Sbírka A - Př

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Sbírka A - Př. 1.1.5.3"

Transkript

1 ..5 Ronoměrný ohyb říklady nejnižší obtížnosti Sbírka A - ř...5. Kolik hodin normální chůze (rychlost 5 km/h) je od rahy zdálen Řím? Kolik dní by tuto zdálenost šel rekreační chodec, který je schoen ujít za den řibližně 30 km? Vzdálenosti změřte na maě. Výis známých eličin: = 5km/h = 30 km/d t =? t =? d d ro oba ýočty ředokládáme ronoměrný ohyb. Měřením na maě určíme zdálenost raha Řím na řibližně 820 km. oužijeme zorec ro dráhu ronoměrného ohybu a yjádříme z něj čas. s s = t t = s 820 t = = hod = 64hod 5 s 820 td = = dnů = 27,3dnů 30 d Odoěď: Řím je od rahy zdálen 64 hodin chůze. Rekreační chodec by tuto zdálenost ušel za 28 dní. Sbírka A - ř Kolik dní šel Jan Ámos Komenský ři náratu z unierzity Heidelbergu do řeroa, když se staoal na da dny raze? ředokládej, že ušel každý den řibližně 40 km. Výis známých eličin: = 40 km/den t =? J. A. Komenský se ohyboal řibližně ronoměrným ohybem. Ze zorce ro dráhu ronoměrného ohybu yjádříme čas. K ýsledku řiočteme da dny na zastáku raze.

2 s s = t t = s 700 t = = dnů = 7,5dnů 40 Odoěď: J. A. Komenský šel z unierzity domů řibližně 20 dní. Sbírka A - ř etr chtěl jet lakem na blízký hrad zdálený 9 km, ale na nádraží řišel o deset minut ozdě. Má cenu čekat na další, který ojede za dě hodiny o odjezdu ředchozího laku nebo má yrazit ěšky? Která z obou cest je rychlejší a o kolik, když lak jede růměrně rychlostí 30 km/h a růměrná rychlost etroy chůze je 5 km/h? Výis známých eličin: = 30 km/h = 5km/h s = 9km t =? t =? V obou možnostech ředokládáme ronoměrný ohyb. Ze zorce ro ronoměrný ohyb yjádříme dobu ohybu. omocí sočtených dob a informací ze zadání ak rozhodneme, který z obou zůsobů doray je ýhodnější. s s = t t = Cesta lakem s 9 t = = hod = 0,3hod = 8min 30 etr na nádraží řišel o 0 minut o odjezdu ředchozího laku, do říjezdu laku tedy zbýá hodina 50 minut (laky jezdí o dou hodinách). V cíly cesty tedy bude za 2 hodiny a 8 minut. Cesta ěšky s 9 t = = hod =,8hod = hod 48min 5 Odoěď: Rychlejší bude cesta ěšky, kterou dorazí na místo za hodinu a 48 minut, což je o 20 minut dříe než lakem.

3 Sbírka A - ř V Itálii se kontroluje dodržoání nejyšší oolené rychlosti na dálnici (30 km/h) omocí kartiček, které se ydáají ři lacení mýtného. Na každé kartě je zachyceno místo kontroly s časem, kdy jí řidič rojel. ři ýjezdu a lacení mýtného se automaticky zkontroluje, zda růměrná rychlost automobilu nebyla yšší než maximální oolená rychlost. Jak dlouho musíte jet z Říma do Milána, abyste nedostali okutu? Jak dlouhou řestáku si musíte udělat na některém dálničním odočíadle, abyste mohli jet rychlostí 80 km/h a nedostali okutu? Vzdálenost zjistěte na maě. Výis známých eličin: = 30 km/h = 80 km/h s = 500 km t =? t =? n ři kontrole oolené rychlosti se oolená rychlost sronáá s růměrnou rychlostí ozidla mezi kontrolními stanoišti. ři ýočtech ředokládáme ronoměrný ohyb ozidla, ze ztahu ro dráhu ronoměrného ohybu yočteme čas. s s = t t = s 500 t = = h = 3,85h = 3h 5min 30 s 500 to = t t80 = t = 3,85h h =,07h = h 4min 80 n Odoěď: Cesta z Říma do Milána by měla trat 3 hodiny a 5 minut. okud ojedeme rychlostí 80 km/h, musíme se na nějakém odočíadle zastait na hodinu a čtyři minuty. o Sbírka A - ř Na obrázku jsou nakresleny grafy záislosti dráhy na čase ro da hmotné body A (olořímka a) a B (olořímka b). Oba body se ohybují o stejné římce stejným směrem. Určete elikosti jejich rychlostí. Jaký je ýznam úseček a0 a b0 a jaký je ýznam růsečíku M

