFORMACE

FOURIEROVA TRANSFORMACE FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA V kapitole o Fourierových řadách byla dokázána (připomeňte si, že f(x) = (f(x + ) + f(x ))/2): VĚTA. Necht f je po částech hladká na R a R f konverguje. Potom f(x)

Více

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji

Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly. i = 1,..., N. r i. U = i<j. u(r ij ) du(r ji ) r ji Molekulová dynamika Síly: tuhé koule ap. { nárazy þklasickáÿ MD { integrace pohybových rovnic 1/20 Brownovská (stochastická) dynamika, disipativní èásticová dynamika = MD + náhodné síly Pøíklad: f i =

Více

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy

terminologie předchozí kapitoly: (ϕ, Ω) - plocha, S - geometrický obraz plochy 2. Plošný integrál. Poznámka. Obecně: integrování přes k-rozměrné útvary (k-plochy) v R n. Omezíme se na případ k = 2, n = 3. Definice. Množina S R 3 se nazve plocha, pokud S = ϕ(), kde R 2 je otevřená

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

Co jsme udělali: Au = f, u D(A)

Co jsme udělali: Au = f, u D(A) Předmět: MA4 Dnešní látka: Od okrajových úloh v 1D k o. ú. ve 2D Laplaceův diferenciální operátor Variačně formulované okrajové úlohy pro parciální diferenciální rovnice a metody jejich přibližného řešení

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Diferenciální počet funkcí více proměnných

Diferenciální počet funkcí více proměnných Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet

Více

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí (

Cvičení Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( Cvičení 11 1. Na těleso působí napětí v rovině xy a jeho napěťový stav je popsán tenzorem napětí ( σxx τ xy τ xy σ yy ) (a) Najděte vyjádření tenzoru napětí v soustavě souřadnic pootočené v rovině xy o

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

Zkou²ková písemná práce. 1 z p edm tu 01MAB4

Zkou²ková písemná práce. 1 z p edm tu 01MAB4 Zkou²ková písemná práce. 1 z p edm tu 01MAB4 25/05/2017, 9:00 11:00 ➊ (9 bod ) Nech je dvojrozm rná Lebesgueova míra generována vytvo ujícími funkcemi φ(x) = Θ(x)x 2 a ψ(y) = 7y. Vypo t te míru mnoºiny

Více

INTEGRÁLY S PARAMETREM

INTEGRÁLY S PARAMETREM INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)

MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015) MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Maxwellovo({Boltzmannovo) rozdìlení rychlostí

Maxwellovo({Boltzmannovo) rozdìlení rychlostí Maxwellovo({Boltzmannovo rozdìlení rychlostí 1/32 Pravdìpodobnost, ¾e molekulu nalezneme v krychlièce o velikosti dxdydz se souøadnicemi v intervalech [x, x+dx, [y, y+dy a [z, z + dz a zároveò s rychlostmi

Více

MATEMATIKA II - vybrané úlohy ze zkoušek v letech

MATEMATIKA II - vybrané úlohy ze zkoušek v letech MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013

Více

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy

Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Drsná matematika III 3. přednáška Funkce více proměnných: Inverzní a implicitně definovaná zobrazení, vázané extrémy Jan Slovák Masarykova univerzita Fakulta informatiky 3. 10. 2011 Obsah přednášky 1 Literatura

Více

Přijímací zkouška na navazující magisterské studium 2015

Přijímací zkouška na navazující magisterské studium 2015 Přijímací zkouška na navazující magisterské studium 205 Studijní program: Studijní obory: Fyzika FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Pro funkci f(x) := e x 2. Určete definiční

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

16 Fourierovy řady Úvod, základní pojmy

16 Fourierovy řady Úvod, základní pojmy M. Rokyta, MFF UK: Aplikovaná matematika IV kap. 16: Fourierovy řady 1 16 Fourierovy řady 16.1 Úvod, základní pojmy Otázka J. Fouriera: Lze každou periodickou funkci napsat jako součet nějakých "elementárních"

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.

