Přednáška 1 Obecná deformační metoda, podstata DM

Rozměr: px
Začít zobrazení ze stránky:

Download "Přednáška 1 Obecná deformační metoda, podstata DM"

Transkript

1 Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí Vznik a vývoj deformační metody, podstata DM Výpočtový model rovinné prutové konstrukce Stupeň přetvárné neurčitosti rovinné konstrukce Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava 1

2 Základní informace Předmět: /11 Statika stavebních konstrukcí II Přednášející: Ing. Lenka Koubová, Ph.D. Kontakty: kancelář H406/1 tel Přednášky a informace: 2

3 Osnova přednášek 1. Obecná deformační metoda, podstata ODM 2. Analýza přímého prutu (lokální a globální souřadnicová soustava, lokální matice tuhosti a zatěžovací vektor přímého prutu při různých způsobech připojení prutu k uzlům) 3. Analýza prutové soustavy (globální matice tuhosti a globální zatěžovací vektor nosníků, řešení soustavy rovnic, výpočet koncových účinků prutů a reakcí ve vnějších vazbách nosníků, určení průběhů vnitřních sil v prutech) 4. Rovinný rám při silovém zatížení, praktický postup výpočtu pomocí ODM 5. Řešení rovinných rámů ODM při deformačním zatížení 6. Řešení příhradových konstrukcí ODM 3

4 Osnova přednášek 7. Prostorové prutové soustavy, rošty a rámy příčně zatížené řešené pomocí ODM 8. Zjednodušená deformační metoda, princip řešení ZDM, styčníkové rovnice 9. Zjednodušená deformační metoda, pokračování, patrové rovnice 10. Řešení nosníku ODM na pružném podkladě 11. Analýza zakřiveného prutu pomocí ODM 12. Geometricky nelineární úlohy v ODM 4

5 Literatura [1] Kadlčák, J., Kytýr, J., Statika stavebních konstrukcí II. VUTIUM, Brno Další doporučená literatura: [2] Teplý, B., Šmiřák, S., Pružnost a plasticita II. Nakladatelství VUT Brno, [3] Dický, J., Jendželovský,N., Stavebná mechanika, STU v Bratislavě, Stavebná fakulta [4] Benda, J., a kol. Statika stavebních konstrukcí II. Skriptum CERM, Brno [5] Sobota, J. Statika stavebních konstrukcí 2. Alfa, Bratislava

6 Hodnocení zkoušky Předpoklad zápisu ke zkoušce úspěšné absolvování zkoušky z SSK I získání zápočtu z SSK II Písemná část: 0 až 35 bodů min. 18 bodů pro postup k ústní části Ústní část: 0 až 30 bodů pro vykonání min. 15 Známky: bodů bodů bodů 3 6

7 Podstata deformační metody 7

8 Metody řešení staticky neurčitých konstrukcí Metoda Neznámé Podmínky Charakter metody Počet neznámých Základní soustava Způsob vytvoření ZS Silová Síly, momenty Přetvárné, deformační Metoda přímá Stupeň statické neurčitosti n s Staticky určitá Odstranění přebyteč- ných vazeb Deformační Deformace (posunutí, pootočení) Rovnovážné (rovnováha sil a momentů) Metoda nepřímá Stupeň přetvárné neurčitosti n p Přetvárně určitá Přidání fiktivních vazeb Hybridní Síly a deformace Přetvárné a rovnovážné n 8

9 Vznik a vývoj deformační metody Ostenfeld - v roce 1926 publikoval práci Die Deformationsmetode Hardy Cross - v roce 1929 publikoval metodu rozdělování momentů Václav Dašek, akademik - metoda rozdělování sil a momentů Rozvoj DM spojen s rozvojem počítačů od 60. let minulého století 9

10 Základní postup u deformační metody 1. Určí se stupeň přetvárné neurčitosti (odpovídá počtu neznámých přetvoření a řešených rovnic) 2. Vypočítají se primární koncové síly každého prutu 3. Sestaví se podmínky rovnováhy v uzlech (koncové síly prutů sekundární se vyjádří pomocí parametrů deformace) 4. Řešením rovnic se určí parametry deformace (pootočení, posunutí) 5. Parametry deformace umožňují vypočítat sekundární koncové síly 6. Vypočítají se celkové koncové síly v uzlech jako součet primárních a sekundárních koncových sil a z nich reakce a složky vnitřních sil v jednotlivých prutech 7. Provede se kontrola správnosti řešení pomocí tří statických podmínek rovnováhy celku 10

