MASARYKOVA UNIVERZITA

Rozměr: px
Začít zobrazení ze stránky:

Download "MASARYKOVA UNIVERZITA"

Transkript

1 MASAYKOVA UNIVEZITA Přírodoědeká faklta OBÁLKY PLOCH teorie příklad aplikae BAKALÁŘSKÁ PÁCE Brno 3 Aleš Prhal

2 Prohlašji že jsem na akalářské prái praoal samostatně a požití literatr edené senam s konltaemi s edoím akalářské práe prof. NDr. Ianem Kolářem DrS.

3 Osah Úod 5 Oálk ploh 6 1 Základní pojm Pojem ploh Impliitní jádření ploh Stk ploh a oálk Stk ploh a křik Stk ploh Jednoparametriká sostaa ploh Oálka jednoparametriké sosta ploh Hrana rat Příklad Doparametriká sostaa ploh Oálka doparametriké sosta ploh Příklad Literatra 1

4 Na tomto místě h htěl poděkoat sém diplomoém edoím pan prof. NDr. Ian Kolářoi DrS. Za odorné edení trpěliost a enné rad které mi ěhem práe posktoal.

5 ÚVOD Bakalářská práe je aměřena na difereniální geometrii konkrétně na oálk ploh a je rodělena do čtř kapitol. V prní kapitole jso sětlen oené pojm ploha a jádření ploh. V drhé kapitole se můžeme dočíst o stk křik a ploh stk do křiek a stk do ploh. V kapitole třetí se aýám jednoparametriko sostao ploh přesněji pak oálko jednoparametriké sosta ploh a hrano rat. Vše je pro ilstrai doplněno příklad. V poslední kapitole se ěnji doparametriké sostaě ploh dále pak oálko doparametriké sosta ploh.teoretiké ponatk jso opět aplikoán na konkrétní příklad. -5-

6 OBÁLKY PLOCH 1. ZÁKLADNÍ POJMY 1.1 POJEM PLOCHY V této kapitole deme praoat s ektoroo fnkí do proměnnýh. Nehť D je oteřená množina. Pak oraení w: D V 3 se naýá ektoroá fnke do proměnnýh. V teorii ektoroýh fnkí se definjí pariální deriae fnke w odě předpisem w w w w lim w w lim které jednodšeně načíme w w. Řekneme dále že ektoroá fnke w je tříd C r na D práě kdž má na D spojité šehn pariální deriae až do řád r četně. Definie. Množina S E 3 se naýá jednodhá ploha tříd C r jestliže eistje oteřená množina D a injektiní oraení f: D E 3 tříd C r takoé že S fd a ektor a f jso lineárně neáislé každém odě D. Zoraení f naýáme parametrikým jádřením neo parametriaí jednodhé ploh S olast D se též naýá oorem parametrů. f Definie. Množina S E 3 se naýá ploha tříd C r jestliže pro každé X S eistje takoé jeho okolí U X že U X S je jednodhá ploha tříd C r. Ploha S se naýá soislá jestliže každé da od na S le spojit jednodho křiko která elá leží na S. Příkladem soislýh ploh je například sféra paraoloid a anloid Or

7 Or IMPLICITNÍ VYJÁDŘENÍ PLOCHY Sosta ploh deme ětšino adáat impliitně proto si edeme ět o ploše adané impliitní ronií. Věta. Nehť U 3 je oteřená množina a F: U je fnke tříd C r na U takoá že množina S o ronii F je neprádná a platí F F F pro každé S. Množin S naýáme ploho tříd C r definoano impliitně.. STYK PLOCH A OBÁLKY.1 STYK PLOCHY A KŘIVKY Definie. Řekneme že křika C a ploha S mají e společném odě p C S stk k-tého řád jestliže na S eistje takoá křika k-tého řád or.. C že p C a křik C a C mají odě p stk -7-

8 Or. Definie. Připomeňme že dě křik C a C mají e společném odě p C C stk řád k jestliže eistjí takoé jejih lokální parametriae f t a f t na společném interal I že platí f t f t p a i i f t f t i i t t i k.. STYK PLOCH Definie. Řekneme že ploha S má s ploho S odě p S S stk k-tého řád jestliže každá křika na S má odě p stk k-tého řád s ploho S. Nní edeme praktiké kritérim pro oěření stk do ploh. Věta. Nehť ploha S je dána ronií F a S má parametriai ff 1 f f 3 a nehť p f je společný od S a S. Sestrojme fnki ΨFf 1 f f 3. Pak ploha S má s ploho S odě p stk k-tého řád práě kdž i Ψ i1 i i k i 1 i i. Definie. oin τ která má s ploho S stk 1. řád odě f naýáme tečno roino ploh S odě f. -8-