4 olořímek a a b? Řešení: Grafy záislostí dráhy obou bodů jsou římky hmotné body se tedy ohybují ronoměrným ohybem. Jejich okamžitá i růměrná rychlost je tedy stejná. Rychlosti obou hmotných bodů s můžeme určit omocí definičního ztahu ro rychlost =. t Z grafu hmotného bodu A je idět, že čase od 0 s do 5 s se změnila jeho dráha z 0 m na 30 m. Můžeme do ztahu dosadit: s s2 s = = = m/s = m/s = 4m/s. t t2 t odobně můžeme určit rychlost hmotného bodu B. V čase od 3 s do 5 s ( t = 2s ) se změnila jeho dráha z 0 m na 30 m( s = 30 m ). Můžeme do ztahu dosadit: s 30 = = m/s = 5m/s. t 2 Úsečka a 0 rerezentuje 0 m zdálenost, kterou je bod A zdálený od očátku e chíli, kdy začínáme sledoat jeho ohyb. Jde o očáteční olohu hmotného bodu. Úsečka b 0 zobrazuje časoý interal 3 s, o který je hmotný bod B stále očátku, jde tedy o časoý interal řed rozjetím. růsečík obou grafů zobrazuje okamžik, e kterém mají oba hmotné body stejnou zdálenost od očátku, jsou tedy na stejném místě a setkají se. Sbírka A - ř etr chodí se sojí sestrou Janou do školy ostřejší chůzí 6 km/h řibližně dacet minut. Bude mu stačit, když yběhne rychlostí 2 km/h e tři čtrtě na osm? Kdo bude e škole dří, když Jana yrazila jako normálně ůl osmé? Škola začíná osm hodin. Výis známých eličin: = 6km/h = 2 km/h t = 20 min = 0, 333h t =? J J Abychom určili dobu, kterou etr oběží do školy, musíme určit délku cesty do školy. Tu neznáme, ale můžeme ji určit z rychlosti a času, který otřebuje na cestu do školy Jana.

5 s s = t t = s JtJ t = = s JtJ 6 0,333 t = = = h = 0,667 h = 0 min 2 Jana ychází ůl osmé, jde 20 minut do školy dorazí 7:50. etr ychází e tři čtrtě na osm, jde 0 minut, do školy dorazí 7:55. Odoěď: etr bude e škole čas, dorazí o ět minut ozději než jeho sestra. oznámka: JtJ J Vztah ro doby, o kterou jde do školy etr se dá zasat t = tj =. Doba, kterou jde cestu do školy Jana, se násobí oměrem rychlostí Jany a etra. V tomto říadě nemusíme řeádět čas z minut na hodiny, nebo rychlost z km/h na km/min, rychlosti jsou uedeny oměru z jejich jednotky se ykrátí. Naříklad řeedení na km/min roedeme ydělením J J 60. J min =. ak yočteme čas etra takto: 60 J t J J 60 = t t = Výsledek je stejný jako když 60 rychlosti neřeádíme. říklad je také možné řešit úahou. etr se ohybuje dakrát rychleji než Jana, na cestu bude otřeboat dakrát menší čas, tedy 0 minut. Sbírka A - ř etr s Janou solu yrazili ůl osmé do školy rychlostí 6 km/h. V ůlce cesty si etr zomněl, že nemá ěci na tělocik. Běžel domů rychlostí 2 km/h, oadl ytlík s tělocikem a hned osíchal stejnou rychlostí do školy. Stihl čas yučoání? Kdo dorazil do školy dří? Kde byl etr, když jeho setra dorazila do školy? Janě trala cesta 20 minut. Nakresli graf časoé záislosti olohy obou dětí na čase. Výis známých eličin: = 6km/h = 2 km/h t = 20 min = h t =? CH B J Obě děti se jednotliých částech cesty do školy ohybují řibližně ronoměrným ohybem. Jejich ohyb budeme sledoat omocí zorců ro ronoměrný ohyb. Ze znalosti Janina ohybu určíme zdálenost školy. Řešení: 3

6 Jana šla do školy rychlostí 6 km/h dacet minut. Vzdálenost domoa od školy je s = CHtJ = 6 3 km = 2 km. V oloině cesty (tedy o deseti minutách chůze) se etr začne racet, musí tedy uběhnout s km rychlostí 2 km/h. Vracet se bude t = = h = 5min (ři ohybu zět etr běží B 2 dojnásobnou rychlostí, bude tedy otřeboat oloiční čas). Domů etr dorazí o atnácti minutách, tedy 7:45. Cesta zět mu bude trat deset minut (oloinu doby než trá Janě, která jde oloiční rychlostí, nebo dojnásobek času, o který se racel z oloiny cesty). Do školy dorazí 7:55. Jana dorazí do školy 7:50, tomto okamžiku bude etr řesně oloině cesty do školy. Graf olohy obou sourozenců yadá takto: s[km] 2,5 0,5 7 7 Jana etr t[h] Odoěď: etr řijde do školy čas. Ve chíli, kdy Jana dorazí do školy je oloině cesty.

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

1.5.5 Potenciální energie

1.5.5 Potenciální energie .5.5 Potenciální energie Předoklady: 504 Pedagogická oznámka: Na dosazování do vzorce E = mg není nic obtížnéo. Problém nastává v situacíc, kdy není zcela jasné, jakou odnotu dosadit za. Hlavním smyslem

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost

Způsobilost. Data a parametry. Menu: QCExpert Způsobilost Zůsobilost Menu: QExert Zůsobilost Modul očítá na základě dat a zadaných secifikačních mezí hodnoty různých indexů zůsobilosti (caability index, ) a výkonnosti (erformance index, ). Dále jsou vyočítány

Více

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými

Pokud světlo prochází prostředím, pak v důsledku elektromagnetické interakce s částicemi obsaženými 1 Pracovní úkoly 1. Změřte závislost indexu lomu vzduchu na tlaku n(). 2. Závislost n() zracujte graficky. Vyneste také závislost závislost vlnové délky sodíkové čáry na indexu lomu vzduchu λ(n). Proveďte

Více

1.6.8 Pohyby v centrálním gravitačním poli Země

1.6.8 Pohyby v centrálním gravitačním poli Země 1.6.8 Pohyby centrálním graitačním poli emě Předpoklady: 160 Pedagogická poznámka: Pokud necháte experimentoat s modelem studenty, i případě, že už program odellus znají, stráíte touto hodinou dě yučoací