11 Varianty deformační metody Obecná deformační metoda ODM, zanedbává vliv posouvajících sil na přetvoření konstrukce, počítá se změnou délky prutu způsobenou normálovými silami Zjednodušená deformační metoda ZDM, zanedbává vliv normálových a posouvajících sil na přetvoření konstrukce (nepočítá se změnou délky prutu, výjimkou je změna délky prutu způsobená změnou teploty) 11

12 Výpočtový model rovinného rámu Idealizuje se Tvar tvořený střednicemi prutů (přisouzeny geometrické a průřezové charakteristiky a vlastnosti materiálu) Styk prutů styčníky monolitické (rámové) kloubové (nerámové) Styk prutů a vnějších vazeb Zatížení silové deformační 12

13 Styčníky (uzly) rovinné prutové konstrukce Monolitický (rámový) styčník Rámový styčník s kloubově připojeným prutem Kloubový (nerámový) styčník Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

14 Pruty a styčníky rovinné stavební konstrukce Oboustranně monoliticky připojený Jednostranně kloubově připojený Oboustranně kloubově připojený Styčník volný (nepodepřený) podepřený (vázaný) 14

15 Pruty a styčníky rovinné stavební konstrukce Každý volný (nepodepřený) styčník má tři složky přemístění Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

16 Různá připojení prutů, jejich vliv na přemístění Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

17 Vnější vazby prutové soustavy Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

18 Výpočtový model rovinné prutové konstrukce Stupeň přetvárné neurčitosti n = 3t + 2k + p p p v t k p p v počet monolitických styčníků počet kloubových styčníků počet jednoduchých kloubových podepření počet vnějších vazeb umístěných u styčníků Určení pomocí tzv. fiktivních vazeb momentová (brání pootočení) silová (brání svislému posunu) silová (brání horizontálnímu posunu) 18

19 Výpočtový model rovinné prutové konstrukce n p =13 n p = = 13 Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

20 Vliv převislého konce na styčník prutové soustavy Síla F působící na převislém konci je ekvivalentní silám a momentu působícím ve styčníku. Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

21 Počet neznámých parametrů deformace pro různá připojení prutů Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

22 Příklady výpočtových modelů Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

23 Příklady výpočtových modelů Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

24 Příklady výpočtových modelů Zpracováno dle Kadlčák, J., Kytýr, J., STATIKA STAVEBNÍCH KONSTRUKCÍ II, VUT v Brně, naklad. VUTIUM, Brno

25 Použitá literatura [1] Kadlčák, J., Kytýr, J., Statika stavebních konstrukcí II. VUTIUM, Brno

Stavební mechanika přednáška, 10. dubna 2017

Stavební mechanika přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola

Více

Postup při výpočtu prutové konstrukce obecnou deformační metodou

Postup při výpočtu prutové konstrukce obecnou deformační metodou Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu

Více

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),

Více

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.

Stavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Stavební mechanika 2 (K132SM02)

Stavební mechanika 2 (K132SM02) Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz konzultační hodiny budou upřesněny později https://mech.fsv.cvut.cz/student/

Více

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty

* Modelování (zjednodušení a popis) tvaru konstrukce. pruty 2. VNITŘNÍ SÍLY PRUTU 2.1 Úvod * Jak konstrukce přenáší atížení do vaeb/podpor? Jak jsou prvky konstrukce namáhány? * Modelování (jednodušení a popis) tvaru konstrukce. pruty 1 Prut: konstrukční prvek,

Více

Předpjatý beton Přednáška 4

Předpjatý beton Přednáška 4 Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY

PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny

Více

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y

P řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je

Více

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013

PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 PRŮBĚH ZKOUŠKY A OKRUHY OTÁZEK KE ZKOUŠCE Z PŘEDMĚTU BETONOVÉ PRVKY předmět BL01 rok 2012/2013 Zkouška sestává ze dvou písemných částí: 1. příklad (na řešení 60 min.), 2. části teoretická (30-45 min.).