9 Věta. Ploh S a S mají e společném odě p stk 1. řád práě kdž jejih tečné roin τ p S τ p S kde τ p S respektie τ p S načí tečno roin ploh S respektie S odě p or. 3. Or JEDNOPAAMETICKÁ SOUSTAVA PLOCH Uažjme jednoparametriko sosta S t ploh dano impliitní ronií Ft 1 kde F je tříd C r 3 t. Společné od ploh S t a S t pro t t jso rčen sostao roni Ft Ft která je ekialentní sostaě F t F t Ft. t t F V limitě pro t t ískáme drhé ronie pariální deriae t F Ft t. t 3 Definie. Množin rčeno pro pené t roniemi 3 naýáme harakteristiko na ploše S t. Sjednoení těhto množin pro každé t naýáme harakteristiko množino sosta S t. -9-

10 3.1 OBÁLKA JEDNOPAAMETICKÉ SOUSTAVY PLOCH Definie. Ploh ε s parametriaí ft τ t τ D naýáme oálko sosta S t jestliže ε se dotýká každé ploh S t podél křik ft τ. Věta. Každá oálka sosta S t je podmnožino její harakteristiké množin. Ted množina šeh odů oálk je řešením sosta 3. Ponámka. Při hledání oálk se ted e sosta roni 3 snažíme ločit parametr t. Pokd takto dostaneme ronii G která je impliitním jádřením nějaké ploh tak je tato ploha hledano oálko. 3. HANA VATU Charakteristiko množino na ploše S t je oená křika která je rčená roniemi 3 a ted oálk jednoparametriké sosta ploh toří jednoparametriká sostaa harakteristikýh křiek. Tato sostaa prostoroýh křiek má oeně také so oálk. Definie. Množin π o roniíh F t F t t F t t 4 naýáme hrano rat sosta S t. Křik π naýáme hrano rat protože šehn normáloé ře odeh této křik mají od rat. Hrana rat je ted množino singlárníh odů na plošeε a je třea ji této ploh pstit. Další ýnam této křik de eden příkladeh kde si kážeme že oálk této sosta le počíst jako ploh tečen hran rat Příklad

11 3.3 PŘÍKLADY V této kapitole si kážeme že oálka jednoparametriké sosta roin se naýá rointelná ploha. ointelnými plohami jso oeně práě tto ploh: áloá ploha kželoá plohaploha tečen prostoroé křik neo ploha která je částí jmenoanýh ploh a ploha která se skládá ýše jmenoanýh ploh. Uedené trení platí s poorněním že edené ploh moho osahoat singlární od. Ploh tečen prostoroé křik C dané parametrik gt le apsat e tar f t g t g t. 5 PŘÍKLAD 1. Dokažte že oálko jednoparametriké sosta roin je ploha tečen její hran rat. Řešení: Mějme dán jednoparametriko sosta roin S t Ft atttdt kde t I. Onačme normáloý ektor nt attt a od W[] lioolné roin sosta. Pak můžeme sosta S t psát e tar V sostaě roni t n t W d t F. t n t W d t F i F t t F t t n t W d t n t W d t rčjí ronie i a ii oálk a ronie i ii a iii hran rat. Jso-li nt n t n t lineárně neáislé pro šehna t I má sostaa roni i ii a iii řešení a dostááme hran rat ktero si onačíme gt. Nní od hran rat dosadíme do roni i a ii a derijeme je n tgt ntg t d t n tgt n tg t d t. ii iii -11-

12 Z ii respektie iii ošem plne že n tgt d t respektie n tgt d t a ted ntg t n tg t. Pro pené t je g t oeným řešením homogenní sosta roni i a ii a protože gt je řešením nehomogenní sosta i a ii dostááme přímk ft gt g t která je tečno hran rat a ároeň harakteristiko množino roin S to. Množina šeh tečen hran rat ft gt g t dáá oálk ož jsme htěli dokáat. Řešením i a ii je přímka podél které se roina S to dotýká oálk. Z toho plne že oálka msí ýt rointelno ploho. V případě že jso ektor nt n t n t lineárně áislé sostaa S t hran rat nemá a oeně se jedná o oený ále neo oený kžel. PŘÍKLAD. Najděte hran rat a oálk sosta roin adano ronií sin α osα α kde je konstanta a α parametr. Řešení: Nejdříe počteme hran rat a oálk rčíme pomoí ore 5 ted fα gα g α. Podle 4 napíšeme sosta roni e tar F α sinα osα α i F α osα sinα ii α F α sinα osα iii α Pokd sečteme ronie i a iii dostááme α ož dosadíme do i a počítáme sosta roni sin α osα / os α sinα / sin α sinα osα os α os α sinα osα sin α osα sinα. -1-