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Digitální učební materiál

Digitální učební materiál Projekt: Digitální učební materiál Digitální učební materiály ve škole, registrační číslo projektu CZ.1.07/1.5.00/34.0527 Příjemce: Střední zdravotnická škola a Vyšší odborná škola zdravotnická, Husova

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Á ů Á Á ů Ř Ý ú ř ř ů Ě Á ú ř Ř Ž Ý Ř Ž Á ť ř ů Á Š ú ř ť É Í ř ú ú Á Ě Ý ř ó Ř ú ř ú Ý Í ú Ř ů ú Š ú ř ť ř ř Á ŘÍ ř Ů ú ř ú ú ř Ž ú ú ů ú ř ř ó ř ů ů ř ř ř ř ů ů ř ř ř ů ů Í Ý Ů ů ř ů ř Ř ř ř ú Ý ř ř

Více

ů ž Ř Š Í Ú ů š ů š ů Í Í ů ů ů ů ů Š ú ů ů š ů Š ů ů ů ž ů š ů ů Š Č ů ů š š Í Š Š š ů š ů š ú ž š ů ů ů ů š ů ů ů ú š š ž š š ž ů š ů Š ú Š ů Š š ů š š ú ů ů ů ů ú ů ů š š ú ú Š ů Š ů ů Š ů ů ů š Š ň

Více

TERMOMECHANIKA 4. První zákon termodynamiky

TERMOMECHANIKA 4. První zákon termodynamiky FSI VUT Brně, Energetický ústa Odbor termomechaniky a techniky rostředí rof. Ing. Milan Paelek, CSc. TERMOMECHANIKA 4. Prní zákon termodynamiky OSNOVA 4. KAPITOLY. forma I. zákona termodynamiky Objemoá

Více

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I

1.1.15 Řešení příkladů na rovnoměrně zrychlený pohyb I ..5 Řešení příkldů n ronoměrně zrychlený pohyb I Předpokldy: 4 Pedgogická poznámk: Cílem hodiny je, by se sudeni nučili smosně řeši příkldy. Aby dokázli njí zh, kerý umožňuje příkld yřeši, dokázli ze zhů

Více

Fluidace Úvod: Úkol: Teoretický úvod:

Fluidace Úvod: Úkol: Teoretický úvod: Fluidace Úod: Fluidace je mechanická operace (hydro- nebo aeromechanická), při které se udržují tuhé částice e znosu tekuté (kapalné nebo plynné) fázi. Uplatňuje se energetice při spaloání uhlí, katalytických

Více

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s

Rovnoměrný pohyb. velikost rychlosti stále stejná (konstantní) základní vztah: (pokud pohyb začíná z klidu) v m. s. t s Ronoměrný poyb eliko rycloi ále ejná (konanní) základní za:. graf záiloi dráy na čae: polopřímka ycázející z počáku (pokud poyb začíná z klidu) m graf záiloi rycloi na čae: ronoběžka odoronou ou m. U poybu

Více

10.1 CO JE TO SRÁŽKA?

10.1 CO JE TO SRÁŽKA? 10 Sr ûky Fyzik Ronald McNair byl jednìm z astronaut, kte Ì zahynuli p i ha rii raketopl nu Challenger. Byl takè nositelem ËernÈho p sku karate a jedin m derem dok zal zlomit nïkolik betono ch tabulek.

Více

KINETICKÁ TEORIE PLYNŮ

KINETICKÁ TEORIE PLYNŮ KIETICKÁ TEOIE PLYŮ. Cíl a řdoklady - snaží s ysětlit akroskoické choání lynů na základě choání jdnotliých olkul (jjich rychlostí, očtu nárazů na stěnu nádoby, srážk s ostatníi olkulai). Tato tori br úahu

Více

Výpočty za použití zákonů pro ideální plyn

Výpočty za použití zákonů pro ideální plyn ýočty za oužití zákonů ro ideální lyn Látka v lynné stavu je tvořena volnýi atoy(onoatoickýi olekulai), ionty nebo olekulai. Ideální lyn- olekuly na sebe neůsobí žádnýi silai, jejich obje je ve srovnání

Více

1.5.1 Mechanická práce I

1.5.1 Mechanická práce I .5. Mechanická ráce I Předoklady: Práce je velmi vděčné éma k rozhovoru: někdo se nadře a ráce za ním není žádná, jiný se ani nezaoí a udělá oho sousu, a všichni se cíí nedocenění. Fyzika je řírodní věda

Více

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma :

V p-v diagramu je tento proces znázorněn hyperbolou spojující body obou stavů plynu, je to tzv. izoterma : Jednoduché vratné děje ideálního lynu ) Děj izoter mický ( = ) Za ředokladu konstantní teloty se stavová rovnice ro zadané množství lynu změní na známý zákon Boylův-Mariottův, která říká, že součin tlaku

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

3.2.4 Huygensův princip, odraz vlnění

3.2.4 Huygensův princip, odraz vlnění ..4 Huygensův princip, odraz vlnění Předpoklady: 0 Izotropní prostředí: prostředí, které je ve všech bodech a směrech stejné vlnění se všech směrech šíří stejnou rychlostí ve všech směrech urazí za čas

Více

í Š í í ď í í é č ř čí ě ěř é é íč š ří č ř Ž é č í í é ř Ž é č í Š Š í í ěř é č í ý č ř í é í č í ý é ě í í í í í ř ě Ž í Ť ě úř í í úř í ý é ě í ř í Ž ří č š í é í ří é í ě í í ď ě ř ý š ěř í ěř íč š

