Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 )

Rozměr: px
Začít zobrazení ze stránky:

Download "Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 )"

Transkript

1 Lehký úvod do elektrostatiky { vakuum ( ε = ε 0 ) 1/16 Síla na náboj q zpùsobená nábojem Q: F = 1 qq r 4πε 0 r 2 r Intenzita pole: E = F q = 1 Q r 4πε 0 r 2 r Potenciál: φ = 1 Q 4πε 0 r, platí φ ( r φ grad φ x, y, ) φ = E z Celkový tok el. pole kulovou plochou (sférou) o polomìrur: E d s = Q sféra ε 0 Zachování poètu siloèar ( nezávisí na r ani smìru plochy) pro náboj uvnitø plochy S platí: Q = E d s ε 0 S Intenzita pole tìsnì u rovinné desky: E = Q 2ε 0 A Intenzita pole mezi deskami kondenzátoru: E = (A = plocha desky, S = 2A) Q ε 0 A

2 Lehký úvod do elektrostatiky { dielektrikum 2/16 Dielektrikum = þkladný náboj (hustota +ρ) + záporný náboj ( ρ)ÿ V el. poli v kondenzátoru Q Q se náboje posunou o d Stínící náboj vlevo je Q s, vpravo +Q s, Q s = daρ Efektivní náboj klesne v pomìru 1 : ε r (= denice ε r ): Q Q s = Q/ε r (stínící náboj = Q s, Q s > 0) Ve stejném pomìru klesne intenzita pole ( síla): E = Q Aε r ε 0 = Q Aε (def. ε = ε r ε 0 ) Objemová hustota dipólového momentu (= polarizace) v ka¾dém objemu V je (Vρd)/V = ρd = P. Dohromady: Q s = Aρd = AP = Q Q ε r, tj. Q = Q ε r + Q s = Q ε r + AP vydìlíme A a denujeme elektrickou indukci: D Q A = Q Aε r +P = ε 0 E+P = εe Kapacita kondenzátoru: C = Q φ = AD φ = AεE φ = Aε vzdálenost desek

3 Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx x + D y y + D z z + dxdz[d y (y + dy) D y (y)] + dxdy[d z (z + dz) D z (z)] ) = dvε ( 2 φ x φ y φ z 2 kde ρ = dq/dv je hustota náboje a permitivita je konstantní. ) 3/16 Laplaceùv operátor: symbol nebudeme ( ) 2 pou¾ívat, aby se nepletl x y z 2 2 s φ = φ vpravo φ vlevo Poissonova rovnice: 2 φ = ρ ε nebo v jedné dimenzi d 2 φ dx 2 = ρ ε

4 Elektrická dvojvrstva { vznik 4/16 Na rozhraní (pevné látky, bublina) a iontového roztoku vzniká povrchový náboj v dùsledku rùzné anity iontù rùzného znaménka, napø.: ionizace (disociace/protonizace) skupin (-COOH se nabije zápornì, -NH 2 kladnì) pøednostní rozpou¹tìní èi adsorpce iontù (AgCl v NaCl se nabije zápornì) Panethovo{Fajansovo[{Hahnovo] pravidlo: Ionty se adsorbují z na povrchu krystalu, jestli¾e tvoøí s iontem opaèného znaménka málo rozpustnou slouèeninu pøednostní adsorpce povrchovì aktivní látky (povrch mýdlové vody je záporný) izomorfní substituce (Al 3+ /Si 4+ na povrchu jílu) roz¹típnutí krystalu Otázka: co tento náboj udìlá v?

5 Elektrická dvojvrstva: Tak ne! [show/doublelayer.sh] 5/16 Mìjme NaCl mezi elektrodami. Intenzita elektrostatického pole = E. Ionty s elektrodou neinteragují (o interakci a¾ pozdìji... ) Jak se bude mìnit koncentrace Na + a Cl mezi elektrodami? Naivní øe¹ení: elst. potenciál = φ(x) = Ex pot. energie kationtu = eφ(x) pravdìpodobnost: exp[ eφ(x)/k B T] = exp(eex/k B T) pot. energie aniontu = eφ(x) pravdìpodobnost: exp[ eφ(x)/k B T] = exp( eex/k B T) c ion /mol.dm Na + dobre Cl - dobre x/nm Na + spatne Cl - spatne Pø. NaCl 0.1 mol dm 3, vzdálenost elektrod = 50 nm, napìtí = 50 mv Neutralita (nulový potenciál) uprostøed 1 ev = J/mol : správnì : naivní øe¹ení odporuje po¾adavku elektroneutrality objemové fáze

6 Difuzní vrstva: Gouy{Chapman elektrický potenciál v objemové fázi je φ( ) = 0 6/16 elektrický potenciál na elektrodì je φ(0) = φ 0 (o pùvod φ 0 se zatím nebudeme starat) ionty jsou nabité body, elektroda je tuhá zeï elektroda neinteraguje (¾ádná adsorpce) koncentraci iontù nahradíme prùmìrnou hodnotou (zanedbáváme korelace iontù) x rozpou¹tìdlo je dielektrické kontinuum (permitivita = ε = ε r ε 0 ) omezíme se na roztok soli 1:1 o koncentraci c (lze snadno zobecnit) Poissonova rovnice: d2 φ dx 2 = ρ ε Objemová hustota náboje: ρ = z i ρ i = ρ ρ, kde i [ ρ = cf exp φ(x)e ] [ ] φ(x)e ρ = cf exp k B T k B T Rovnice pro potenciál: d2 φ dx 2 = cf [e ] φe/kbt e φe/k BT ε

