Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím
|
|
- Martina Králová
- před 5 lety
- Počet zobrazení:
Transkript
1 Stavební mechanika, 2.ročník bakalářského studia AST Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava
2 Osnova přednášky Staticky neurčité konstrukce, stupeň statické neurčitosti Silová metoda Jednostranně vetknutý nosník v příčné úloze Osnova přednášky 2 / 63
3 Pohybové možnosti volných hmotných objektů Stupeň volnosti n v : možnost vykonat jednu pravoúhlou složku posunu nebo pootočení. volný hmotný bod v rovině: n v =2, určen [x, y], 2 různých poloh +x volný hmotný bod v prostoru: n v =3, určen [x, y, z], 3 různých poloh volná tuhý prut (deska) v rovině: n v =3, určen [x, y, g], 3 různých poloh tuhé těleso v prostoru: n v =6, určeno [x, y, z, a, b, g], 6 různých poloh +z m[x m,z m ] g z x Stavební statika téma č.3 3 / 63
4 Vnější vazby proti posunům Vazba proti posunu znemožňuje posun podepřeného bodu prutu v zadaném směru. (a) (b) (c) (d) (e) (f) (g) Jednoduché a sdružené vazby proti posunům znázorněné pomocí kyvných prutů (a) (b) (c) (d) (e) Vazby proti posunům znázorněné pomocí jehlanů a trojúhelníčků Stavební statika téma č.3 4 / 63
5 Vnější vazby proti pootočení Vazba proti pootočení znemožňuje pootočení podepřeného bodu prutu v zadané rovině. (a) (b) (c) Jednoduché vazby proti pootočení Úplné vetknutí v prostoru nebo rovině, posuvné vetknutí v rovině. (a) (b) (c) Sdružené vazby proti posunu i pootočení Stavební statika téma č.3 5 / 63
6 Násobnost vazeb Vnější vazby odebírají objektu stupně volnosti. n násobná vazba ruší objektu n stupňů volnosti (n=1, 2, 3) Příklady jednoduchých vazeb tuhého prutu v rovině a jejich složek reakcí Název vazby Kyvný prut Posuvný kloub, posuvná vazba Neposuvný pevný kloub, pevná vazba Posuvné vetknutí Dokonalé vetknutí Násobnost vazby a a Označení vazby, složky reakcí a Raz R az R az R ax a R az M ay a R az R ax M ay Stavební statika téma č.3 6 / 63
7 Zajištění nehybnosti prutu K pevnému podepření objektu je potřeba tolika vazeb v, aby zrušily všechny stupně volnosti n v. v = n v v < n v v > n v Podepření objektu je kinematicky určité a staticky určité, zajištěna nehybnost objektu. Podepření objektu je kinematicky neurčité a staticky přeurčité, nehybnost objektu není zajištěna, (nedostatečný počet vazeb). Podepření objektu je kinematicky přeurčité a staticky neurčité, nehybnost objektu zajištěna (větší počet vazeb než je nezbytně nutné). Vazby musí být vhodně uspořádány, aby skutečně zajišťovaly nehybnost objektu. Stavební statika téma č.3 7 / 63
8 Staticky určitá konstrukce v = n v v = 3, n v = 3 Podepření objektu je kinematicky i staticky určité P 1 P 2 R ax a b R az R bz R ax M ay P 1 P 2 a R az Použitelné jako stavební konstrukce. Stavební statika téma č.3 8 / 63
9 Staticky určité případy podepření prutů (a) (e) (i) n v = 6 n v = 1 n v = 3 Osová úloha (b) n v = 3 (f) n v = 1 (j) n v = 3 Krutová úloha (c) n v = 3 (g) n v = 3 (k) n v = 3 (d) n v = 2 (h) n v = 3 (l) n v = 6 Příčná úloha Stavební statika téma č.3 Kinematicky určité případy podepření prutů 9 / 63
10 Staticky neurčitá konstrukce v > n v Podepření objektu je kinematicky přeurčité a staticky neurčité R ax a P 1 P 2 b R bx v = 4 n v = 3 R az R bz R ax M ay P 1 P 2 a b M by R bx v = 6 n v = 3 R az R bz Použitelné jako stavební konstrukce. Stavební statika téma č.3 10 / 63
11 Kinematicky neurčitá konstrukce v < n v Podepření objektu je kinematicky neurčité a staticky přeurčité P 1 P 2 a b R az R bz Objekt v rovnováze jen za určitého zatížení Ve stavební praxi nepoužitelné. Stavební statika téma č.3 11 / 63
12 Výjimkové případy podepření Vazby musí být vhodně uspořádány nesmí vzniknout výjimkové případy podepření, které jsou ve stavební praxi nepoužitelné. R ax a P 1 P 2 b R bx R az a P 1 P 2 b c R az R bz R cz Stavební statika téma č.3 12 / 63