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví 5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými

Více

Železniční most - příhradová konstrukce Scia Engineer 2008

Železniční most - příhradová konstrukce Scia Engineer 2008 VŠB-Technická univerzita Ostrava Fakulta stavební Školní rok 2009-2010 Železniční most - příhradová konstrukce Scia Engineer 2008 Předkládá student : Ondřej Novobilský Odborný konzultant : Ing. Oldřich

Více

KONSTRUKCE POZEMNÍCH STAVEB

KONSTRUKCE POZEMNÍCH STAVEB 6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle

Více

Náhradní ohybová tuhost nosníku

Náhradní ohybová tuhost nosníku Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava

Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Stavební statika, 1.ročník bakalářského studia Stavební statika Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava

Více

4.6.3 Příhradové konstrukce

4.6.3 Příhradové konstrukce 4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen

Více

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy)

Organizace výuky. Přednášející: Doc. Ing. Vít Šmilauer, Ph.D., B312 Konzultační hodiny St (po domluvě i jindy) SMA Přednáška Informace o předmětu Energie vnějších a vnitřních sil Virtuální energie vnějších a vnitřních sil Princip virtuálních prací a sil Příklady Copyright (c) Vít Šmilauer Czech Technical University

Více

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.

Více

Princip virtuálních posunutí (obecný princip rovnováhy)

Princip virtuálních posunutí (obecný princip rovnováhy) SMA2 Přednáška 05 Princip virtuálních posunutí Deformační metoda Matice tuhosti prutu pro tah/tlak Matice tuhosti prutu pro ohyb Program EduBeam Příklady Copyright (c) 2012 Vít Šmilauer Czech Technical

Více

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů)

Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) PŘEDNÁŠKY Projevy dotvarování na konstrukcích (na úrovni průřezových modelů) Volné dotvarování Vázané dotvarování Dotvarování a geometrická nelinearita Volné dotvarování Vývoj deformací není omezován staticky

Více

Princip virtuálních prací (PVP)

Princip virtuálních prací (PVP) Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Petr Konečný LPH 407/3 tel. 59 732 1384 petr.konecny@vsb.cz http://fast10.vsb.cz/konecny Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená literatura

Více

Program dalšího vzdělávání

Program dalšího vzdělávání Program dalšího vzdělávání VZDĚLÁVÁNÍ LEŠENÁŘŮ Učební plán kurzu: Vzdělávání odborně způsobilých osob pro DSK MODUL A2 Projekt: Konkurenceschopnost pro lešenáře Reg. č.: CZ.1.07/3.2.01/01.0024 Tento produkt

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady

ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady Teorie plasticity VŠB TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ KATEDRA PRUŽNOSTI A PEVNOSTI ZÁKLADNÍ ÚLOHY TEORIE PLASTICITY Teoretické příklady 1. ŘEŠENÝ PŘÍKLAD NA TAH ŘEŠENÍ DLE DOVOLENÝCH NAMÁHÁNÍ

Více

Analýza stavebních konstrukcí

Analýza stavebních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

Statika tuhého tělesa Statika soustav těles

Statika tuhého tělesa Statika soustav těles Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,

Více

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.

Statika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter

Více

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( )

Program předmětu YMVB. 1. Modelování konstrukcí ( ) 2. Lokální modelování ( ) Program předmětu YMVB 1. Modelování konstrukcí (17.2.2012) 1.1 Globální a lokální modelování stavebních konstrukcí Globální modely pro konstrukce jako celek, lokální modely pro návrh výztuže detailů a

Více

Analýza stavebních konstrukcí

Analýza stavebních konstrukcí ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing. Radoslav

Více

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz Organizace předtermínu a N & O zápočtových testů ze SM02 Předtermín

Více

Programové systémy MKP a jejich aplikace

Programové systémy MKP a jejich aplikace Programové systémy MKP a jejich aplikace Programové systémy MKP Obecné Specializované (stavební) ANSYS ABAQUS NE-XX NASTRAN NEXIS. SCIA Engineer Dlubal (RFEM apod.) ATENA Akademické CALFEM ForcePAD ANSYS

Více

5 Analýza konstrukce a navrhování pomocí zkoušek

5 Analýza konstrukce a navrhování pomocí zkoušek 5 Analýza konstrukce a navrhování pomocí zkoušek 5.1 Analýza konstrukce 5.1.1 Modelování konstrukce V článku 5.1 jsou uvedeny zásady a aplikační pravidla potřebná pro stanovení výpočetních modelů, které

Více

Modulová osnova. systém os, určující polohu hlavních nosných prvků

Modulová osnova. systém os, určující polohu hlavních nosných prvků Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při

Více

Klasifikace rámů a složitějších patrových konstrukcí

Klasifikace rámů a složitějších patrových konstrukcí Klasifikace rámů a složitějších patrových konstrukcí Klasifikace závisí na geometrii i zatížení řešit pro každou kombinaci zatížení!! 1. Konstrukce řešené podle teorie 1. řádu (α > 10): F α 10 Pro dané

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

Témata profilové části ústní maturitní zkoušky z odborných předmětů

Témata profilové části ústní maturitní zkoušky z odborných předmětů Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.

Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. 7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý

Více

Prvky betonových konstrukcí BL01 3. přednáška

Prvky betonových konstrukcí BL01 3. přednáška Prvky betonových konstrukcí BL01 3. přednáška Mezní stavy únosnosti - zásady výpočtu, předpoklady řešení. Navrhování ohýbaných železobetonových prvků - modelování, chování a způsob porušení. Dimenzování

Více

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce

SOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce Identifikátor materiálu: ICT příhradové konstrukce Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního

Více

Geometricky nelineární analýza příhradových konstrukcí

Geometricky nelineární analýza příhradových konstrukcí Geometricky nelineární analýza příhradových konstrukcí Semestrální práce z předmětu SM3 2006/2007 Jan Stránský Příhradové konstrukce jsou prutové konstrukce sestávající z přímých prutů, navzájem spojených

Více

PŘÍKLADY ŘEŠENÍ NOSNÍKŮ STATICKY NEURČITÝCH

PŘÍKLADY ŘEŠENÍ NOSNÍKŮ STATICKY NEURČITÝCH VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

Petr Kabele

Petr Kabele 4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural

Více

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování.

Předpjatý beton Přednáška 9. Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Předpjatý beton Přednáška 9 Obsah Prvky namáhané smykem a kroucením, analýza napjatosti, dimenzování. Analýza napjatosti namáhání předpjatých prvků Analýza napjatosti namáhání předpjatých prvků Ohybový

Více

4.6 Složené soustavy

4.6 Složené soustavy 4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání...

1. Řešená konstrukce Statické řešení Výpočet průhybové čáry Dynamika Vlastní netlumené kmitání... . Řešená konstrukce.... Statické řešení.... Výpočet průhybové čáry... 5. Dynamika.... Vlastní netlumené kmitání..... Jacobiho metoda rovinné rotace... 4.. Popis algoritmu... 4. Vynucené kmitání... 5 4.

Více

Otázky k přijímací zkoušce ČÁST A

Otázky k přijímací zkoušce ČÁST A Otázky k přijímací zkoušce (SI-S) ČÁST A 1. Které z následujících chyb se můžeme dopustit při testování nulové hypotézy H 0 proti alternativní hypotéze H: a) zamítneme nepravdivou nulovou hypotézu H 0

Více

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma,

Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, NMAG66 LS 25 Inženýr, jeřáb a matice Výpočet sil v prutových soustavách styčníkovou metodou Úvod Ráda bych ve své práci představila počítání prutových soustav. Jedná se o poměrně rozsáhlé téma, a proto

Více

Pilotové základy úvod

Pilotové základy úvod Inženýrský manuál č. 12 Aktualizace: 04/2016 Pilotové základy úvod Program: Pilota, Pilota CPT, Skupina pilot Cílem tohoto inženýrského manuálu je vysvětlit praktické použití programů GEO 5 pro výpočet

Více

Materiály ke 12. přednášce z předmětu KME/MECHB

Materiály ke 12. přednášce z předmětu KME/MECHB Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových

Více

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška

Těleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi

Více

Otázky pro Státní závěrečné zkoušky

Otázky pro Státní závěrečné zkoušky Obor: Název SZZ: Strojírenství Mechanika Vypracoval: Doc. Ing. Petr Hrubý, CSc. Doc. Ing. Jiří Míka, CSc. Podpis: Schválil: Doc. Ing. Štefan Husár, PhD. Podpis: Datum vydání 8. září 2014 Platnost od: AR

Více

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici) Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: POZEMNÍ STAVBY (S) Sada č. 1/20.6.2012 Část A TEST 1. Má-li spojitá náhodná veličina X distribuční

Více

Normálová napětí v prutech namáhaných na ohyb

Normálová napětí v prutech namáhaných na ohyb Pružnost a plasticita, 2.ročník kombinovaného studia Normálová napětí v prutech namáhaných na ohb Základní vtah a předpoklad řešení Výpočet normálového napětí Dimenování nosníků namáhaných na ohb Složené

Více

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova

STAVEBNÍ STATIKA. Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova STAVEBNÍ STATIKA Ing. Lenka Randýsková http://fast10.vsb.cz/randyskova Požadavky pro udlení zápotu zápoet z pedmtu Matematika I minimáln 70% aktivní úast na cviení prokázání znalostí procviované látky