7 Difuzní vrstva: Gouy{Chapman Rovnice pro potenciál (Poisson{Boltzmann): d 2 φ dx 2 = cf ε [ e φe/k BT e φe/k BT ], φ(0) = φ 0, φ( ) = 0 Linearizace aneb pøibli¾né øe¹ení pro malé potenciály (φe/k B T 1, tj. φ 26 mv pro 298 K): 7/16 exp(x) = x0 0! + x1 1! + x2 2! + x3 3! + 1+x d2 φ dx 2 = 2cF φe φ = φ ε k B T 0 e x/λ εkb T εrt λ = 2cFe = εrt = Debyeova stínící délka, smìs: λ = 2cF2 2I c F 2 Pøíklad. NaCl ve vodì c = 0.1 mol dm 3, 25 C λ = 0.96 nm (ε = ε r ε 0, ε r = 78.4, ε 0 = F m 1 ) Pro srovnání: O{O vzdálenost ve vodì 0.28 nm, 120 molekul v λ-kouli Bjerrumova délka (energie páru elementárních nábojù = k B T) λ B = e 2 4πɛk B T voda 0.7 nm

8 Difuzní vrstva: Gouy{Chapman 8/16 φ(x)/v φ 0 = 50 mv φ 0 = 0.05 V linearizovane presne x/nm 1:1 elektrolyt, c = 0.1 mol dm 3 φ(x)/v φ 0 = 100 mv φ 0 = 0.1 V linearizovane presne x/nm Potenciál (v závislosti na vzdálenosti od povrchu) ubývá exponenciálnì v dùsledku stínìní náboje ionty opaèného znaménka Nazývá se difuzní vrstva, proto¾e lze ekvivalentnì vysvìtlit jako rovnováhu mezi difuzí a pøitahováním k elektrodì

9 Elektrická dvojvrstva II 9/16 Nabitý povrch pøitahuje protiionty (counterions). Gouy-Chapman nabitý povrch difuzní vrstva postupnì odstíní náboj neutrální roztok Helmholtz nabitý povrch adsorbované protionty stíní celý náboj neutrální roztok Stern nabitý povrch adsorbované protiionty stíní èást náboje difuzní vrstva stíní zbylý náboj neutrální roztok

10 Povrchový náboj (povrchový náboj) = (náboj Gouyovy{Chapmanovy vrstvy) { [ σ = (ρ + ρ )dx = cf exp φ(x)e ] [ ]} φ(x)e exp dx 0 0 k B T k B T Pou¾ijeme linearizovanou teorii, exp(x) 1 + x, proto¾e φ(x)e/k B T 1 10/16 σ 2cF φ(x)e 0 k B T dx = 2λcFφ e 0 k B T = ε λ φ 0 (1) Kapacita Gouyovy{Chapmanovy dvojvrstvy jako kondenzátoru: C A = σ φ 0 = ε λ Zpravidla se mìøí diferenciální kapacita, dσ/dφ, proto¾e obecnì σ / φ Pøíklad. Molekula mýdla zaujímá na povrchu plochu asi a = 0.2 nm 2. Protionty jsou v o koncentraci 0.1 mol dm 3 v prùmìru λ = 1 nm daleko. a) Jaký je povrchový náboj? b) Jaké kapacitì kondenzátoru (na m 2 ) to odpovídá? (ε r = 78.) c) Jaký je potenciál povrchu mýdlové vody? a) 0.8 C m 2, b) 0.7 F m 2, c) 1.1 V (ve skut. ménì)

11 Ionty [traj/traj.sh] 11/16 Plazma, roztoky elektrolytù: interakce náboj-náboj ubývá pomalu velké odchylky od ideálního chování neexistuje B 2 helium T=300 K helium T= K

12 Debyeova{Hückelova teorie pro roztoky elektrolytù 12/16 Zjednodu¹ující pøedpoklady: rozpou¹tìdlo je homogenní dielektrické kontinuum ionty (mù¾e být nìkolik druhù) aproximujeme tuhou nabitou kulièkou o prùmìru σ; jiné ne¾ elektrostatické interakce zanedbáváme rozlo¾ení iontù v okolí vybraného iontu popisujeme pravdìpodobnostnì jako spojité rozlo¾ení náboje (iontová atmosféra); korelace iontù v atmosféøe zanedbáváme platí zeφ k B T { alespoò þpro vìt¹inu iontùÿ { pro 1:1 nastane pro dostateènì zøedìný roztok (< 0.1 mol dm 3 ) { pro z > 1 nutné mnohem zøedìnìj¹í roztoky Iontová síla: I c = 1 z 2 2 i c i èasto pomocí molalit: I = 1 2 i sèítá se pøes v¹echny ionty v roztoku z 2 i m i i

13 Debyeova{Hückelova teorie pro roztoky elektrolytù 13/16 Výsledky (stínìný Coulombùv nebo Yukawùv potenciál) stínìní φ(r) = 1 ze φ(r) = 1 ze 4πε r 4πε r exp( r/λ) Debyeova délka (velikost iontové atmosféry): εrt λ = 0.96 nm pro 1:1, c = 0.1 mol dm λ = 3 2I c F 2 v kouli o polomìru λ je 120 H 2 O Aktivitní koecient iontu: ln γ i = Az 2 Ic i 1 + a σ=0 Az 2 I i c Ic bodové ionty (limitní zákon) A = e3 N 2 A 2 8π(εRT) 3/2 (= dm 3/2 mol 1/2 pro vodu 25 C) a = 2F 2 εrt σ (. = 1 dm 3/2 mol 1/2 pro σ = 0.3 nm) Pou¾itelnost max. do I c = 0.1 mol dm 3 (jednomocné), jinak je¹tì míò