2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n. Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n

Více

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008

Učební texty k státní bakalářské zkoušce Matematika Posloupnosti a řady funkcí. študenti MFF 15. augusta 2008 Učební texty k státní bakalářské zkoušce Matematika Poslounosti a řady funkcí študenti MFF 15. augusta 2008 1 3 Poslounosti a řady funkcí Požadavky Sojitost za ředokladu stejnoměrné konvergence Mocninné

Více

Kapitola 11: Lineární diferenciální rovnice 1/15

Kapitola 11: Lineární diferenciální rovnice 1/15 Kapitola 11: Lineární diferenciální rovnice 1/15 Lineární diferenciální rovnice 2. řádu Definice: Lineární diferenciální rovnice 2-tého řádu je rovnice tvaru kde: y C 2 (I) je hledaná funkce a 0 (x)y +

Více

2 Odvození pomocí rovnováhy sil

2 Odvození pomocí rovnováhy sil Řetězovka Abstrakt: Ukážeme si, že řetěz pověšený mezi dvěma body v homogenním gravitačním poli se prohne ve tvaru grafu funkce hyperbolický kosinus. Odvození provedeme dvojím způsobem: pomocí rovnováhy

Více

1 Vedení tepla stacionární úloha

1 Vedení tepla stacionární úloha 1 VEDENÍ TEPLA STACIONÁRNÍ ÚLOHA 1 1 Vedení tepla stacionární úloha Typický představitel transportních jevů Obdobným způsobem možno řešit například Fyzikální jev Neznámá Difuze koncentrace [3] Deformace

Více

Separovatelné diferenciální rovnice

Separovatelné diferenciální rovnice Matematika 2, příklady na procvičení (Josef Tkadlec, 8. 6. 2009) Separovatelné diferenciální rovnice. Řešte diferenciální rovnici s počáteční podmínkou x = e x t, x() = 0. 2. Řešte diferenciální rovnici

Více

Matematika II Lineární diferenciální rovnice

Matematika II Lineární diferenciální rovnice Matematika II Lineární diferenciální rovnice RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Lineární diferenciální rovnice Denice

Více

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic.

které charakterizují danou fyzikální situaci. souvislostí). Může být formulován jako soustava rovnic a nerovnic. 1. Přednáška Obsah: Úvod do tvorby matematických modelů jako okrajové úlohy pro diferenciální rovnici. Příklad 1D vedení tepla a lineární pružnost. Diferenciální, variační, energetická formulace úloh.

Více

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření

EXPERIMENTÁLNÍ METODY I. 2. Zpracování měření FSI VUT v Brně, Energetický ústav Odbor termomechanik a technik prostředí prof. Ing. Milan Pavelek, CSc. EXPERIMENTÁLNÍ METODY I OSNOVA. KAPITOLY. Zpracování měření Zpracování výsledků měření (nezávislých

Více

TERMOMECHANIKA 15. Základy přenosu tepla

TERMOMECHANIKA 15. Základy přenosu tepla FSI VUT v Brně, Energetický ústav Odbor termomechaniky a techniky prostředí Prof. Ing. Milan Pavelek, CSc. TERMOMECHANIKA 15. Základy přenosu tepla OSNOVA 15. KAPITOLY Tři mechanizmy přenosu tepla Tepelný

Více

Fourierova transformace

Fourierova transformace Fourierova transformace EO Přednáška Pavel Máša ÚVODEM Známe Fourierovy řady v komplexním tvaru f(t) = 1X k= 1 A k e jk! t Spektrum této řady je diskrétní A k = 1 T Obvody tedy musíme řešit v HUS člen

Více

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 8. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení.

Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Předmět: MA4 Dnešní látka Variačně formulované okrajové úlohy zúplnění prostoru funkcí. Lineární zobrazení. Literatura: Kapitola 2 a)-c) a kapitola 4 a)-c) ze skript Karel Rektorys: Matematika 43, ČVUT,

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

elektrony v pevné látce verze 1. prosince 2016

elektrony v pevné látce verze 1. prosince 2016 F6122 Základy fyziky pevných látek seminář elektrony v pevné látce verze 1. prosince 2016 1 Drudeho model volných elektronů 1 1.1 Mathiessenovo pravidlo............................................... 1

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Plošný integrál Studijní text, 16. května Plošný integrál

Plošný integrál Studijní text, 16. května Plošný integrál Plošný integrál tudijní text, 16. května 2011 Plošný integrál Jednoduchý integrál jsme rozšířili zavedením křivkového integrálu. Rozlišovali jsme dva druhy integrálu, přičemž křivkový integrál 2. druhu