13 Staticky neurčité případy podepření prutů (c) prut není zajištěn proti rotaci 1 vazba proti vodorovnému posunu nadbytečná (d) tři vazby proti posunutí, jejichž směry se protínají v jednom bodě (e) tři vazby proti svislému posunutí v bodech, ležících v jedné přímce (a) (d) (b) (c) (e) Výjimkové případy kinematicky určitého podepření prutů Stavební statika téma č.3 13 / 63
14 Podmínky rovnováhy uvolněného zatíženého prutu Podepřený prut musí být nehybný a v rovnováze. Počet podmínek rovnováhy záleží na typu řešené úlohy, shoduje se s počtem stupňů volnosti nepodepřeného prutu n v. Kolik stupňů volnosti v odebírají objektu vazby, tolik vzniká složek reakcí. v = n v v < n v Počet neznámých složek reakcí se shoduje s počtem podmínek rovnováhy, prut je staticky určitý a použitelný jako stavební konstrukce. Počet neznámých složek reakcí je menší než počet podmínek rovnováhy, prut je staticky přeurčitý a nepoužitelný jako stavební konstrukce (rovnováha nemůže být obecně zajištěna). v > n v Počet neznámých složek reakcí je větší než počet podmínek rovnováhy, prut je staticky neurčitý a může sloužit jako stavební konstrukce (podmínky rovnováhy musí být doplněny podmínkami přetvárnými-deformačními, předmět Pružnost a plasticita). Pokud je determinant soustavy roven nule jde o výjimkový případ. Stavební statika téma č.3 14 / 63
15 Podmínky rovnováhy uvolněných zatížených prutů soustavy Pro každý samostatný prut lze sestavit 3 podmínky rovnováhy. Počet vnějších a vnitřních vazeb: v = v e + v i Kolik stupňů volnosti odebírají soustavě vazby v, tolik vzniká složek reakcí. v = n v v < n v v > n v Počet neznámých složek reakcí se shoduje s počtem podmínek rovnováhy, soustava je staticky určitá a použitelná jako stavební konstrukce. Počet neznámých složek reakcí je menší než počet podmínek rovnováhy, soustava je staticky přeurčitá a nepoužitelná jako stavební konstrukce (rovnováha nemůže být obecně zajištěna). Počet neznámých složek reakcí je větší než počet podmínek rovnováhy, soustava je staticky neurčitá a může sloužit jako stavební konstrukce. Stupeň statické neurčitosti s = v - n v Pokud je determinant soustavy roven nule jde o výjimkový případ. Stavební statika téma č.3 15 / 63
16 Statická určitost příhradového nosníku Praktické pojetí výpočtový model tvořen hmotnými body (ve styčnících) a vnitřními vazbami (pruty), které brání vzájemnému posunutí obou spojovaných styčníků. Podmínka statické určitosti: 2. s p v e Rovinný kloubový příhradový nosník jako soustava hmotných bodů, vnitřních a vnějších vazeb Stavební statika téma č.7 16 / 63
17 Statická určitost F 1 F 2 N 4 N 8 e f g F 3 N 1 N 5 N 9 N 3 N 7 N 11 R ax a N 2 N 6 N 10 c d b R az 2. s p a 2. a R bz s=7 počet styčníků (v každém z nich 2 podmínky rovnováhy) p=11 počet vnitřních prutů (v každém z nich 1 neznámá osová síla) a 1 =1 a 2 =1 počet jedno a dvojnásobných vazeb (1 nebo 2 neznámé složky reakcí) Stavební statika téma č.7 17 / 63
18 Statická určitost F 1 F 2 c N 5 d s=4 N 1 N 3 N 4 p=5 R ax a N 2 b a 1 =1 a 2 =1 R az R bz 2. s 8 p a. a s p a1 2. a2 Stavební statika téma č.7 Staticky i kinematicky určitý rovinný kloubový příhradový nosník Staticky přeurčitý, kinematicky neurčitý rovinný kloubový prutový nosník 18 / 63
19 Statická určitost F 1 F 2 Není kloubový styčník c N 1 N 5 N 3 N 6 d N 4 s=4 p=6 a 1 =0 R ax a N 2 b R bx a 2 =2 R az R bz 2. s 8 p a. a x staticky (vnitřně i zevně) neurčitý rovinný kloubový příhradový nosník (kinematicky přeurčitý) Stavební statika téma č.7 19 / 63
20 Určení stupně statické neurčitosti Rovinné rámové konstrukce a nosníky 1. Otevřené prutové soustavy: n s = v 3 p k = a a a 3 3 p k v počet vnějších vazeb (reakcí) a i počet i-násobných vnějších vazeb p k počet vnitřních kloubových připojení přepočtených na jednoduché připojení 2. Uzavřené prutové soustavy: n s = 3.u + v 3 p k u počet uzavřených příhrad 20 / 63