13 Máme ted parametriké jádření hran rat g α osα sinα α. Nní počteme g α sinα osα a dosaením do ore 5 dostaneme jádření oálk f α osα sinα sinα osα α Or. 4. Or. 4 PŘÍKLAD 3. Určete hran rat a oálk jednoparametriké sosta roin t t t 3. Řešení: Napíšeme sosta 4 e tar F t t t t 3 i F t t t 3t ii F t 6t. iii t Z ronie iii jádříme 3t a dosadíme to do ii odkd ískááme 6t 3t ož jednodšíme a dostááme 3t. Tento ýsledek dosadíme do ronie i a tím ískáme t 3. Hrano rat je ted křika 3 f t 33 t t t. Pokd od hran rat dosadíme do roni i a ii derijeme je a deme pokračoat podoně jako příkladě 1jistíme že oálko je ploha tečen hran rat. -13-

14 PŘÍKLAD 4. Vpočtěte oálk jednoparametriké sosta sfér adano ronií t t. Řešení: Napíšeme sosta 3 e tar t t t F t t t t F Z drhé ronie jádříme t a dosaením do prní ronie dostááme ož je ronie kžele Or. 5. Or. 5 PŘÍKLAD 5. Najděte oálk jednoparametriké sosta sfér dané ronií ] [ ] [ kde je konstanta a platí podmínka. Řešení: Napíšeme sosta 3 e tar ] [ ] [ F ] [ ] [ F -14-

15 Drho ronii praíme na tar [ ]. V příklad máme nní da případ: a Dosaením do prní ronie dostááme [ ] [ ] čehož dostááme dojii álů a Or. 6. Or. 6 t ale a podmínk dostaneme prádno množin. PŘÍKLAD 6. Najděte oálk jednoparametriké sosta roin adano ronií t t. Řešení: Napíšeme sosta 3 e tar F t t t F t t. t Z drhé ronie jádříme t a dosaením do prní ronie dostááme ož je ronie paraolikého ále Or

16 Or. 7 PŘÍKLAD 7. Vpočtěte ronii oálk jednoparametriké sosta ϕ kloýh ploh jejihž poloměr jso ron čísl r a jejihž množina šeh středů je oso. Řešení: Jednoparametriká sostaa ϕ je popsána ronií Napíšeme ted sosta 3 e tar Z drhé ronie jádříme α r α. F r α α F α α α α a dosaením do prní ronie dostááme r ož je ronie hledané oálk. Toto oálko je áloá rotační ploha o ose a poloměr r. 4. DVOUPAAMETICKÁ SOUSTAVA PLOCH Předpokládejme že každá ploha sosta je pro dano dojii parametrů adaná ronií F

17 Ploh o ronii F deme načit smolem a elo sosta 6 smolem S. Společné od ploh S pro a jso rčen sostao tří roni S S S F F F která je ekialentní sostaě F F F F F. V limitě pro dostaneme F F F. 7 Definie. Bod E 3 rčené roniemi 7 naýáme harakteristikými od na ploše. Množin šeh těhto odů pro šehna naýáme S harakteristiko množino sosta S. onie harakteristiké množin ted ískáme ločením parametrů OBÁLKA DVOUPAAMETICKÉ SOUSTAVY PLOCH Definie. Ploh ε s parametriaí f D naýáme oálko sosta 6 jestliže ε se odě f dotýká ploh pro šehna D. S Věta. Každá oálka sosta S je podmnožino její harakteristiké množin. Naopak je-li f takoá ploha že f splňje 7 pro každé tak f je oálko sosta S. -17-

18 Praktiký postp hledání oálk je takoý že se e sosta 7 snažíme ločit parametr tak ahom dostali jedino ronii G. Pokd je tato ronie impliitním jádřením nějaké ploh tak se jedná o hledano oálk. Neo spočteme jako fnke a dostááme parametriké jádření oálk. 4. PŘÍKLADY Příklad 8. Vpočtěte oálk sosta kloýh ploh dano ronií F. Řešení: Napíšeme sosta 7 e tar F F. F Z drhé a třetí ronie jádříme a a dosaením do prní ronie dostááme ronii kželoé ploh která je impliitním jádřením hledané oálk. Příklad 9. Naleněte oálk doparametriké sosta elipsoidů 1 a kde a> > > takoýh že platí ak k-konstanta. Řešení: Nejdříe jádříme a k a můžeme psát sosta 7 e tar 1 k a a a F i 3 k a a a a F ii -18-