Více

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Slovní úlohy II Název školy Gymnázium, Šternberk, Horní nám. 5 Číslo projektu CZ.1.07/1.5.00/34.0218 Šablona III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Označení materiálu VY_32_INOVACE_Čerm_19a

Více

ř ě ě š ř ů ř ěž ú ěž ú ú Č ě Ú š ž ú ž ě ě ř ž ě ú ů ě ř š ž ú ě š ž ě ů š ě ř ě Ú ř ě ř ě ř ě ě ř š ž ž ř ě ť ř ě ů š ř š ě ě ř š ď ů ř ř ž Ž ř ě ž ř ě ř š ř ě ř ř ů ř ž ř ř ř ě ě š ž ř ě ě ž ž ř ž š

Více

í ý á ř ů ř ě í Ď ě ě ě á ě á ří ý ě í á ř ů ň á ó Š á ř ů ř ě í ě ě ě á ě á íí ý í á á ř ů ř ě í ě ě ě á ě á ří ý ě í Ó ří á ř ů ř ě í ě ě ě á ě á ří ý á ř ů ř ě í ř ý ří í á ř ů ř ě í ě ě ě á ě á ý ě

Více

Téma Pohyb grafické znázornění

Téma Pohyb grafické znázornění Téma Pohyb grafické znázornění Příklad č. 1 Na obrázku je graf závislosti dráhy na čase. a) Jak se bude těleso pohybovat? b) Urči velikost rychlosti pohybu v jednotlivých časových úsecích dráhy. c) Jak

Více

SOCIÁLNĚ PRÁVNÍ MINIMUM

SOCIÁLNĚ PRÁVNÍ MINIMUM SOCIÁLNĚ PRÁVNÍ MINIMUM Vážení rodiče, rarodiče, blízcí našich acientů, nabízíme řehled dávek, výhod a kontaktů, který by Vám omohl lée zvládnout situaci, která vznikla v souvislosti s onemocněním Vašeho

Více

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY

MODELOVÁNÍ POPTÁVKY, NABÍDKY A TRŽNÍ ROVNOVÁHY MODELOVÁÍ POPTÁVKY, ABÍDKY A TRŽÍ ROVOVÁHY Schéma tržní rovnováhy Modely otávky na trhu výrobků a služeb Formulace otávkové funkce Komlexní model Konstrukce modelu otávky Tržní otávka Dynamcké modely otávky

Více

1. M ení místních ztrát na vodní trati

1. M ení místních ztrát na vodní trati 1. M ení místních ztrát na odní trati 1. M ení místních ztrát na odní trati 1.1. Úod P i proud ní tekutiny potrubí dochází liem její iskozity ke ztrátám energie. Na roných úsecích potrubních systém jsou

Více

Č š é č š ž Č Í é ř ě ě š ž ř ě č ř š č č ž ř Í č č č ě ř ž ěř č č Č ČŠ ř ě é š Ž ř ě š ď Š ř ě č č šť ě ů ě é é ě š ž ě ř š ř šš é é ďě š é ě ě š ř ů šť ě š ě ě é š ř ě š é č š č ě š ě é ě č ě é ě é é

Více

ň š Ý É Č Í Š Ž Č Á Ě ŘÍ ň ň ď ň ů ň ň ň Á Á ň Á ň ú ů ů ú ů Ťť ň š Ť Ť Ž ú ů ů ú ů š Č ů ů Ě Í Í Í Á Í ů š š Š ň š š ů ů ů Ž Š Á ů ď Ť Ú ď ú š ů Í ú ů Í Í ú š š Ž ů ů ů ů ů ů Ž Í Ž ů ú ů ď š š š ď š Ž

Více

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1.

VLHKÝ VZDUCH. - Stavová rovnice suchého vzduchu p v.v = m v.r v.t (5.4). Plynová konstanta suchého vzduchu r v 287 J.kg -1.K -1. TEZE ka. 5 Vlhký zduch, ychrometrický diagram (i x). Charakteritika lhkých materiálů, lhkot olná, ázaná a ronoážná. Dehydratace otrainářtí. Změny ušicím zduchu komoroé ušárně. Kontrolní otázky a tyy říkladů

Více

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY

KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Předmět: Ročník: Vytvořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 24. 7. 212 Název zpracovaného celku: KINEMATIKA I FYZIKÁLNÍ VELIČINY A JEDNOTKY Fyzikální veličiny popisují vlastnosti, stavy a změny hmotných

Více

Základy statistiky pro obor Kadeřník

Základy statistiky pro obor Kadeřník Variace 1 Základy statistiky pro obor Kadeřník Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz 1. Aritmetický průměr

Více

Pohyb tělesa (5. část)

Pohyb tělesa (5. část) Pohyb tělesa (5. část) A) Co už víme o pohybu tělesa?: Pohyb tělesa se definuje jako změna jeho polohy vzhledem k jinému tělesu. O pohybu tělesa má smysl hovořit jedině v souvislosti s polohou jiných těles.

Více

Statistická analýza dat - Indexní analýza

Statistická analýza dat - Indexní analýza Statistiká analýza dat Indexní analýza Statistiká analýza dat - Indexní analýza Index mohou být:. Stejnorodýh ukazatelů. Nestejnorodýh ukazatelů Index se skládají ze dvou složek:... intenzita (úroveň znaku)...