14 Roztok silného elektrolytu 14/16 Obecnì: Al 2 (SO 4 ) 3 Kν Aν 2 Al SO 2 4 ν K z + + ν A z Elektroneutralita (zde denuji: z > 0, z > 0): ν z = ν z γ a γ nejsou samostatnì mìøitelné bì¾nými metodami Støední chemický potenciál (1 = rozpou¹tìdlo, 2 = sùl) Støední aktivita (ν = ν + ν ) µ 2 ± = ν µ + ν µ ν + ν a 2 ± = ν a ν aν Iontová síla pro sùl o molaritì c (pou¾ije se elektroneutralita): I c = 1 2 z z (ν + ν )c

15 Roztok silného elektrolytu 15/16 Støední aktivitní koecient γ 2± = ln γ 2± Debye{Hückel ν γ ν γν Ic = z z A 1 + a I c kde A = dm 3/2 mol 1/2, a = 1 dm 3/2 mol 1/2 Test pro NaCl: 0 experiment Debye-Huckel limiting Debye-Huckel ln γ (I / mol kg 1 ) 1/2

16 Aktivitní koecienty iontù Vypoètìte støední aktivitní koecient iontù v CaCl 2, c = 0.01 mol dm 3 16/ støední aktivitní koecient iontù v CH 3 COOH, c = 0.1 mol dm 3, je-li stupeò disociace α = aktivitní koecient protonù v H 2 SO 4, c = 0.01 mol dm 3, je-li disociace do 1. stupnì úplná a do 2. stupnì 60 % Rozpustnost málo rozpustné soli (napø. BaSO 4 ): klesne v obsahujícím jeden z iontù (napø. Ba(NO 3 ) 2 nebo Na 2 SO 4 ) ponìkud stoupne v pøítomnosti jiných iontù, proto¾e klesnou aktivitní koecienty Ba 2+ a SO 4 2 Pøíklad. Souèin rozpustnosti síranu barnatého je Vypoètìte rozpustnost BaSO 4 a) v èisté vodì a b) v 0.01 M roztoku NaCl. 10 µmol dm 3, 15 µmol dm 3 mù¾e se také zmìnit v dùsledku zmìny ph, dochází-li k hydrolýze (¹»avelan vápenatý v kys. ¹»avelové, vápenec a oxid uhlièitý) aj.

Elektrické jevy na membránách

Elektrické jevy na membránách Elektrické jevy na membránách Polopropustná (semipermeabilní) membrána; frita, diafragma propou¹tí ionty, vzniká el. napìtí rùzné koncentrace iontù na obou stranách rùzná propustnost/difuzivita pro rùzné

Více

Opakování: Standardní stav þ ÿ

Opakování: Standardní stav þ ÿ Opakování: Standardní stav þ ÿ s.1 12. øíjna 215 Standardní stav þ ÿ = èistá slo¾ka ve stavu ideálního plynu za teploty soustavy T a standardního tlaku = 1 kpa, døíve 11,325 kpa. Èistá látka: Pøibli¾nì:

Více

Motivace: Poissonova rovnice

Motivace: Poissonova rovnice Motivace: Poissonova rovnice Zachovává se poèet el. indukèních èar: Q = D d s, S D = ε E Integrál spoèítáme pøes povrch krychlièky dx dy dz: dq = dvρ = D d s = dydz[d x (x + dx) D x (x)] = dxdydz S ( Dx

Více

Rovnováha kapalina{pára u binárních systémù

Rovnováha kapalina{pára u binárních systémù Rovnováha kapalina{pára u binárních systémù 1 Pøedpoklad: 1 kapalná fáze Oznaèení: molární zlomky v kapalné fázi: x i molární zlomky v plynné fázi: y i Poèet stupòù volnosti: v = k f + 2 = 2 stav smìsi

Více

Klasická termodynamika (aneb pøehled FCH I)

Klasická termodynamika (aneb pøehled FCH I) Klasická termodynamika (aneb pøehled FCH I) 1/16 0. zákon 1. zákon id. plyn: pv = nrt pv κ = konst (id., ad.) id. plyn: U = U(T) }{{} Carnotùv cyklus dq T = 0 2. zákon rg, K,... lim S = 0 T 0 S, ds = dq

Více

Viriálová stavová rovnice 1 + s.1

Viriálová stavová rovnice 1 + s.1 Viriálová stavová rovnice 1 + s.1 (Mírnì nestandardní odvození Prùmìrná energie molekul okolo vybrané molekuly (β = 1/(k B T : 0 u(r e βu(r 4πr 2 dr Energie souboru N molekul: U = f 2 k B T + N 2 2V Tlak

Více

Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky)

Elektrochemie. Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Elektrochemie 1 Pøedmìt elektrochemie: disociace (roztoky elektrolytù, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, èlánky) Vodièe: I. tøídy { vodivost zpùsobena pohybem elektronù uvnitø

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

12. Elektrochemie základní pojmy

12. Elektrochemie základní pojmy Důležité veličiny Elektroda, článek Potenciometrie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Důležité veličiny proud I (ampér - A) náboj Q (coulomb - C) Q t 0 I dt napětí, potenciál

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní s/g s/l s/s 1/14 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti okem) b) 200 nm (hranice

Více

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce

Plazma. magnetosféra komety. zbytky po výbuchu supernovy. formování hvězdy. slunce magnetosféra komety zbytky po výbuchu supernovy formování hvězdy slunce blesk polární záře sluneční vítr - plazma je označována jako čtvrté skupenství hmoty - plazma je plyn s významným množstvím iontů

Více

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice.