Více

Příklad oboustranně vetknutý nosník

Příklad oboustranně vetknutý nosník Příklad oboustranně vetknutý nosník výpočet podle viskoelasticity: 4 L fˆ L w, t J t, t 384I 0 průhyb uprostřed co se změní v případě, fˆ že se zatížení M mění x t v čase? x Lx L H t t0 1 fl ˆ M fˆ 0,

Více

ANALÝZA KONSTRUKCÍ. zimní semestr

ANALÝZA KONSTRUKCÍ. zimní semestr ANALÝZA KONSTRUKCÍ zimní semestr 2016-2017 ANKC analýza konstrukcí prof. Ing. Petr Konvalinka, CSc., FEng. katedra mechaniky vedoucí Experimentálního centra FSv, D1038 konzultace : pondělí 15:00 16:00

Více

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM)

NOSNÍK NA PRUŽNÉM PODLOŽÍ (WINKLEROVSKÉM) NOSNÍK NA PRUŽNÉ PODLOŽÍ (WINKLEROVSKÉ) Uvažujeme spojitý nosník na pružných podporách. Pružná podpora - odpor je úměrný zatlačení. Pružné podpory velmi blízko sebe - jejich účinek lze nahradit spojitou

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

ANALÝZA KONSTRUKCÍ. 5. přednáška

ANALÝZA KONSTRUKCÍ. 5. přednáška ANALÝZA KONSTRUKCÍ 5. přednáška Nosné stěny rovinná napjatost Způsoby výpočtu napjatosti: Deformační metodou Primární neznámé: posuny u(,y), v(,y) Výchozí rovnice: statické Silovou metodou Primární neznámá:

Více

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF

Ing. Ondřej Kika, Ph.D. Ing. Radim Matela. Analýza zemětřesení metodou ELF Ing. Ondřej Kika, Ph.D. Ing. Radim Matela Analýza zemětřesení metodou ELF Obsah Výpočet vlastních frekvencí Výpočet seizmických účinků na konstrukci Výpočet pomocí metody ekvivalentních příčných sil (ELF

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO3 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1

Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Název: Téma: Autor: Inovace a zkvalitnění výuky prostřednictvím ICT Součásti točivého a přímočarého pohybu Konstrukční

Více

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D

Ing. Jakub Kršík Ing. Tomáš Pail. Navrhování betonových konstrukcí 1D Ing. Jakub Kršík Ing. Tomáš Pail Navrhování betonových konstrukcí 1D Úvod Nové moduly dostupné v Hlavním stromě Beton 15 Původní moduly dostupné po aktivaci ve Funkcionalitě projektu Staré posudky betonu

Více

5. Prutové soustavy /příhradové nosníky/

5. Prutové soustavy /příhradové nosníky/ PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech

Více

Téma 5 Lomený a zakřivený nosník

Téma 5 Lomený a zakřivený nosník Stavební statika, 1.ročník bakalářského studia Téma 5 Lomený a zakřivený nosník Rovinně lomený nosník v rovinné úloze Rovinně lomený nosník v příčné úloze Prostorově lomený nosník Katedra stavební mechaniky

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: MANAGEMENT STAVEBNICTVÍ TEST A.1 MATEMATIKA 1) Jeli F distribuční funkce spojité náhodné veličiny

Více

Katedra geotechniky a podzemního stavitelství

Katedra geotechniky a podzemního stavitelství Katedra geotechniky a podzemního stavitelství Modelování v geotechnice Metoda okrajových prvků (prezentace pro výuku předmětu Modelování v geotechnice) doc. RNDr. Eva Hrubešová, Ph.D. Inovace studijního

Více

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky

Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia. Zemní tlaky Mechanika zemin a zakládání staveb, 2 ročník bakalářského studia Zemní tlaky Rozdělení, aktivizace Výpočet pro soudržné i nesoudržné zeminy Tlaky zemin a vody na pažení Katedra geotechniky a podzemního

Více

BO04 KOVOVÉ KONSTRUKCE I

BO04 KOVOVÉ KONSTRUKCE I BO04 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Obsah VNITŘNÍ SÍLY PRÍHRADOVÉ

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Mechanika s Inventorem

Mechanika s Inventorem Mechanika s Inventorem 2. Základní pojmy CAD data FEM výpočty Petr SCHILLING, autor přednášky Ing. Kateřina VLČKOVÁ, obsahová korekce Optimalizace Tomáš MATOVIČ, publikace 1 Obsah přednášky: Lagrangeův