Více

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ

ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ ČESKÁ ZEMĚDĚLSKÁ UNIVERZITA V PRAZE FAKULTA ŽIVOTNÍHO PROSTŘEDÍ DIPLOMOVÁ PRÁCE Modeloání proudění ody na měrném přeliu Vedoucí práce: Ing. Jiří Palásek, Ph.D. Diplomant: Roman Kožín 009 Prohlášení Prohlašuji,

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 2007/08 na magisterský studijní rogram: Zde nalete své univerzitní číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím

Více

Slovní úlohy: Pohyb. a) Stejným směrem

Slovní úlohy: Pohyb. a) Stejným směrem Slovní úlohy: Pohyb a) Stejným směrem Ze stejného města vyjely dva automobily různými rychlostmi. První vyrazil v 10:30 hodin stálou rychlostí 62 km/h. Deset minut za ním vyjel po stejné trase druhý automobil

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5

Obsah. 6.1 Augustova rovnice... 61 6.2 Hmotový tok... 64. 1 Historický přehled 5 Obsah Historický přehled 5 Plynný sta hmoty 8. Jednotky tlaku................ 8.. Použíané jednotky tlaku.......... 9.. Rozlišení oblastí akua podle tlaku...... 9. Staoá ronice................ 9.. Gay

Více

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A

Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Jméno autora: Mgr. Zdeněk Chalupský Datum vytvoření: 20. 8. 2012 Číslo DUM: VY_32_INOVACE_16_FY_A Ročník: I. Fyzika Vzdělávací oblast: Přírodovědné vzdělávání Vzdělávací obor: Fyzika Tematický okruh: Mechanika

Více

Postup při řešení matematicko-fyzikálně-technické úlohy

Postup při řešení matematicko-fyzikálně-technické úlohy Postup při řešení matematicko-fyzikálně-technické úlohy Michal Kolesa Žádná část této publikace NESMÍ být jakkoliv reprodukována BEZ SOUHLASU autora! Poslední úpravy: 3.7.2010 Úvod Matematicko-fyzikálně-technické

Více

5.2. Funkce, definiční obor funkce a množina hodnot funkce

5.2. Funkce, definiční obor funkce a množina hodnot funkce 5. Funkce 8. ročník 5. Funkce 5.. Opakování - Zobrazení a zápis intervalů a) uzavřený interval d) otevřený interval čísla a,b krajní body intervalu číslo a patří do intervalu (plné kolečko) číslo b patří

Více

ďé í š ř é í ř í ěí í é í ř Ú Ú ě í ě í Č í ě í í š ě í í Č ř í ří š é í ř ů í í ř é í ě ř ř ří ř í é ř í í ů í é í é ř é ž í ěů í ú ž í é íí í é é é é í ě í í é ž í í ř í ě í í é Č é ří í í í ů í Č é

Více

STATISTICKÉ METODY A DEMOGRAFIE

STATISTICKÉ METODY A DEMOGRAFIE STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5., 7.6. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež,

Více

Úvěry aneb kde na to vzít?

Úvěry aneb kde na to vzít? Úvěry aneb kde na to vzít? Pokud máte nedostatek finančních rostředků, je dobré se zamyslet nad tím, kde byste mohli ušetřit v rámci svého osobního či rodinného rozočtu. Většinou se najde něco, co můžete

Více

Teplota a nultý zákon termodynamiky

Teplota a nultý zákon termodynamiky Termodynamika Budeme se zabývat fyzikou oisující děje, ve kterých se telota nebo skuenství látky (obecně - stav systému) mění skrze řenos energie. Tato část fyziky se nazývá termodynamika. Jak záhy uvidíme,

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE

SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE Záadočeská univerzita v Plzni Fakulta edagogická Dilomová ráce SROVNÁNÍ VYBRANÝCH DĚJŮ V REÁLNÉM PLYNU MODELY, ANIMACE COMPARISON OF SELECTED EFFECTS IN REAL GAS - MODELS, ANIMATIONS Jiří Prušák Plzeň

Více

Í é čá í á ř í á ó ř é ď ň í á é č é ř á í á á á í í á á á á ď á é č á ó ů č á í ů č é é í Í é ů é ř í í ů í ď é ř é é í é í é é é á č é á á á é í ů í é á é Á Í Š Í É é á é í íčí ů Í ů é á á í ř é á é

Více

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM

STATISTICKÉ METODY. (kombinovaná forma, 8.4., 20.5. 2012) Matěj Bulant, Ph.D., VŠEM STATISTICKÉ METODY A DEMOGRAFIE (kombinovaná forma, 8.4., 2.5. 22) Matěj Bulant, Ph.D., VŠEM Řekli o statistice Věřím ouze těm statistikám, které jsem sám zfalšoval. Tři stuně lži - lež, hnusná lež, statistika.

Více

ů ž ř ř ě Ě Í Á Ě ŠŤ Í ŘÍ Í č ú ý Ý Ě Í Ý Š Ě Í ěí ú ěť ě ý Ó č č ě ý ž ž ř ý č ý ž ý ů č ý ň ý č ě Ž ť č ž ý ý ř č č ě ý š ě š é š é ě š ě ů šť ý ů ě ů ý ť ů ů ý ýš ě žíč ž ě ř Ž ú Í ů é ť ě é ž ý ř š

Více

Světlo elektromagnetické vlnění

Světlo elektromagnetické vlnění FYZIKA praconí sešit pro ekonomické lyceum Jiří Hlaáček, OA a VOŠ Příbram, 05 Sětlo elektromagnetické lnění Sětelné jey jsou známy od pradána. Ale až 9. století se podařilo íce proniknout k podstatě sětla

Více

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny.