Fyzika biopolymerů. Elektrostatické interakce makromolekul ve vodných roztocích. Vodné roztoky. Elektrostatická Poissonova rovnice. Fyzka bopolymerů Elektrostatcké nterakce makromolekul ve vodných roztocích Robert Vácha Kamence 5, A4 2.13 robert.vacha@mal.mun.cz Vodné roztoky ldské tělo se skládá z 55-75 % z vody (roztoků) většna roztoků

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Chemie povrchů verze 2013

Chemie povrchů verze 2013 Chemie povrchů verze 2013 Definice povrchu složitá, protože v nanoměřítku (na úrovni velikosti atomů) je elektronový obal atomů difúzní většinou definován fyzikální adsorpcí nereaktivních plynů Vlastnosti

Více

Elektrochemie. Předmět elektrochemie: disociace (roztoky elektrolytů, taveniny solí) vodivost. jevy na rozhraní s/l (elektrolýza, články)

Elektrochemie. Předmět elektrochemie: disociace (roztoky elektrolytů, taveniny solí) vodivost. jevy na rozhraní s/l (elektrolýza, články) Elektrochemie 1/30 Předmět elektrochemie: disociace (roztoky elektrolytů, taveniny solí) vodivost jevy na rozhraní s/l (elektrolýza, články) Vodiče: vodivost způsobena pohybem elektronů uvnitř mřížky:

Více

OBECNÁ CHEMIE František Zachoval CHEMICKÉ ROVNOVÁHY 1. Rovnovážný stav, rovnovážná konstanta a její odvození Dlouhou dobu se chemici domnívali, že jakákoliv chem.

Více

VI. Disociace a iontové rovnováhy

VI. Disociace a iontové rovnováhy VI. Disociace a iontové 1 VI. Disociace a iontové 6.1 Základní pojmy 6.2 Disociace 6.3 Elektrolyty 6.3.1 Iontová rovnováha elektrolytů 6.3.2 Roztoky ideální a reálné 6.4 Teorie kyselin a zásad 6.4.1 Arrhenius

Více

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci

Pro zředěné roztoky za konstantní teploty T je osmotický tlak úměrný molární koncentraci TRANSPORTNÍ MECHANISMY Transport látek z vnějšího prostředí do buňky a naopak se může uskutečňovat dvěma cestami - aktivním a pasivním transportem. Pasivním transportem rozumíme přenos látek ve směru energetického

Více

Exponenciální rozdìlení

Exponenciální rozdìlení Exponenciální rozdìlení Ing. Michael Rost, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích Katedra aplikované matematiky a informatiky Exponenciální rozdìlení Exp(A, λ) "Rozdìlení bez pamìti" Exponenciální

Více

Transportní jevy. J = konst F

Transportní jevy. J = konst F Transportní jevy 1/23 Transportní (kinetické) jevy: difuze, elektrická vodivost, viskozita (vnitøní tøení), vedení tepla... Tok (ux) (té¾ zobecnìný tok) hmoty, náboje, hybnosti, tepla... : J = mno¾ství

Více

3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE

3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE 3. NEROVNOVÁŽNÉ ELEKTRODOVÉ DĚJE (Elektrochemické články kinetické aspekty) Nerovnovážné elektrodové děje = děje probíhající na elektrodách při průchodu proudu. 3.1. Polarizace Pojem polarizace se používá

Více

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W =

Termochemie { práce. Práce: W = s F nebo W = F ds. Objemová práce (p vn = vnìj¹í tlak): W = p vn dv. Vratný dìj: p = p vn (ze stavové rovnice) W = Termochemie { práce Práce: W = s F nebo W = Objemová práce (p vn = vnìj¹í tlak): W = V2 V 1 p vn dv s2 Vratný dìj: p = p vn (ze stavové rovnice) W = V2 V 1 p dv s 1 F ds s.1 Diferenciální tvar: dw = pdv

Více

Úvodní info. Studium

Úvodní info.   Studium [mozilla le:/home/jiri/www/fch/cz/pomucky/kolafa/n4316.html] 1/16 Úvodní info Jiøí Kolafa Ústav fyzikální chemie V CHT Praha budova A, místnost 325 (zadním vchodem) jiri.kolafa@vscht.cz 2244 4257 Web pøedmìtu:

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech

Adsorpce. molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech Adsorpce molekulární adsorpce: (g) (s), (l) (s)/(l),... iontová adsorpce Paneth{Fajans výmìnná iontová adsorpce, protionty v aluminosilikátech 1/16 Ar na gratu adsorpce: na povrch/rozhraní absorpce: dovnitø

Více

test zápočet průměr známka

test zápočet průměr známka Zkouškový test z FCH mikrosvěta 6. ledna 2015 VZOR/1 jméno test zápočet průměr známka Čas 90 minut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. U otázek označených symbolem? uvádějte

Více

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch

Podle skupenského stavu stýkajících se objemových fází: kapalina / plyn (l/g) - povrch kapalina / kapalina (l/l) tuhá látka / plyn (s/g) - povrch Fáze I Fáze II FÁZOVÁ ROZHRANÍ a koloidy kolem nás z mikroskopického, molekulárního hlediska Fáze I Fáze II z makroskopického hlediska Podle skupenského stavu stýkajících se objemových fází: kapalina /

Více

Matematika II Funkce více promìnných

Matematika II Funkce více promìnných Matematika II Funkce více promìnných RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Euklidovský n-rozmìrný prostor Def. Euklidovským

Více

Zkouškový test z fyzikální a koloidní chemie

Zkouškový test z fyzikální a koloidní chemie Zkouškový test z fyzkální a kolodní cheme VZOR/1 jméno test zápočet průměr známka Čas 9 mnut. Povoleny jsou kalkulačky. Nejsou povoleny žádné písemné pomůcky. Uotázeksvýběrema,b,c...odpověd b kroužkujte.platí:

Více

Optické vlastnosti koloidních soustav

Optické vlastnosti koloidních soustav Optické vlastnosti koloidních soustav (fyzikální princip metody měření velikosti částic a zeta potenciálu) Optické vlastnosti koloidních soustav jsou silně závislé zejména na fyzikálních vlastnostech koloidních

Více

Disperzní systémy. jsou slo¾ené ze dvou (i více) fází. Zpravidla dispergovaná fáze ve spojité fázi Obvykle s/l, l/l,...