19 F a 3 a k iii onie ii a iii praíme na tar a a k a dosaením do i dostááme Z ii a iii ted plýá a k a 3 k 1. i a 3 3. Ted a ± 3 ± 3 k ± a 3 je parametriké jádření hledané oálk. Její ronii dostaneme násoením i a e tar k 7. PŘÍKLAD 1. Najděte harakteristiko množin doparametriké sosta sfér jejihž střed a poloměr jso fnkí parametrů. Řešení: Ted ss jso střed a rr poloměr sfér. A lioolný od W[] ležel na dané sféře msí platit W s W s r. -19-

20 Nní můžeme napsat sosta 7 e tar F W s W s r F s r W s r F s r W s r i ii iii Je-li s s tj. střed opisjí ploh pro pené dají ronie ii a iii ronii přímk která je kolmá k tečné roině ploh středů. Tato přímka protíná sfér i ď e do odeh neo jednom odě neo je průnik prádný. V případě že s s se jedná o singlární případ který pro oálk nepočítáme. --

21 Literatra [1] Bdinský B. Analtiká a difereniální geometrie. Praha: SNTL [] Bdinský B. Kepr B. Základ difereniální geometrie s tehnikými aplikaemi. Praha: SNTL 197. [3] Breš J. Hrčík K. Difereniální geometrie křiek a ploh skriptm UK Praha [4] Dopoe M. Difereniální geometrie a tenoroý počet. Brno: VUT Brně [5] Fedenko A.S. a kol. Sornik adač po differenial noj geometrii. Moska: Naka [6] Kolář I. Difereniální geometrie přednáška e školním roe 1/ na PřF MU Brno. -1-

3.3. Operace s vektory. Definice

3.3. Operace s vektory. Definice Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod.

= 1, (2.3) b 2 + z2. c2 se nazývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme z rovnice (2.3), neobsahuje žádný reálný bod. .. HYPERBOLOIDY 71 Kvadratiká ploha, jejíž rovnie je a + b + = 1,.3 se naývá imaginární elipsoid. Jedná se o regulární kvadriku, která, jak vidíme rovnie.3, neobsahuje žádný reálný bod.. Hperboloid Hperboloid

Více

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

7.3.7 Přímková smršť. Předpoklady: 7306

7.3.7 Přímková smršť. Předpoklady: 7306 737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni

Více

Využití spočívá v možnosti určit velikost jedné ze stran pravoúhlého trojúhelníku ze znalosti velikosti zbývajících dvou stran.

Využití spočívá v možnosti určit velikost jedné ze stran pravoúhlého trojúhelníku ze znalosti velikosti zbývajících dvou stran. Pthgoro ět Pltí pro proúhlý trojúhelník. Znění: Osh čtere nd přepono proúhlého trojúhelník je roen sočt osh čterů nd oěm oděsnmi. Vžití spočíá možnosti rčit elikost jedné e strn proúhlého trojúhelník e

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

1.6 Singulární kvadriky

1.6 Singulární kvadriky 22 KAPITOLA 1. KVADRIKY JAKO PLOCHY 2. STUPNĚ neboť B = C =. Z rovnice (1.34) plne, že přímka, procháející singulárním bodem kvadrik má s kvadrikou společný poue tento singulární bod (je-li A ) nebo celá

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ PRUŽNOST A PEVNOST I Řešené příklad Výpočet osových kvadratických momentů Pátek, 9. května 8 Jan Tihlařík 1 Osové kvadratické moment průřeů

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

12. SEMINÁŘ Z MECHANIKY

12. SEMINÁŘ Z MECHANIKY - 79 - SEMINÁŘ Z MECHANIKY O jaký úel se odcýlí od odoroné roin ladina kapalin cisternoém oze, který brzdí se zpomalením 5 m s? d s a = a dm Pro jejic ýslednici platí α d d s d d = d + d = a dm s t a 5

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou

{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(

Více

Relativita I příklady

Relativita I příklady quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami atmosfér

Více

x 2(A), x y (A) y x (A), 2 f

x 2(A), x y (A) y x (A), 2 f II.10. Etrém funkcí Věta (nutná podmínka pro lokální etrém). Necht funkce f(, ) je diferencovatelná v bodě A. Má-li funkce f v bodě A lokální etrém, pak gradf(a) = 0. Onačme hlavní minor matice druhých

Více

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. U. 4. Goniometrie Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti. 4.. Orientovaný úhel a jeho velikost. Orientovaným úhlem v rovině rozumíme uspořádanou dvojici polopřímek

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál.