Jednotky zrychlení odvodíme z výše uvedeného vztahu tak, že dosadíme za jednotlivé veličiny. 1. Auto zrychlí rovnoměrně zrychleným pohybem z 0 km h -1 na 72 km h -1 za 10 sekund. 2. Auto zastaví z rychlosti 64,8 km h -1 rovnoměrně zrychleným (zpomaleným) pohybem za 9 sekund. V obou případech nakreslete

Více

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h

km vyjel z téhož místa o 3 hodiny později h km. Za jak dlouho dohoní cyklista chodce? h km vyjede z téhož místa o 2 hodiny h ÚLOHY O POHYBU-řešení 1. Za codcem jdoucím průměrnou ryclostí 5 vyjel z téož místa o 3 odiny později cyklista průměrnou ryclostí 20. Za jak dlouo dooní cyklista codce? v 1 =5, t1 =(x+3), s 1 =v 1.t 1 v

Více

Prbh funkce Jaroslav Reichl, 2006

Prbh funkce Jaroslav Reichl, 2006 rbh funkce Jaroslav Reichl, 6 Vyšetování prbhu funkce V tomto tetu je vzorov vyešeno nkolik úloh na vyšetení prbhu funkce. i ešení úlohy jsou využity základní vlastnosti diferenciálního potu.. ešený píklad

Více

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ

ČERPACÍ TECHNIKA A POTRUBÍ NÁVODY DO CVIČENÍ VSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta trojí katedra hydromechaiky a hydraulických zařízeí ČERPACÍ TECHNIKA A POTRUBÍ NÁVOD DO CVIČENÍ Tomáš Blejchař Syla Drábkoá OSTRAVA 00 Sezam oužitých

Více

P Ř I Z N Á N Í k dani z příjmů právnických osob

P Ř I Z N Á N Í k dani z příjmů právnických osob Než začte vylňovat tiskois, řečtěte te si, rosím, okyny. Finančnímu úřadu ro / Secializovanému finančnímu úřadu Pardubický kraj Územnímu racovišti v, ve, ro Moravské Třebové T 0 Daňové identifikační číslo

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Základy statistiky, kombinační úsudek v úlohách Klíčová slova: tabulky, grafy, diagramy Autor: Mlynářová 1 Základy statistiky Statistika je vědní obor, který se zabývá

Více

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé.

Základním úkolem při souřadnicovém určování polohy bodů je výpočet směrníků a délky strany mezi dvěma body, jejichž pravoúhlé souřadnice jsou známé. 1 Určování poloh bodů pomocí souřadnic Souřadnicové výpočt eodetických úloh řešíme v pravoúhlém souřadnicovém sstému S-JTSK, ve kterém osa +X je orientována od severu na jih a osa +Y od východu na západ.

Více

15. KubickÈ rovnice a rovnice vyööìho stupnï

15. KubickÈ rovnice a rovnice vyööìho stupnï 15. KubickÈ rovnice a rovnice vyööìho stupnï Čas od času je možné slyšet v pořadech o počasí jména jako Andrew, Mitch, El Ňiňo. otom následuje zpráva o katastrofálních vichřicích, uragánech a jiných mimořádných

Více

5. Kvadratická funkce

5. Kvadratická funkce @063 5. Kvadratická funkce Kvadratickou funkci také znáte ze základní školy, i když jen v té nejjednodušší podobě. Definice: Kvadratická funkce je dána předpisem f: y = ax 2 + bx + c, kde a, b, c R, a

Více

5. Finanční hlediska podnikatelského rozhodování. Časová hodnota peněz. Podnikatelské riziko ve finančním rozhodování.

5. Finanční hlediska podnikatelského rozhodování. Časová hodnota peněz. Podnikatelské riziko ve finančním rozhodování. 5. Finanční hlediska odnikatelského rozhodování. Časová hodnota eněz. Podnikatelské riziko ve finančním rozhodování. FINANČNÍ HLEDISKA PODNIKATELSKÉHO ROZHODOVÁNÍ Základní zásady finančního rozhodování:

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Fyzikální korespondenční seminář MFF UK ročník IX série V. Zadání 5. série. Termín odeslání: 15. dubna. Úloha V. 1... řetízek babičky Julie Obr.

Fyzikální korespondenční seminář MFF UK ročník IX série V. Zadání 5. série. Termín odeslání: 15. dubna. Úloha V. 1... řetízek babičky Julie Obr. Zadání 5. séie Temín odeslání: 15. dubna Úloha. 1... řetízek babičky Julie Na stole leží stříbný řetízek po babičce Julii. Část, kteá je dlouhá a, isí přes hanu stolu, zbytek délky b ještě leží na stole,

Více

ěš š Č É Ý Í š ň ň ť ť Á Ř Ř Ú ú š ů Ť ů ě ě ě ů ě ě š ó ó ó Ý ěž ú ě ě ž ě Ž ů ž ú ů ž ž Ž š ž Ž ě ž ě š ě ě ě ů ě ů š š ě ú ě ě ě ě ú ů ě ů ě ů ě ě ů ěž ě ů ě Ť ž Ž šš ů ě ú š Š Ý Ž Ý Í š š Í ů ů ů

Více

2. Mechanika - kinematika

2. Mechanika - kinematika . Mechanika - kinematika. Co je pohyb a klid Klid nebo pohyb těles zjišťujeme pouze vzhledem k jiným tělesům, proto mluvíme o relativním klidu nebo relativním pohybu. Jak poznáme, že je těleso v pohybu