Více

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x

f(x) = ln arcsin 1 + x 1 x. f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech f(x) = (sin x) x2 + 3 cos x Příkad Nalezněte definiční obor funkce f(x) = ln arcsin + x x Určete definiční obor funkce f(x) = (cos x) cosh x + 3x a nalezněte rovnici tečen ke grafu této funkce v bodech [;?] a Určete definiční obor

Více

y ds, z T = 1 z ds, kde S = S

y ds, z T = 1 z ds, kde S = S Plošné integrály příklad 5 Určete souřadnice těžiště části roviny xy z =, která leží v prvním oktantu x >, y >, z >. Řešení: ouřadnice těžiště x T, y T a z T homogenní plochy lze určit pomocí plošných

Více

Transportní jevy. F = gradient jistého potenciálu

Transportní jevy. F = gradient jistého potenciálu Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitřní tření), vedení tepla... Tok (flux) (též zobecněný tok) hmoty, náboje, hybnosti, tepla... : J = množství

Více

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze

Komplexní analýza. Fourierovy řady. Martin Bohata. Katedra matematiky FEL ČVUT v Praze Komplexní analýza Fourierovy řady Martin Bohata Katedra matematiky FEL ČVU v Praze bohata@math.feld.cvut.cz Martin Bohata Komplexní analýza Fourierovy řady 1 / 20 Úvod Často se setkáváme s periodickými

Více

1 Funkce dvou a tří proměnných

1 Funkce dvou a tří proměnných 1 Funkce dvou a tří proměnných 1.1 Pojem funkce více proměnných Definice Funkce dvou proměnných je předpis, který každému bodu z R 2 (tj. z roviny) přiřazuje jediné reálné číslo. z = f(x, y), D(f) R 2

Více

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n.

Posloupnosti. n2 3n. lim. n4 + 2n. lim. n 1. n + n n. n! (n + 1)! n! lim. n ( 1)n! [1] lim. ln 2 n. lim. n n n sin n2 [0] lim. 2 n. SBÍRKA PŘÍKLAŮ Z MATEMATICKÉ ANALÝZY III J. ANĚČEK, M. ZAHRANÍKOVÁ Symbolem jsou označeny obtížnější příklady. Posloupnosti Určete limitu posloupnosti n n + lim n n + 5n + lim n n n n4 + n lim n lim n

Více

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019

NMAF063 Matematika pro fyziky III Zápočtová písemná práce B Termín pro odevzdání 4. ledna 2019 Jméno: Příklad 2 3 4 5 Celkem bodů Bodů 20 20 20 20 20 00 Získáno Zápočtová písemná práce určená k domácímu vypracování. Nutnou podmínkou pro získání zápočtu je zisk více jak 50 bodů. Pravidla jsou následující:.

Více

MFT - Matamatika a fyzika pro techniky

MFT - Matamatika a fyzika pro techniky MFT - Matamatika a fyzika pro techniky Pro každou přednášku by zde měl být seznam klíčových témat, odkaz na literaturu, zápočtový příklad k řešení a další příklady k procvičování převážně ze sbírky příkladů

Více

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček

Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Termomechanika 10. přednáška Doc. Dr. RNDr. Miroslav Holeček Upozornění: Tato prezentace slouží výhradně pro výukové účely Fakulty strojní Západočeské univerzity v Plzni. Byla sestavena autorem s využitím

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Téma 22. Ondřej Nývlt

Téma 22. Ondřej Nývlt Téma 22 Ondřej Nývlt nyvlto1@fel.cvut.cz Náhodná veličina a náhodný vektor. Distribuční funkce, hustota a pravděpodobnostní funkce náhodné veličiny. Střední hodnota a rozptyl náhodné veličiny. Sdružené

Více

Numerická matematika 1

Numerická matematika 1 Numerická matematika 1 Obsah 1 Řešení nelineárních rovnic 3 1.1 Metoda půlení intervalu....................... 3 1.2 Metoda jednoduché iterace..................... 4 1.3 Newtonova metoda..........................