Více

Požadavky pro písemné vypracování domácích cvičení

Požadavky pro písemné vypracování domácích cvičení Požadavky pro písemné vypracování domácích cvičení (cvičící: Vladimír Šána, B380) 1. Docházka na cvičení Docházka na cvičení je dobrovolná a nebude na ní brán zřetel při udělování zápočtů. Naopak budu

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO NMSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2011 2012 OBOR: MANAGEMENT STAVEBNICTVÍ TEST A.1 MATEMATIKA 1) Které z následujících chyb se můžeme dopustit

Více

Namáhání ostění kolektoru

Namáhání ostění kolektoru Inženýrský manuál č. 23 Aktualizace 06/2016 Namáhání ostění kolektoru Program: MKP Soubor: Demo_manual_23.gmk Cílem tohoto manuálu je vypočítat namáhání ostění raženého kolektoru pomocí metody konečných

Více

s01. Základy statiky nutné pro PP

s01. Základy statiky nutné pro PP s01 1 s01. Základy statiky nutné pro PP Poznámka: Tato stať není přehledem statiky, ale pouze připomenutím některých základních poznatků, bez nichž se v PP nelze obejít. s01.1. Mechanický pohyb Pohyb chápeme

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2008 2009 OBOR: POZEMNÍ STAVBY (S) A. MATEMATIKA TEST. Hladina významnosti testu α při testování nulové hypotézy

Více

Maturitní témata ze stavby a provozu strojů školní rok 2015/2016 obor 23-41-M/01 Strojírenství

Maturitní témata ze stavby a provozu strojů školní rok 2015/2016 obor 23-41-M/01 Strojírenství Maturitní témata ze stavby a provozu strojů Spoje se silovým stykem - šroubové spoje Spoje se silovým stykem - svěrné, tlakové, klínové, pružné spoje Spoje s tvarovým stykem Spoje s materiálovým stykem

Více

CITLIVOST FYZIKÁLNĚ NELINEÁRNÍHO VÝPOČTU NA MATERIÁLOVÝ. Abstrakt. 1 Úvod

CITLIVOST FYZIKÁLNĚ NELINEÁRNÍHO VÝPOČTU NA MATERIÁLOVÝ. Abstrakt. 1 Úvod ODELOVÁNÍ V ECHANICE OSTRAVA, ÚNOR 25 CITLIVOST FYZIKÁLNĚ NELINEÁRNÍHO VÝPOČTU NA ATERIÁLOVÝ ODEL Ivan Kološ 1 Abstrakt The paper describes a numerical solution of the statically indeterminate beam that

Více

TEST FAST LS 2010 ČÁST A

TEST FAST LS 2010 ČÁST A 2010-2011 TEST FAST LS 2010 ČÁST A 1. Mezi metody ke stanovení příčinkových čar statických veličin Gerberova nosníku nepatří a) styčníková metoda b) kinematická metoda c) analytická metoda d) kombinace

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK AKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŢENÝRSTVÍ PRO AKADEMICKÝ ROK 20 202 OBOR: POZEMNÍ STAVBY (S) Sada č. Část A TEST. Je-li distribuční funkce spojité náhodné veličiny X a a

Více

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M. Definování 4. přednáška prutech iroslav okáč miroslav.vokac@cvut.cz ČUT v Praze, Fakulta architektury 11. dubna 2016 prutech nitřní síly síly působící uvnitř tělesa (desky, prutu), které vznikají působením

Více

Interakce základových pásů se základovou půdou

Interakce základových pásů se základovou půdou VŠB-Technická univerzita Ostrava Fakulta stavební Studentská vědecká odborná činnost Školní rok 2011-2012 Interakce základových pásů se základovou půdou Předkládá student : Michael Macháček Odborný konzultant

Více

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012

1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: REALIZACE STAVEB (R) Část A TEST A.1 MATEMATIKA 1) Při testování nulové hypotézy H 0 : střední

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

ZÁKLADY STAVEBNÍ MECHANIKY

ZÁKLADY STAVEBNÍ MECHANIKY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE

Více

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky

Statika 2. Miroslav Vokáč 6. ledna ČVUT v Praze, Fakulta architektury. Statika 2. M. Vokáč. Grafické metody statiky 7. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 6. ledna 2016 Síly se v měřítku vynáší do součtové čáry (diagram vpravo). Součtové podmínky rovnováhy jsou splněny,

Více