21 Architektonické a konstrukční řešení Kriteria firmitas omezeně; Nadměrný průhyb vyvolaný chybným umístěním výztuže v betonu Praskání skleněných výplní utilitas omezeně; venustas ANO. Vila Fallingwater, Pennsylvania, USA, autor. Frank L. Wright; foto: Ing. Cyril Fisher, Ph.D. Architektonické a konstrukční řešení 21 / 63
22 Architektonické a konstrukční řešení Vila Fallingwater, Pennsylvania, USA, autor. Frank L. Wright; foto: Ing. Cyril Fisher, Ph.D. Architektonické a konstrukční řešení 22 / 63
23 Silová metoda Silová metoda (SM) je: určena k řešení staticky neurčitých konstrukcí, ns 1, základní metodou k řešení staticky neurčitých prutových konstrukcí, metodou přímou. SM využívá vedle podmínek rovnováhy přetvárných podmínek, princip superpozice a princip úměrnosti. Silová metoda 23 / 63
24 Silová metoda Určení stupně statické neurčitosti Uvolnění nadbytečné vazby Výpočet přetvoření v místě uvolněné vazby: a) 0. zatěžovací stav - d 10 b) 1. zatěžovací stav - d 11 Výpočet neznámé reakce X 1 d 10 + d 11 X 1 =0 Výpočet ostatních reakcí (z podm. rovnováhy) Silová metoda 24 / 63
25 Jednoduchý staticky neurčitý nosník Předpoklady: a) přímý prut s průřezem proměnlivým nebo konstantním, b) osa prutu identická s osou x, jedna s hlavních rovin prutu leží v rovině xz, c) prut je podepřen ve dvou bodech, d) každá z vnějších vazeb proti posunutí je rovnoběžná s některou ze souřadných os, e) každá z vnějších vazeb proti potočení působí v rovině, jejíž normálou je některá ze souřadných os, f) prut může být zatížen prostorově. Jednoduchý staticky neurčitý nosník 25 / 63
26 Jednoduchý staticky neurčitý nosník Stupeň statické neurčitosti n s = v n v udává počet přebytečných vazeb, tj. počet vazeb, které je nutno odebrat, aby se nosník stal staticky určitým Prostorová úloha jednoduchého přímého nosníku Obr / str. 55 Jednoduchý staticky neurčitý nosník 26 / 63
27 Příklad 1 Jednoduchý staticky neurčitý nosník F=50 kn a 4 2 b E.I = konst. 27 / 63
28 Příklad 1 uvolnění nadbytečné vazby F=50 kn Základní staticky určitá soustava a 4 2 b E.I = konst. alternativa 28 / 63
29 Příklad 1 deformační podmínka Staticky neurčitá soustava F=50 kn w b =0 d 10 + d 11 X 1 =0 ( ) b 0. zatěžovací stav 1. zatěžovací stav F=50 kn 1 d 11 1 d 10 X 1 ~R b 29 / 63
30 Příklad 1 přetvoření d 10 0-zatěžovací stav Skutečné zatížení F=50 kn Virtuální zatížení 1 1 X 1 = M 0 M EI 6 30 / 63
31 Příklad 1 přetvoření d 11 1-zatěžovací stav Skutečné zatížení Virtuální zatížení 1 1 X 1 = 1 X 1 = M 1 M EI 6 31 / 63
32 Příklad 1 0. zatěžovací stav 1. zatěžovací stav F=50 kn Deformační podmínka w b =0 1 d 11 1 d 10 X 1 ~R b d 10 + d 11 X 1 =0 ( ) X EI 1 Rb X kN EI 32 / 63
33 Architektonické a konstrukční řešení Restaurace - studentská práce FAST Architektonické a konstrukční řešení 33 / 63
34 Architektonické a konstrukční řešení Restaurace - studentská práce FAST Architektonické a konstrukční řešení Kriteria firmitas s obtížení; podpora a tuhost stropní desky utilitas ANO; venustas ANO. 34 / 63
Přednáška 1 Obecná deformační metoda, podstata DM
Statika stavebních konstrukcí II., 3.ročník bakalářského studia Přednáška 1 Obecná deformační metoda, podstata DM Základní informace o výuce předmětu SSK II Metody řešení staticky neurčitých konstrukcí
VíceOkruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil
Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil Souřadný systém, v rovině i prostoru Síla bodová: vektorová veličina (kluzný, vázaný vektor - využití),
VíceFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Přednáška 2 pro kombinované studium Jiří Brožovský Kancelář: LP C 303/1 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz
VíceTéma 8 Příčně zatížený rám a rošt
Statika stavebních konstrukcí I.,.ročník bakalářského studia Téma 8 Příčně zatížený rám a rošt Základní vlastnosti příčně zatíženého rámu Jednoduchý příčně zatížený otevřený rám Základní vlastnosti roštu
VíceStatika 1. Reakce na rovinných staticky určitých konstrukcích. Miroslav Vokáč ČVUT v Praze, Fakulta architektury.