Více

Kapitola 8: Dvojný integrál

Kapitola 8: Dvojný integrál Kpitol 8: vojný integrál Riemnov definie dvojného integrálu pøes obdelník Pøedpokládejme f : R 2 R je spojitá nezáporná funke. =, b, d. Cheme vypoèítt objem tìles T : T = {(x, y, z R 3 ; x, b, y, d, z

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F

+ 2y y = nf ; x 0. závisí pouze na vzdálenosti bodu (x, y) od počátku, vyhovuje rovnici. y F x x F y = 0. x y. x x + y F. y = F Příkad 1 ( y ) Dokažte, že funkce F (x, y) = x n f x 2, kde f je spojitě diferencovatelná funkce, vyhovuje vztahu x F x + 2y F y = nf ; x 0 Ukažte, že každá funkce F (x, y), která má spojité parciální

Více

Stabilizace Galerkin Least Squares pro

Stabilizace Galerkin Least Squares pro Fakulta strojní ČVUT Ústav technické matematiky Stabilizace Galerkin Least Squares pro MKP na řešení proudění o vyšších Reynoldsových číslech Ing. Jakub Šístek Doc. RNDr. Pavel Burda, CSc. RNDr. Jaroslav

Více

Fourierovské metody v teorii difrakce a ve strukturní analýze

Fourierovské metody v teorii difrakce a ve strukturní analýze Osnova přednášky na 31 kolokviu Krystalografické společnosti Výpočetní metody v rtg a neutronové strukturní analýze Nové Hrady, 16 20 6 2003 Fourierovské metody v teorii difrakce a ve strukturní analýze

Více

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné.

Záření KZ. Význam. Typy netermálního záření. studium zdrojů a vlastností KZ. energetické ztráty KZ. synchrotronní. brzdné. Zářivé procesy Podmínky vyzařování, Larmorův vzorec, Thomsonův rozptyl, synchrotronní záření, brzdné záření, Comptonův rozptyl, čerenkovské záření, spektum zdroje KZ Záření KZ Význam studium zdrojů a vlastností

Více

Sbírka příkladů z matematické analýzy II. Petr Tomiczek

Sbírka příkladů z matematické analýzy II. Petr Tomiczek Sbírka příkladů z matematické analýzy II Petr Tomiczek Obsah Diferenciální rovnice. řádu 3. Separace proměnných......................... 3. Přechod k separaci.......................... 4.3 Variace konstant...........................

Více

SIGNÁLY A LINEÁRNÍ SYSTÉMY

SIGNÁLY A LINEÁRNÍ SYSTÉMY SIGNÁLY A LINEÁRNÍ SYSTÉMY prof. Ing. Jiří Holčík, CSc. holcik@iba.muni.cz, Kamenice 3, 4. patro, dv.č.424 INVESTICE Institut DO biostatistiky ROZVOJE VZDĚLÁVÁNÍ a analýz IV. FREKVENČNÍ TRASFORMACE SPOJITÉ

Více

Parciální diferenciální rovnice

Parciální diferenciální rovnice Parciální diferenciální rovnice Obsah kurzu Co bude obsahovat... úvod do PDR odvození některých PDR klasická teorie lineárních PDR 1. a 2. řádu řešení poč. a okraj. úloh vlastnosti řešení souvislost s

Více

Poznámky k Fourierově transformaci

Poznámky k Fourierově transformaci Poznámky k Fourierově transformaci V těchto poznámkách jsou uvedeny základní vlastnosti jednorozměrné Fourierovy transformace a její aplikace na jednoduché modelové případy. Pro určitost jsou sdružené

Více

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )

Matematická analýza 1, příklady na procvičení (Josef Tkadlec, ) Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s

Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics s Pavel Nevøiva ANALÝZA SIGNÁLÙ A SOUSTAV Praha 2000 Autor by chtìl podìkovat všem svým spolupracovníkùm a kolegùm, kteøí mu pomohli s pøípravou textu. K vydání knihy pøispìla firma Newport Electronics spol.

Více

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA

FOURIEROVA TRANSFORMACE FOURIEROVA VĚTA FOURIEROVA TRANSFORMACE Fourierova transformace je užitečná transformace, která pomáhá řešit řadu úloh tím, že je přetransformuje na jednodušší úlohy, ty vyřešíma a výsledky přetransformujeme zpět. Má

Více