Více

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com

Datová centra a úložiště. Jaroslav G. Křemének g.j.kremenek@gmail.com Datová centra a úložiště Jaroslav G. Křemének g.j.kremenek@gmail.com České národní datové úložiště Součást rojektu CESNET Rozšíření národní informační infrastruktury ro VaV v regionech (eiger) Náklady

Více

Slovní úlohy. o pohybu

Slovní úlohy. o pohybu Slovní úloy o poybu Slovní úloy o poybu Na začátek zopakujme z fyziky vzorec pro výpočet průměrné ryclosti: v v je průměrná ryclost v / (m/s) s je ujetá dráa v (m) t je čas potřebný k ujetí dráy s v odinác

Více

Ministerstvo dopravy Bratislava, 14. září 2006

Ministerstvo dopravy Bratislava, 14. září 2006 Ministerstvo dopravy Bratislava, 14. září 2006 Evropská unie ve svých strategických materiálech doporučuje zavádění systémů zpoplatnění užívání dopravní infrastruktury na principu uživatel platí. Znamená

Více

Č ó š ě š ě Í šť Č šť Č Č Č ř ě ž š ě ř Č Č ř š ě ř š ě ř š š ě ř Ň š ň š ě š ě š ě š ě š ě ě š ě š ě ě šť šť š ě ě ř ě šť š ě š ě Č š ě Č š ě š ě ě š ě š ě ě šť šť š ě Ě ř ě šť š ě š ě Č š ě Č š ě š ě

Více

Í Ř á ž á ž á ž š á ě Ž Í š á č č ť š š ě ě áč ě Ť áš Ž č Í Č ě Ž Ž č á š ě á á ě á áš č š ě á č ě Ť š á ě á Ě š ě Ť ě š ě š Ť áž ě č á ě ě áč Č ě č á Š á Ž á Ť ě á ť ě ž ě Č š á á ě č ěť č á č ě š š Ž

Více

Pojištění Kdo vás podrží ve zlých časech?

Pojištění Kdo vás podrží ve zlých časech? Pojištění Kdo vás održí ve zlých časech? Základní myšlenkou ojištění je solidarita a vzájemné jištění všech, kdo se rozhodli se ojistit. Na očátku byla tato myšlenka: složme se, a okud by se někomu z nás

Více

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují.

2.1.4 Funkce, definiční obor funkce. π 4. Předpoklady: 2103. Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. .. Funkce, definiční obor funkce Předpoklady: 03 Pedagogická poznámka: Následující ukázky si studenti do sešitů nepřepisují. Uděláme si na tabuli jenom krátký seznam: S = a, y = x, s = vt, výška lidí v

Více

Průvodce kapacitnímplánováním

Průvodce kapacitnímplánováním IBM Tioli Access Manager Průodce kapacitnímplánoáním GC09-3668-00 IBM Tioli Access Manager Průodce kapacitnímplánoáním GC09-3668-00 Poznámka: Než začnete použíat uedené informace a produkt, o který se

Více

Á Č ŘÍ ň Í ň ý ě ň ý ň ň ů Í Í ý Í ů Í ě š ě š ě ů š ě Ě Ě Í Í ý š ě Í ý Í ý Í ý š ě š ě Ž ě ý ý ů Ř Í Á Ž ý ó š ý ě š ě š ě š ě š ě ý š ě š ě ě š ě ú ů š ě š ě Í ú ú ě Á Á Í Ě Í Í ÁŘ Í ě ý š ě š ě Ý ý

Více

š ě ě ů ů ě š ů ě š š ě ž š ú ě ě š ě ě š ů ě ě š ů ú ě ě ú ě ě š ů ě ů ů ě ěž ů ž ěž ů ú ěž ž ů ě ú ě ů ů ú š ů ů ů ů ů ů š ú ž ú ň ú ů ů š ě ě ě ú ú ú ě ů ě ú ů ě ů ě ú ě ú ž ň ú ě ě ž š ú ě ě ě ú ú

Více

2.1.15 Slovní úlohy na lineární funkce

2.1.15 Slovní úlohy na lineární funkce 2.1.15 Slovní úloh na lineární funkce Předpoklad: 2108 Pedagogická poznámka: Obsah hodin přesahuje 45 minut (pokud necháte student pracovat samostatně). Poslední příklad tak zůstává na další hodinu nebo

Více

Á Á Ř Á Í í ě í í í é í ý é ř í é ž í ž ě í é ř č é ť í í ý ý č é é é ě é í ě ů í ý č íč Ř č í í í é ť Ž ý í í ů íž ě í ř ší ž í ů ř ě ý í ý ž ě ý ů ú ů ř í í čí í ř í ší č é ř ě í í ý ý ť é ý ú é éř íž

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evroský sociální fond Praha & EU: Investujeme do vaší udoucnosti Ekonomika odniku Katedra ekonomiky, manažerství a humanitních věd akulta elektrotechnická ČVUT v Praze Ing. Kučerková Blanka, 2011 Vztahy

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízení ro akademický rok 24/5 na magisterský studijní rogram PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (ísemný test) U každé otázky či odotázky v následujícím zadání vyberte srávnou odověď zakroužkováním

Více

Ú Í Č Š č ř č ů á á í ří í š íčá á č ů é č í Š ť á á č Š ř č í á ň ř Š á ý Č ó á á ť Í á á Š Š č ř š čá íř á í ř á čí Í č ř č á ě č ý áč ř á ť ý í á Í š ě š č ř ř ý š Úč í ří á ě č í á š éá Č Š ř á ý á