reálných 3. přednáška Reakce na rovinných staticky určitých konstrukcích Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 21. března 2016 Dřevěný trámový strop - Anežský klášter
VícePetr Kabele
4. Statika tuhých objektů 4.1 Idealizovaný model konstrukce předpoklad: konstrukci (jako celek nebo jejíčásti) idealizujme jako body, tuhá tělesa nebo tuhé desky (viz 1. a 2. přednáška) foto:godden Structural
VícePříhradové konstrukce
Příhradové konstrukce Základní předpoklady konstrukce je vytvořena z přímých prutů pruty jsou navzájem pospojovány v bodech =>styčnících vzájemné spojení prutů se ve všech styčnících se předpokládá kloubové
VíceZjednodušená deformační metoda (2):
Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem
VíceStatika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Příhradové konstrukce a názvosloví
5. přednáška Miroslav Vokáč miroslav.vokac@klok.cvut.cz ČVUT v Praze, Fakulta architektury 5. května 2014 (prutové ) podle prostoru rozdělujeme na: Rovinné Prostorové Dále se budeme zabývat jen rovinnými
VíceJsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky.
7. Prutové soustavy Jsou to konstrukce vytvořené z jednotlivých prutů, které jsou na koncích vzájemně spojeny a označujeme je jako příhradové konstrukce nosníky. s styčník (ruší 2 stupně volnosti) každý
Vícetrojkloubový nosník bez táhla a s
Kapitola 10 Rovinné nosníkové soustavy: trojkloubový nosník bez táhla a s táhlem 10.1 Trojkloubový rám Trojkloubový rám se skládá ze dvou rovinně lomených nosníků v rovinné úloze s kloubovým spojením a
VíceSTATIKA. Vyšetřování reakcí soustav. Úloha jednoduchá. Ústav mechaniky a materiálů K618
STATIKA Vyšetřování reakcí soustav Úloha jednoduchá Ústav mechaniky a materiálů K618 1 Zadání Posuďte statickou určitost a vyšetřete reakce rovinné soustavy zadané dle obrázku: q 0 M Dáno: L = 2 m M =
VíceSTATIKA STAVEBNÍCH KONSTRUKCÍ I
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka
VíceSložené soustavy. Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí)
Složené soustavy Vznikají spojením jednotlivých konstrukčních prvků Úloha: Sestavení statického schématu, tj. modelu pro statický výpočet (např.výpočet reakcí) Metoda: Konstrukci idealizujeme jako soustavu
Více1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.
Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou
VíceVybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí
Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině
VíceTéma 12, modely podloží
Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení
Více4.6.3 Příhradové konstrukce
4.6.3 Příhradové konstrukce Forth Bridge (1890) 2529 m Akashi Kaikyō Bridge (1998) 3911 m "Forth rail bridge head-on-panorama josh-von-staudach" by Josh von Staudach - Own work. "The Forth Bridge seen
VíceStatika soustavy těles.
Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho
VíceTéma 7 Rovinný kloubový příhradový nosník
Stavební statika,.ročník bakalářského studia Téma 7 Rovinný kloubový příhradový nosník Obecná a zjednodušená styčníková metoda Průsečná metoda Mimostyčníkové zatížení Katedra stavební mechaniky Fakulta
VíceTéma 6 Rovinné nosníkové soustavy
Stavební statika, 1.ročník bakalářského studia Téma 6 Rovinné nosníkové soustavy Spojitý nosník s vloženými klouby Trojkloubový rám a oblouk Trojkloubový rám a oblouk s táhlem Katedra stavební mechaniky
VíceKONSTRUKCE POZEMNÍCH STAVEB
6. cvičení KONSTRUKCE POZEMNÍCH STAVEB Klasifikace konstrukčních prvků Uvádíme klasifikaci konstrukčních prvků podle idealizace jejich statického působení. Začneme nejprve obecným rozdělením, a to podle
VíceVŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, Ostrava. Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA
VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Anežka Jurčíková, Martin Krejsa, Lenka Lausová, Vladimíra Michalcová STAVEBNÍ STATIKA Vzdělávací pomůcka Ostrava
VíceStupně volnosti a vazby hmotných objektů
Stupně volnosti a vazby hmotných objektů Reálnou konstrukci či její části idealizujeme výpočetním modelem, který se obvykle skládá z objektů typu hmotný bod model prvku na který působí svazek sil (často
VíceStavební mechanika přednáška, 10. dubna 2017