Disperzní systémy. jsou slo¾ené ze dvou (i více) fází. Zpravidla dispergovaná fáze ve spojité fázi Obvykle s/l, l/l,... Disperzní systémy 1/21 jsou slo¾ené ze dvou (i více) fází. Zpravidla dispergovaná fáze ve spojité fázi Obvykle s/l, l/l,... Rozdìlení podle velikosti èástic: hrubì disperzní (heterogenní), > 1 µm koloidní

Více

Petr Zikán. Studentský seminář, Březen 2011

Petr Zikán. Studentský seminář, Březen 2011 Sondová měření v plazmatu Petr Zikán Studentský seminář, Březen 2011 Přehled prezentace 1 Child-Langmuirův zákon Přehled prezentace 1 Child-Langmuirův zákon 2 Sheath a pre-sheath Přehled prezentace 1 Child-Langmuirův

Více

Úvod do vln v plazmatu

Úvod do vln v plazmatu Úvod do vln v plazmatu Co je to vlna? (fázová a grupová rychlost) Přehled vln v plazmatu Plazmové oscilace Iontové akustické vlny Horní hybridní frekvence Elektrostatické iontové cyklotronové vlny Dolní

Více

Roztoky - elektrolyty

Roztoky - elektrolyty Roztoky - elektrolyty Roztoky - vodné roztoky prakticky vždy vedou elektrický proud Elektrolyty látky, které se štěpí disociují na elektricky nabité částice ionty Původně se předpokládalo, že k disociaci

Více

Matematika II Urèitý integrál

Matematika II Urèitý integrál Matematika II Urèitý integrál RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Motivace Je dána funkce f(x) = 2 + x2 x 4. Urèete co

Více

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au

Galvanický článek. Li Rb K Na Be Sr Ca Mg Al Be Mn Zn Cr Fe Cd Co Ni Sn Pb H Sb Bi As CU Hg Ag Pt Au Řada elektrochemických potenciálů (Beketova řada) v níž je napětí mezi dvojicí kovů tím větší, čím větší je jejich vzdálenost v této řadě. Prvek více vlevo vytěsní z roztoku kov nacházející se vpravo od

Více

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku

II. Statické elektrické pole v dielektriku. 2. Dielektrikum 3. Polarizace dielektrika 4. Jevy v dielektriku II. Statické elektické pole v dielektiku Osnova: 1. Dipól 2. Dielektikum 3. Polaizace dielektika 4. Jevy v dielektiku 1. Dipól Konečný dipól 2 bodové náboje stejné velikosti a opačného znaménka ve vzdálenosti

Více

Elektrická dvojvrstva

Elektrická dvojvrstva 1 Elektrická dvojvrstva o povrchový náboj (především hydrofobních) částic vyrovnáván ekvivalentním množstvím opačně nabitých iontů (protiiontů) o náboj koloidní částice + obal protiiontů = tzv. elektrická

Více

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/

GE - Vyšší kvalita výuky CZ.1.07/1.5.00/ Gymnázium, Brno, Elgartova 3 GE - Vyšší kvalita výuky CZ.1.07/1.5.00/34.0925 III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Téma: Elektřina a magnetismus Autor: Název: Alena Škárová Vodič a izolant

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE POJMY K ZOPAKOVÁNÍ. Testové úlohy varianta A Škola: Autor: DUM: Vzdělávací obor: Tematický okruh: Téma: Masarykovo gymnázium Vsetín Mgr. Jitka Novosadová MGV_F_SS_3S3_D12_Z_OPAK_E_Elektricky_naboj_a_elektricke_ pole_t Člověk a příroda Fyzika Elektrický

Více

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník

ELEKTROSTATIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník ELEKTROSTATIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Elektřina a magnetismus - 2. ročník Elektrický náboj Dva druhy: kladný a záporný. Elektricky nabitá tělesa. Elektroskop a elektrometr. Vodiče a nevodiče

Více

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21 Příklad : Síla působící mezi dvěma bodovými náboji Dva bodové náboje na sebe působí ve vakuu silou, která je dána Coulombovým zákonem. Síla je přímo úměrná velikosti nábojů, nepřímo úměrná kvadrátu vzdálenosti,

Více

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A

Zápo tová písemná práce. 1 z p edm tu 01RMF varianta A Zápo tová písemná práce. 1 z p edm tu 1MF varianta A tvrtek 19. listopadu 215, 13:215:2 ➊ (5 bod ) Nech f (x), g(x) L 1 () a f (x) dx = A, x f (x) dx = µ, Vypo ítejte, emu se rovná z( f g)(z) dz. g(x)

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

m05 G id.směs m (p,t)= x i H mi i=1 x i S mi R k x i ln x i k x i G mi + RT k G mi = H mi TS mi k x i V mi V id.směs m (T,p)=

m05 G id.směs m (p,t)= x i H mi i=1 x i S mi R k x i ln x i k x i G mi + RT k G mi = H mi TS mi k x i V mi V id.směs m (T,p)= Ø ÐÓú Ú ÙÔ Ò ØÚ Ñ Þ Ø ÔÐÓØÝ ËØ Ò Ö Ò Ø Ú ÓÙ Ø ÚÝ ØÐ Ù ËØ Ò Ö Ò Ø Ú ÐÒ ÓÒ ÒÞÓÚ Ò Ñ s.1 ½ º ÞÒ ¾¼¼ Ó Ø ØÒ Ú Ð ÒÝ Ñ ÐÓ Þ Ú Ò ØÐ Ùµ Ò ÐÒ Ñ H d.směs m (p,t)= S d.směs m (p,t)= k k x H m x S m R k x ln x G d.směs

Více

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou?

Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? Detekce nabitých částic Jak se ztrácí energie průchodem částice hmotou? 10/20/2004 1 Bethe Blochova formule (1) je maximální možná předaná energie elektronu N r e - vogadrovo čislo - klasický poloměr elektronu

Více

Cvičení F2070 Elektřina a magnetismus

Cvičení F2070 Elektřina a magnetismus Cvičení F2070 Elektřina a magnetismus 20.3.2009 Elektrický potenciál, elektrická potenciální energie, ekvipotenciální plochy, potenciál bodového náboje, soustavy bodových nábojů, elektrického pole dipólu,

Více

Výpočty koncentrací. objemová % (objemový zlomek) krvi m. Vsložky. celku. Objemy nejsou aditivní!!!

Výpočty koncentrací. objemová % (objemový zlomek) krvi m. Vsložky. celku. Objemy nejsou aditivní!!! Výpočty koncentrací objemová % (objemový zlomek) Vsložky % obj. = 100 V celku Objemy nejsou aditivní!!! Příklad: Kolik ethanolu je v 700 ml vodky (40 % obj.)? Kolik promile ethanolu v krvi bude mít muž

Více

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály

Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemický potenciál Standardní vodíková elektroda Oxidačně-redukční potenciály Elektrochemie rovnováhy a děje v soustavách nesoucích elektrický náboj Krystal kovu ponořený do destilované vody + +

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

Počet atomů a molekul v monomolekulární vrstvě

Počet atomů a molekul v monomolekulární vrstvě Počet atomů a molekul v monomolekulární vrstvě ϑ je stupeň pokrytí ϑ = N 1 N 1p N 1 = ϑn 1p ν 1 = 1 4 nv a ν 1ef = γν 1 = γ 1 4 nv a γ je koeficient ulpění () F6450 1 / 23 8kT v a = πm = 8kNa T π M 0 ν

Více

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost

Stanislav Labík. Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost Stanislav Labík Ústav fyzikální chemie V CHT Praha budova A, 3. patro u zadního vchodu, místnost 325 labik@vscht.cz 220 444 257 http://www.vscht.cz/fch/ Výuka Letní semestr N403032 Základy fyzikální chemie

Více

ANODA KATODA elektrolyt:

ANODA KATODA elektrolyt: Ukázky z pracovních listů 1) Naznač pomocí šipek, které částice putují k anodě a které ke katodě. Co je elektrolytem? ANODA KATODA elektrolyt: Zn 2+ Cl - Zn 2+ Zn 2+ Cl - Cl - Cl - Cl - Cl - Zn 2+ Cl -

Více

Složení soustav (roztoky, koncentrace látkového množství)

Složení soustav (roztoky, koncentrace látkového množství) VZOROVÉ PŘÍKLADY Z CHEMIE A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava Doporučená literatura z chemie: Prakticky jakákoliv celostátní učebnice

Více

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová

DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY. Zuzana Špalková. Věra Vyskočilová DOPLŇKOVÝ STUDIJNÍ MATERIÁL CHEMICKÉ VÝPOČTY Zuzana Špalková Věra Vyskočilová BRNO 2014 Doplňkový studijní materiál zaměřený na Chemické výpočty byl vytvořen v rámci projektu Interní vzdělávací agentury

Více

Základní chemické výpočty I

Základní chemické výpočty I Základní chemické výpočty I Tomáš Kučera tomas.kucera@lfmotol.cuni.cz Ústav lékařské chemie a klinické biochemie 2. lékařská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice v Motole 2017 Relativní

Více

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE

ELEKTRICKÝ NÁBOJ A ELEKTRICKÉ POLE ELEKTRICKÝ NÁBOJ ELEKTRICKÉ POLE 1. Elektrický náboj, elektrická síla Elektrické pole je prostor v okolí nabitých těles nebo částic. Jako jiné druhy polí je to způsob existence hmoty. Elektrický náboj

Více

[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y

[ ] d[ Y] rychlost REAKČNÍ KINETIKA X Y REAKČNÍ KINETIKA Faktory ovlivňující rychlost chemických reakcí Chemická povaha reaktantů - reaktivita Fyzikální stav reaktantů homogenní vs. heterogenní reakce Teplota 10 C zvýšení rychlosti 2x 3x zýšení

Více

Historie. - elektrizace tením (elektron = jantar) - Magnetismus magnetovec pitahuje železo. procházející proud vytváí magnetické pole

Historie. - elektrizace tením (elektron = jantar) - Magnetismus magnetovec pitahuje železo. procházející proud vytváí magnetické pole Historie Staréecko: elektrizace tením (elektron = jantar) Magnetismus magnetovec pitahuje železo Hans Christian Oersted objevil souvislost mezi elektinou a magnetismem procházející proud vytváí magnetické

Více

Roztok. Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu. Pravé roztoky

Roztok. Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu. Pravé roztoky Roztok Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu Pravé roztoky Micelární a koloidní roztoky (suspenze): částice velké 1 nm 10 µm Tyndallův jev 1 Druhy roztoků Složka