Více

Seriál TeoriečíselI. Jak seriál číst? Dohoda. Úvod

Seriál TeoriečíselI. Jak seriál číst? Dohoda. Úvod Seriál TeoriečíselI Počínaje 17. ročníkem robíhá každý rok v PraSátku seriál na okračování. Jde o výklad nějakého odvětví matematiky, se kterým se na střední škole s velkou ravděodobností setkáš jenvomezenémířečivůbecne,alekteréjeřestomožnévyložittak,abybylostředoškolákům

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Procenta, poměr, trojčlenka Klíčová slova: Procenta, poměr, zvětšení, zmenšení, trojčlenka, měřítko Autor: Mlynářová 1 Trojčlenka označuje postup při řešení úloh přímé

Více

2.7.6 Rovnice vyšších řádů

2.7.6 Rovnice vyšších řádů 6 Rovnice vyšších řádů Předpoklady: 50, 05 Pedagogická poznámka: Pokud mám jenom trochu čas probírám látku této hodiny ve dvou vyučovacích hodinách V první probíráme separaci kořenů, v druhé pak snížení

Více

ř ž ř š ř ů ř ž ř ř ž ž ř Č Ú Č Ř Ě Ř É Á ř ř ž ř ř ř ř ž Č ú ž Č ř š ř Č ž ř ň ř ž ř ů Ů ř ž ž ú ř š ř úř ř ř ň ř ů ů ř ř ž ů Č ž ř š ř ň ů ú ů ž ů ů š ž ř ů ů š ó š ů ů ř š ů ů ř ů ř ž š ř ú ůč Ú š ú

Více

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Obsah MECHANIKA IDEÁLNÍCH PLYNŮ. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA IDEÁLNÍCH PLYNŮ Studijní text ro řešitele FO a ostatní zájemce o fyziku Bohumil ybíral Obsah Předmluva 3 Základní veličiny a zákony ideálního lynu 4 Stavové veličiny lynu 4 eličiny oisující lyn

Více

Laboratorní práce č. 4: Úlohy z paprskové optiky

Laboratorní práce č. 4: Úlohy z paprskové optiky Přírodí ědy moderě a iteraktiě FYZKA 4. ročík šestiletého a. ročík čtyřletého studia Laboratorí práce č. 4: Úlohy z paprskoé optiky G Gymázium Hraice Přírodí ědy moderě a iteraktiě FYZKA 3. ročík šestiletého

Více

Ý Ř ÁŘ Í Ť Č ú š ž é ú ř é é Ň ÁŘ Á Í É Í ú ř ř ř š š é š é ř é ů Ň Ý ť ÁŘ Á Ř ř é ř š ž ů é ř ú ú é ř é ú ů ř ů ř ó ž é ř é ř é ů ř é ž é ó ůž ž ř ř ú ž ř é ž ř é é é ř ž ž é é é š ž é š é ž é š é É š

Více

1.5.3 Výkon, účinnost

1.5.3 Výkon, účinnost 1.5. Výkon, účinnos ředpoklady: 151 ř. 1: ři výběru zahradního čerpadla mohl er vybíra ze ří čerpadel. rvní čerpadlo vyčerpá za 1 sekundu,5 l vody, druhé čerpadlo vyčerpá za minuu lirů vody a řeí vyčerpá

Více

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce)

LOKÁLNÍ EXTRÉMY. LOKÁLNÍ EXTRÉMY (maximum a minimum funkce) Předmět: Ročník: Vytvořil: Datum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: LOKÁLNÍ EXTRÉMY LOKÁLNÍ EXTRÉMY (maimum a minimum funkce) Lokální etrémy jsou body, v nichž funkce

Více

ZMĚNY VE STRUKTUŘE VÝDAJŮ DOMÁCNOSTÍ V ZEMÍCH EU

ZMĚNY VE STRUKTUŘE VÝDAJŮ DOMÁCNOSTÍ V ZEMÍCH EU Praha, 1. 11. 2012 ZMĚNY VE STRUKTUŘE VÝDAJŮ DOMÁCNOSTÍ V ZEMÍCH EU Struktura výdajů domácností prochází vývojem, který je ovlivněn především cenou zboží a služeb. A tak skupina zboží či služeb, která

Více

Matematika. Až zahájíš práci, nezapomeò:

Matematika. Až zahájíš práci, nezapomeò: 9. TØÍDA PZ 2012 9. tøída I MA D Matematika Až zahájíš práci, nezapomeò: každá úloha má jen jedno správné øešení úlohy mùžeš øešit v libovolném poøadí test obsahuje 30 úloh na 60 minut sleduj bìhem øešení

Více

Ú ú ú ú Ž Ž ŽÁ ú ň Í ú ú ť Ž Ž ú Ó ú ú ú Í Í Í ú ú ú ú ť ú Ž ň Á Í ň ť Ú Ž Ř Š Í ú Ú ť Ž ú ú ú ú ú ť Ž ú Á Í Í ť Ž ň Á ň Ó ú Š Ž Ž ň ú ť Ž ú ú ú ň Ž Ž Í ú Ž Ž ú Ž ú ň ť ň ú ň ú ú ň ú Ž Ž Ž Ž Ť ú Ž ú ň

Více

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM

ÚLOHY DIFERENCIÁLNÍHO A INTEGRÁLNÍHO POČTU S FYZIKÁLNÍM NÁMĚTEM Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol ÚLOHY

Více