Stavební mechanika 3 7. přednáška, 10. dubna 2017 Stavební mechanika 3 7. přednáška, 10. dubna 2017 Obecná deformační metoda 8) poznámky k využití symetrie 9) využití výpočetních programů 10) kontrola
VíceStřední škola automobilní Ústí nad Orlicí
Síla Základní pojmy Střední škola automobilní Ústí nad Orlicí vzájemné působení těles, které mění jejich pohybový stav nebo tvar zobrazuje se graficky jako úsečka se šipkou ve zvoleném měřítku m f je vektor,
Více4.6 Složené soustavy
4.6 Složené soustavy vznikají spojením jednotlivých konstrukčních prvků (tuhých těles, tuhých desek a/nebo bodů) deska deska G G 1 vazby: vnitřní - spojují jednotlivé prvky vnější - připojují soustavu
VíceStavební statika. Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava. Stavební statika, 1.ročník kombinovaného studia
Stvební sttik, 1.ročník kombinovného studi Stvební sttik Úvod do studi předmětu n Stvební fkultě VŠB-TU Ostrv Ktedr stvební mechniky Fkult stvební, VŠB - Technická univerzit Ostrv Stvební sttik přednášející
VíceBetonové konstrukce (S) Přednáška 3
Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární
VíceOTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6
OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti
VíceTéma 2 Úvod ke staticky neurčitým prutovým konstrukcím
Stvební mechnik,.ročník bkářského studi AST Tém Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité konstrukce,
VíceTéma 3 Úvod ke staticky neurčitým prutovým konstrukcím
Sttik stvebních konstrukcí I.,.ročník bkářského studi Tém 3 Úvod ke stticky neurčitým prutovým konstrukcím Ktedr stvební mechniky Fkut stvební, VŠB - Technická univerzit Ostrv Osnov přednášky Stticky neurčité
VíceStavební mechanika 3 132SM3 Přednášky. Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků.
Stavební mechanika 12SM Přednášky Deformační metoda: ZDM pro rámy s posuvnými styčníky, využití symetrie, výpočetní programy a kontrola výsledků. Porovnání ODM a ZDM Příklad 1: (viz předchozí přednáška)
VíceKinematická metoda výpočtu reakcí staticky určitých soustav
Kinematická metoda výpočtu reakcí staticky určitých soustav 1) Uvolnění jednoho stupně volnosti odpovídající reakci, kterou chceme určit (vytvoření kinematického mechanismu o jednom stupni volnosti). Zavedení
VíceZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO3 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE
VíceÚvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava
Stavební statika, 1.ročník bakalářského studia Stavební statika Úvod do studia předmětu na Stavební fakultě VŠB-TU Ostrava Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita Ostrava
VíceRovinné nosníkové soustavy
Stvení sttik,.ročník kominovného studi Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový rám Trojklouový rám s táhlem Ktedr stvení mehniky
VícePrizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění )
1 Prizmatické prutové prvky zatížené objemovou změnou po výšce průřezu (teplota, vlhkost, smrštění ) 1. Rozšířený Hookeův zákon pro jednoosou napjatost Základním materiálovým vztahem lineární teorie pružnosti
VíceZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání
iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení
VícePrůmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky
Průmyslová střední škola Letohrad Ing. Soňa Chládková Sbírka příkladů ze stavební mechaniky 2014 Tento projekt je realizovaný v rámci OP VK a je financovaný ze Strukturálních fondů EU (ESF) a ze státního
VíceSložené soustavy v rovině, stupně volnosti
Složené soustavy v rovině, stupně volnosti Složená soustava vznikne spojením hmotných bodů, tuhých desek a tuhých těles Foto: autor Maloměřický most s mezilehlou mostovkou, Brno, tři paralelní trojkloubové
VíceBO004 KOVOVÉ KONSTRUKCE I
BO004 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Obsah VNITŘNÍ SÍLY PRÍHRADOVÉ
VíceStatika tuhého tělesa Statika soustav těles
Statika tuhého tělesa Statika soustav těles Petr Šidlof TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF CZ.1.07/2.2.00/07.0247,
VíceFAKULTA STAVEBNÍ. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/
VíceVeronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.
Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+
VícePrincip virtuálních prací (PVP)
Zatěžujme pružinu o tuhosti k silou F k ū F Princip virtuálních prací (PVP) 1 ū u Energie pružné deformace W ext (skalár) je definována jako součin konstantní síly a posunu. Protože se zde síla během posunu
VíceTěleso na podporách. asi 1,5 hodiny. Základy mechaniky, 4. přednáška
Těleso na podporách. Obsah přednášky : uvolňování jako jeden ze základních postupů mechaniky, statická určitost a neurčitost, vazby a jejich vlastnosti, řešení staticky neurčitých úloh Doba studia : asi
Více3. kapitola. Průběhy vnitřních sil na lomeném nosníku. Janek Faltýnek SI J (43) Teoretická část: Příkladová část: Stavební mechanika 2
3. kapitola Stavební mechanika Janek Faltýnek SI J (43) Průběhy vnitřních sil na lomeném nosníku Teoretická část: Naším úkolem je v tomto příkladu vyšetřit průběh vnitřních sil na lomeném rovinném nosníku
VíceKontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky. Základní pojmy
Kontrolní otázky pro průběžné studium a pro přípravu ke zkoušce ze statiky Základní pojmy Pojem hmota, základní formy existence (atributy) hmoty Čím se liší pojmy hmota a hmotnost Axiomy statiky Mechanický
VíceStatika tuhého tělesa Statika soustav těles. Petr Šidlof
Statika tuhého tělesa Statika soustav těles Petr Šidlof Rovnováha volného tuhého tělesa (1) Hmotný bod: v rovnováze když rovnováha sil F 0 Tuhé těleso: v rovnováze když rovnováha sil a momentů F 0, M 0
VíceMateriály ke 12. přednášce z předmětu KME/MECHB
Materiály ke 12. přednášce z předmětu KME/MECH Zpracoval: Ing. Jan Vimmr, Ph.D. Prutové soustavy Prutové soustavy představují speciální soustavy těles, které se uplatňují při navrhování velkorozměrových
VíceZakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia
Stavební statika, 1.ročník bakalářského studia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katedra stavební mechaniky Fakulta stavební, VŠB - Technická univerzita
VíceZde je uveden abecední seznam důležitých pojmů interaktivního učebního textu
index 1 Rejstřík Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu Pružnost a pevnost. U každého termínu je uvedeno označení kapitoly a čísla obrazovek, na nichž lze pojem nalézt.
VíceÚvod do soustav sil. 1. Axiom o rovnováze sil F 1 F 2. tuhém tělese na stejném paprsku jsou v rovnováze. Axiomy statiky. Statika 1. M. Vokáč.
1. cvičení Svazek sil & tlak Miroslav Vokáč miroslav.vokac@cvut.cz ČVUT v Praze, Fakulta architektury 14. února 2018 do soustav sil Síla je vektor y tuhé těleso F & tlak působiště paprsek [0,0] α A[x A,y
VíceBO04 KOVOVÉ KONSTRUKCE I
BO04 KOVOVÉ KONSTRUKCE I PODKLADY DO CVIČENÍ Tento materiál slouží výhradně jako pomůcka do cvičení a v žádném případě objemem ani typem informací nenahrazuje náplň přednášek. Obsah VNITŘNÍ SÍLY PRÍHRADOVÉ
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková, Ph.D.
Více6. Statika rovnováha vázaného tělesa
6. Statika rovnováha vázaného tělesa 6.1 Rovnováha vázaného tělesa Těleso je vystaveno působení vnějších sil akčních, kterými mohou být osamělé síly, spojité zatížení a momenty silových dvojic. Akční síly
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 2009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing.
VíceTrojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského studi Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Trojklouový nosník Ktedr
VícePostup při výpočtu prutové konstrukce obecnou deformační metodou
Vysoké učení technické v Brně Fakulta stavební Ústav stavební mechaniky Postup při výpočtu prutové konstrukce obecnou deformační metodou Petr Frantík Obsah 1 Vytvoření modelu 2 2 Styčníkové vektory modelu
VíceBL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE
BL 04 - Vodohospodářské betonové konstrukce MONOTOVANÉ KONSTRUKCE doc. Ing. Miloš Zich, Ph.D. Ústav betonových a zděných konstrukcí VUT FAST Brno 1 TYPY MONTOVANÝCH PRUTOVÝCH SOUSTAV 1. HALOVÉ OBJEKTY
VíceZÁKLADY STAVEBNÍ MECHANIKY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ ING. JIŘÍ KYTÝR, CSc. ING. ZBYNĚK KERŠNER, CSc. ING. ROSTISLAV ZÍDEK ING. ZBYNĚK VLK ZÁKLADY STAVEBNÍ MECHANIKY MODUL BD01-MO4 STATICKY URČITÉ PRUTOVÉ KONSTRUKCE
VícePŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY
Předmět: Ročník: Vytvořil: Datum: MECHANIKA PRVNÍ ŠČERBOVÁ M. PAVELKA V. 4. ŘÍJNA 202 Název zpracovaného celku: PŘÍHRADOVÉ KONSTRUKCE PŘÍHRADOVÉ KONSTRUKCE PRUTOVÉ SOUSTAVY Příhradové konstrukce jsou sestaveny
VíceAnalýza stavebních konstrukcí
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Analýza stavebních konstrukcí Příklady Petr Konvalinka prof. Ing. Petr Konvalinka, CSc. a kolektiv 009 prof. Ing. Petr Konvalinka, CSc. Ing. Dagmar Jandeková Ing. Radoslav
VícePředpjatý beton Přednáška 4
Předpjatý beton Přednáška 4 Obsah Účinky předpětí na betonové prvky a konstrukce Staticky neurčité účinky předpětí Konkordantní kabel Lineární transformace kabelu Návrh předpětí metodou vyrovnání zatížení
VícePRUŽNOST A PLASTICITA I
Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice
VíceNáhradní ohybová tuhost nosníku
Náhradní ohybová tuhost nosníku Autoři: Doc. Ing. Jiří PODEŠVA, Ph.D., Katedra mechaniky, Fakulta strojní, VŠB - Technická univerzita Ostrava, e-mail: jiri.podesva@vsb.cz Anotace: Výpočty ocelových výztuží
VícePředpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze
4.5 eakce staticky určitých konstrukcí Úloha: posoudit statickou určitost / navrhnout podepření konstrukce jistit jakými silami jsou namáhanéčásti konstrukce, jakými silami působí konstrukce na áklady
VícePrincipy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
VícePružnost a pevnost. 2. přednáška, 10. října 2016
Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné
VíceMECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních děl
STUDIJNÍ PODPORY PRO KOMBINOVANOU FORMU STUDIA NAVAZUJÍCÍHO MAGISTERSKÉHO PROGRAMU STAVEBNÍ INŽENÝRSTVÍ -GEOTECHNIKA A PODZEMNÍ STAVITELSTVÍ MECHANIKA PODZEMNÍCH KONSTRUKCÍ Statické řešení výztuže podzemních
VíceKapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)
Kapitola 8 Vnitřní síly rovinně zakřiveného prutu V této kapitole bude na příkladech vysvětleno řešení vnitřních sil rovinně zakřivených nosníků, jejichž střednici tvoří oblouk ve tvaru kvadratické paraboly[1].
VíceStřední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191
Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky
VícePřijímací zkoušky na magisterské studium, obor M
Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní
Více1/7. Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012
Úkol č. 9 - Pružnost a pevnost A, zimní semestr 2011/2012 Úkol řešte ve skupince 2-3 studentů. Den narození zvolte dle jednoho člena skupiny. Řešení odevzdejte svému cvičícímu. Na symetrické prosté krokevní
VíceFAKULTA STAVEBNÍ. Stavební statika. Telefon: WWW:
VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ Stavební statika Vnitřní síly na nosnících Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW:
VícePrincipy navrhování stavebních konstrukcí
Pružnost a plasticita, 2.ročník bakalářského studia Principy navrhování stavebních konstrukcí Princip navrhování a posudku spolehlivosti stavebních konstrukcí Mezní stav únosnosti, pevnost stavebních materiálů
VíceVýpočet přetvoření a dimenzování pilotové skupiny
Inženýrský manuál č. 18 Aktualizace: 08/2018 Výpočet přetvoření a dimenzování pilotové skupiny Program: Soubor: Skupina pilot Demo_manual_18.gsp Cílem tohoto inženýrského manuálu je vysvětlit použití programu
VíceProgramové systémy MKP a jejich aplikace
Programové systémy MKP a jejich aplikace Programové systémy MKP Obecné Specializované (stavební) ANSYS ABAQUS NE-XX NASTRAN NEXIS. SCIA Engineer Dlubal (RFEM apod.) ATENA Akademické CALFEM ForcePAD ANSYS
VícePohybové možnosti volných hmotných objektů v rovině
REAKCE Pohyové možnosti volných hmotných ojektů v rovině Stupeň volnosti n v : možnost vykont jednu složku posunu v ose souřdného systému neo pootočení. +x volný hmotný od v rovině: n v =2 (posun v oecném
VíceFAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK
FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ DO MNSP STAVEBNÍ INŽENÝRSTVÍ PRO AKADEMICKÝ ROK 2012 2013 OBOR: REALIZACE STAVEB (R) Část A TEST A.1 MATEMATIKA 1) Při testování nulové hypotézy H 0 : střední
VíceNosné stavební konstrukce Výpočet reakcí
Stvení sttik 1.ročník klářského studi Nosné stvení konstrukce Výpočet rekcí Reálné ztížení nosných stveních konstrukcí Prut geometrický popis vnější vzy nehynost silové ztížení složky rekcí Ktedr stvení
Vícep + m = 2 s = = 12 Konstrukce je staticky určitá a protože u staticky určitých konstrukcí nedochází ke změně polohy je i tvarově určitá.