Více

Elektrické jevy na membránách

Elektrické jevy na membránách Elektrcké jevy na membránách Polopropustná (sempermeablní) membrána; frta, dafragma propou¹tí onty, vznká el. napìtí rùzné koncentrace ontù na obou stranách rùzná propustnost/dfuzvta pro rùzné onty rùzný

Více

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut

Ústřední komise Chemické olympiády. 42. ročník. KRAJSKÉ KOLO Kategorie D. SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut Ústřední komise Chemické olympiády 42. ročník 2005 2006 KRAJSKÉ KOLO Kategorie D SOUTĚŽNÍ ÚLOHY TEORETICKÉ ČÁSTI Časová náročnost: 60 minut Institut dětí a mládeže Ministerstva školství, mládeže a tělovýchovy

Více

Vibrace atomů v mřížce, tepelná kapacita pevných látek

Vibrace atomů v mřížce, tepelná kapacita pevných látek Vibrace atomů v mřížce, tepelná kapacita pevných látek Atomy vázané v mřížce nejsou v klidu. Míru jejich pohybu vyjadřuje podobně jako u plynů a kapalin teplota. - Elastické vlny v kontinuu neatomární

Více

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Skupenské stavy. Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe Skupenské stavy Plyn Zcela neuspořádané Hodně volného prostoru Zcela volný pohyb částic Částice daleko od sebe Kapalina Částečně neuspořádané Volný pohyb částic nebo skupin částic Částice blíže u sebe

Více

VÝPO C TY. Tomáš Kuc era & Karel Kotaška

VÝPO C TY. Tomáš Kuc era & Karel Kotaška ZÁKLADNÍ CHEMICKÉ VÝPO C TY I Tomáš Kuc era & Karel Kotaška tomas.kucera@lfmotol.cuni.cz Ústav lékar ské chemie a klinické biochemie 2. lékar ská fakulta, Univerzita Karlova v Praze a Fakultní nemocnice

Více

Ú L O H Y

Ú L O H Y Ú L O H Y 1. Vylučování kovů - Faradayův zákon; Př. 8.1 Stejný náboj, 5789 C, projde při elektrolýze každým z roztoků těchto solí: (a) AgNO 3, (b) CuSO 4, (c) Na 2 SO 4, (d) Al(NO 3 ) 3, (e) Al 2 (SO 4

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 31. října 2017 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 31. října 2017 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii 4 Výpočty

Více

John Dalton Amadeo Avogadro

John Dalton Amadeo Avogadro Spojením atomů vznikají molekuly... John Dalton 1766 1844 Amadeo Avogadro 1776 1856 Výpočet molekuly 2, metoda valenční vazby Walter eitler 1904 1981 Fritz W. London 1900 1954 Teorie molekulových orbitalů

Více

Membránové potenciály

Membránové potenciály Membránové potenciály Vznik a podstata membránového potenciálu vzniká v důsledku nerovnoměrného rozdělení fyziologických iontů po obou stranách membrány nestejná propustnost membrány pro různé ionty různá

Více

Základní zákony a terminologie v elektrotechnice

Základní zákony a terminologie v elektrotechnice Základní zákony a terminologie v elektrotechnice (opakování učiva SŠ, Fyziky) Určeno pro studenty komb. formy FMMI předmětu 452702 / 04 Elektrotechnika Zpracoval: Jan Dudek Prosinec 2006 Elektrický náboj

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 3. GAUSSŮV ZÁKON 3.1 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ POMOCÍ GAUSSOVA ZÁKONA ÚLOHA

Více

III. Stacionární elektrické pole, vedení el. proudu v látkách

III. Stacionární elektrické pole, vedení el. proudu v látkách III. Stacionární elektrické pole, vedení el. proudu v látkách Osnova: 1. Elektrický proud a jeho vlastnosti 2. Ohmův zákon 3. Kirhoffovy zákony 4. Vedení el. proudu ve vodičích 5. Vedení el. proudu v polovodičích

Více

Matematika II Limita a spojitost funkce, derivace

Matematika II Limita a spojitost funkce, derivace Matematika II Limita a spojitost funkce, derivace RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Prstencové a kruhové okolí bodu

Více

Fázová rozhraní a mezifázová energie

Fázová rozhraní a mezifázová energie Fázová rozhraní a mezifázová energie druhy: l/g l/l }{{} mobilní 1/15 s/g s/l s/s povrch koule = 4πr 2 Pøíklad. Kolik % molekul vody je na povrchu kapièky mlhy o prùmìru a) 0.1 mm (hranice viditelnosti

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Kapaliny Molekulové vdw síly, vodíkové můstky

Kapaliny Molekulové vdw síly, vodíkové můstky Kapaliny Molekulové vdw síly, vodíkové můstky Metalické roztavené kovy, ionty + elektrony, elektrostatické síly Iontové roztavené soli, FLINAK (LiF + NaF + KF), volně pohyblivé anionty a kationty, iontová

Více

Laserová technika prosince Katedra fyzikální elektroniky.