TRIN_STT_P11.doc STTIK - SOUOR PŘNÁŠK 11. Prutové soustavy, základní pojmy, metody řešení. Teoreticky je PRUTOVÁ SOUSTV definována jako soustava složená z tuhých prutů, které jsou navzájem spojeny ideálními
VíceRámové konstrukce Tlačené a rámové konstrukce Vladimír Žďára, FSV ČVUT Praha 2016
Rámové konstrukce Obsah princip působení a vlastnosti rámové konstrukce statická a tvarová řešení optimalizace tvaru rámu zachycení vodorovných sil stabilita rámu prostorová tuhost Uspořádání a prvky rámové
VíceP řed m lu va 11. P o u žitá sym b o lik a 13. I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y
5 Obsah P řed m lu va 11 P o u žitá sym b o lik a 13 I. Z á k la d y s ta v e b n í m e c h a n ik y - s ta tik y 15 1. Úvodní č á s t 17 I. I. Vědní obor mechanika..... 17 1.2. Stavební mechanika a je
VícePružnost a plasticita II CD03
Pružnost a plasticita II CD3 uděk Brdečko VUT v Brně, Fakulta stavební, Ústav stavební mechanik tel: 5447368 email: brdecko.l @ fce.vutbr.cz http://www.fce.vutbr.cz/stm/brdecko.l/html/distcz.htm Obsah
Více5. Prutové soustavy /příhradové nosníky/
PŠ a VOŠ KLDNO MECHNIK I. - TTIK. Prutové soustavy /příhradové nosníky/ - nosné konstrukce mostů, jeřábů, stožárů, střech, letadel apod. - skládají se z prutů spojených nýty, šrouby nebo svary v kloubech
VíceKonstrukční systémy vícepodlažních budov Přednáška 5 Stěnové systémy Doc. Ing. Hana Gattermayerová,CSc Obsah
Konstrukční systémy vícepodlažních budov Přednáška 5 Doc. Ing. Hana Gattermayerová,CSc gatter@fsv.cvut.cz Literatura Obsah Rojík: Konstrukční systémy vícepodlažních budov, CVUT 1979, předběžné a podrobné
VíceTéma 5 Lomený a zakřivený nosník
Stavební statika, 1.ročník bakalářského studia Téma 5 Lomený a zakřivený nosník Rovinně lomený nosník v rovinné úloze Rovinně lomený nosník v příčné úloze Prostorově lomený nosník Katedra stavební mechaniky
VíceModulová osnova. systém os, určující polohu hlavních nosných prvků
Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při
VíceSOU plynárenské Pardubice Mechanika - Statika - příhradové konstrukce
Identifikátor materiálu: ICT příhradové konstrukce Registrační číslo projektu Název projektu Název příjemce podpory název materiálu (DUM) Anotace Autor Jazyk Očekávaný výstup Klíčová slova Druh učebního
VíceModulová osnova. systém os, určující polohu hlavních nosných prvků
Modulová osnova systém os, určující polohu hlavních nosných prvků čtvercová, obdélníková, (trojúhelníková, lichoběžníková, kosodélná) pravidelná osnova - opakovatelnost dílů, detailů, automatizace při
VíceTrojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult
VíceProstorová tuhost. Nosná soustava. podsystém stabilizační. podsystém gravitační. stropy, sloupy s patkami, základy. (železobetonové), jádra
Prostorová tuhost Nosná soustava podsystém gravitační přenáší zatížení vyplývající z působení gravitačních sil stropy, sloupy s patkami, základy podsystém stabilizační ztužidla, zavětrování, rámové vazby,
VíceSMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady
SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,
VíceTémata profilové části ústní maturitní zkoušky z odborných předmětů
Střední průmyslová škola stavební, Liberec 1, Sokolovské náměstí 14, příspěvková organizace Témata profilové části ústní maturitní zkoušky z odborných předmětů Stavební konstrukce Adresa.: Střední průmyslová
VíceTENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE
1 TENKOSTĚNNÉ A SPŘAŽENÉ KONSTRUKCE Michal Jandera, K134 Obsah přednášek 2 1. Stabilita stěn, nosníky třídy 4. 2. Tenkostěnné za studena tvarované profily: Výroba, chování průřezů, chování prutů. 3. Tenkostěnné
VíceMechanismy - úvod. Aplikovaná mechanika, 8. přednáška
Mechanismy - úvod Mechanismus je soustava těles, spojených navzájem vazbami. Mechanismus slouží k přenosu sil a k transformaci pohybu. posuv rotace Mechanismy - úvod Základní pojmy. člen mechanismu rám
Víceúvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů,
Mechanismy - klasifikace, strukturální analýza, vazby Obsah přednášky : úvod do teorie mechanismů, klasifikace mechanismů vazby, typy mechanismů, Mechanismy - úvod Mechanismus je soustava těles, spojených
VícePodmínky k získání zápočtu
Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné
Více