Laserová technika prosince Katedra fyzikální elektroniky. Laserová technika 1 Aktivní prostředí Šíření rezonančního záření dvouhladinovým prostředím Jan Šulc Katedra fyzikální elektroniky České vysoké učení technické jan.sulc@fjfi.cvut.cz 22. prosince 2016 Program

Více

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118

Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Mgr. Jakub Janíček VY_32_INOVACE_Ch1r0118 Chemická vazba Většina atomů má tendenci se spojovat do větších celků (molekul), v nichž jsou vzájemně vázané chemickou vazbou. Chemická vazba je

Více

Nekovalentní interakce

Nekovalentní interakce Nekovalentní interakce Jan Řezáč UOCHB AV ČR 3. listopadu 2016 Jan Řezáč (UOCHB AV ČR) Nekovalentní interakce 3. listopadu 2016 1 / 28 Osnova 1 Teorie 2 Typy nekovalentních interakcí 3 Projevy v chemii

Více

1.3. Transport iontů v elektrickém poli

1.3. Transport iontů v elektrickém poli .3. Transport ontů v elektrckém pol Ionty se v roztoku vystaveném působení elektrckého pole pohybují katonty směrem ke katodě, anonty k anodě. Tento pohyb ontů se označuje jako mgrace. VODIVOST Vodvost

Více

Potenciální energie atom{atom

Potenciální energie atom{atom Potenciální energie atom{atom 1/16 Londonovy (disperzní) síly: na del¹ích vzdálenostech, v¾dy pøita¾livé Model uktuující dipól { uktuující dipól elst. pole E 1/r 3 indukovaný dipól µ ind E energie u(r)

Více

ELT1 - Přednáška č. 6

ELT1 - Přednáška č. 6 ELT1 - Přednáška č. 6 Elektrotechnická terminologie a odborné výrazy, měřicí jednotky a činitelé, které je ovlivňují. Rozdíl potenciálů, elektromotorická síla, napětí, el. napětí, proud, odpor, vodivost,

Více

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL.

CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. CHEMICKÉ VÝPOČTY I. ČÁST LÁTKOVÉ MNOŽSTVÍ. HMOTNOSTI ATOMŮ A MOLEKUL. Látkové množství Značka: n Jednotka: mol Definice: Jeden mol je množina, která má stejný počet prvků, jako je atomů ve 12 g nuklidu

Více

N A = 6,023 10 23 mol -1

N A = 6,023 10 23 mol -1 Pro vyjadřování množství látky se v chemii zavádí veličina látkové množství. Značí se n, jednotkou je 1 mol. Látkové množství je jednou ze základních veličin soustavy SI. Jeden mol je takové množství látky,

Více

Roztok. Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu. Pravé roztoky

Roztok. Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu. Pravé roztoky Roztok Homogenní směs molekul, které mohou být v pevném, kapalném nebo plynném stavu Pravé roztoky Micelární a koloidní roztoky (suspenze): částice velké 1 nm 10 µm Tyndallův jev rozptyl světla 1 Druhy

Více

Plazmové metody. Základní vlastnosti a parametry plazmatu

Plazmové metody. Základní vlastnosti a parametry plazmatu Plazmové metody Základní vlastnosti a parametry plazmatu Atom je základní částice běžné hmoty. Částice, kterou již chemickými prostředky dále nelze dělit a která definuje vlastnosti daného chemického prvku.

Více

Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti

Úvod do biologie rostlin Transport látek TRANSPORT. Krátké, střední, dlouhé vzdálenosti Slide 1a TRANSPORT Krátké, střední, dlouhé vzdálenosti Slide 1b TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Slide 1c TRANSPORT Krátké, střední, dlouhé vzdálenosti Aktivní, pasivní Kapalin,

Více

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce

Aproximace funkcí. Chceme þvzoreèekÿ. Známe: celý prùbìh funkce Aproximace funkcí 1/13 Známe: celý prùbìh funkce Chceme þvzoreèekÿ hodnoty ve vybraných bodech, pøíp. i derivace Kvalita údajù: známe pøesnì (máme algoritmus) známe pøibli¾nì (experiment èi simulace) {

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla;

TERMIKA II. Stacionární vedení s dokonalou i nedokonalou izolací; Obecná rovnice vedení tepla; Přestup a prostup tepla; TERMIKA II Šíření tepla vedením, prouděním a zářením; Stacionární vedení s dokonalou i nedokonalou izolací; Nestacionární vedení tepla; Obecná rovnice vedení tepla; Přestup a prostup tepla; 1 Šíření tepla

Více

Vnitřní magnetosféra

Vnitřní magnetosféra Vnitřní magnetosféra Plazmasféra Elektrické pole díky konvenkci (1) (Convection Electric Field) Vodivost σ, tj. ve vztažné soustavě pohybující se s plazmatem rychlostí v je elektrické pole rovno nule (

Více

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti

Registrační číslo projektu: CZ.1.07/1.4.00/21.2939. Název projektu: Investice do vzdělání - příslib do budoucnosti Registrační číslo projektu: CZ.1.07/1.4.00/21.2939 Název projektu: Investice do vzdělání - příslib do budoucnosti Číslo přílohy: VY_číslo šablony_inovace_číslo přílohy Autor Datum vytvoření vzdělávacího

Více

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6.

V mnoha běžných případech v optickém oboru je zanedbáváno silové působení magnetické složky elektromagnetického pole na náboje v látce str. 3 6. Nekvantový popis interakce světla s pasivní látkou Zcela nekvantová fyzika nemůže interakci elektromagnetického záření s látkou popsat, např. atom jako soustava kladných a záporných nábojů by vůbec nebyl

Více

Matematika I Ètvercové matice - determinanty

Matematika I Ètvercové matice - determinanty Matematika I Ètvercové matice - determinanty RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Co u¾ známe? vektory - základní operace

Více

Definice spojité náhodné veličiny zjednodušená verze

Definice spojité náhodné veličiny zjednodušená verze Definice spojité náhodné veličiny zjednodušená verze Náhodná veličina X se nazývá spojitá, jestliže existuje nezáporná funkce f : R R taková, že pro každé a, b R { }, a < b, platí P(a < X < b) = b a f

Více