Řešení : Těleso T je elementárním oborem integrace vzhledem k rovině (x,y) a proto lze přímo aplikovat Fubiniovu větu pro trojný integrál. E. rožíková, M. Kittlerová, F. Mrá: Sbírka příkladů Matematik II (6 III.6. Aplikace trojných integrálů Příklad 6. Užitím vorce pro výpočet objemu tělesa pomocí trojného integrálu (tj.v ddd ukažte, že objem

Více

Další plochy technické praxe

Další plochy technické praxe Další plochy technické praxe Dosud studované plochy mají široké využití jak ve stavební tak ve strojnické praxi. Studovali jsme možnosti jejich konstrukcí, vlastností i využití v praxi. Kromě těchto ploch

Více

Relativita I příklady

Relativita I příklady quation Chapter 1 ection 1 Relatiita I příklad 1 Mion Zadání: Doba žiota mionu (těžkého elektronu) je Δτ = 10 6 s Mion nikl e ýšce h = 30 km nad porchem Země interakcí kosmického áření s horními rstami

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

DUM č. 14 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 14 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla rojek GML Brno Docen DUM č. 4 dě M- Přír k mriě PZ geomerie, nlická geomerie, nlý, komlení číl 4. or Mgd Krejčoá Dm.08.0 očník mriní ročník noce DUM nlická geomerie roor - d úloh ýledk. Meriál jo rčen

Více

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka

Definice : 1 Bod A Ω En se naývá vnitřní bod oboru Ω, kdž eistuje okolí U A, které celé patří do oboru Ω Bod B se naývá hraniční bod oboru Ω, kdž v ka 1 Diferenciální počet funkcí dvou proměnných 1 Výnačné bod a množin bodů v prostoru Souřadnicová soustava v prostoru Každému bodu v prostoru přiřaujeme v kartéské souřadnicové soustavě uspořádanou trojici

Více

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)

+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u) Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené

Více

OBECNOSTI KONVERGENCE V R N

OBECNOSTI KONVERGENCE V R N FUNKCE VÍCE PROMĚNNÝCH V reálných situacích závisejí děje obvykle na více proměnných než jen na jedné (např. na teplotě i na tlaku), závislost na jedné proměnné je spíše výjimkou. OBECNOSTI Reálná funkce

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky

Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Příklady k analytické geometrii kružnice a vzájemná poloha kružnice a přímky Př. 1: Určete rovnice všech kružnic, které procházejí bodem A = * 6; 9+, mají střed na přímce p: x + 3y 18 = 0 a jejich poloměr

Více

7.2.3 Násobení vektoru číslem I

7.2.3 Násobení vektoru číslem I 7..3 Násobení ektor číslem I Předpoklad: 70 Př. : Zakresli do sosta sořadnic alespoň dě různá místění ektorů: = 3; = 3;0 = ; a) ( ) ( ) c) ( ) - - - x - Pedagogická poznámka: Předchozí příklad není zbtečný.

Více

Popis jednotlivých kvadrik

Popis jednotlivých kvadrik Kapitola Popis jednotlivých kvadrik V této kapitole se budeme abývat některými kvadrikami podrobněji. Nejprve budeme uvažovat elipsoid a hperboloid, které patří do skupin regulárních středových kvadrik.

Více

1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište

1 4( 1) Co je řešením rovnice 2y 1 = 3? Co je řešením, pokud přidáme rovnici x + y = 3? Napište Řešená cvičení lineární algebr I Karel Král 10. října 2017 Tento tet není určen k šíření. Všechn chb v tomto tetu jsou samořejmě áměrné. Reportujte je prosím na adresu kralka@iuuk.mff.cuni... Obsah 1 Cviceni

Více

PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK

PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK PODOBNÁ ZOBRÁZENÍ Kždá stejnolehlost je podonost ne oráeně! Podonost má vždy koefiient podonosti kldný znčíme jej k k >0 k R zhovává rovnoěžnost podonost shodnost nevlstní podonost úhly poměry Dělíme ji

Více

4.4.3 Další trigonometrické věty

4.4.3 Další trigonometrické věty 443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

Diferenciální rovnice 1

Diferenciální rovnice 1 Diferenciální rovnice 7 OBYČEJNÉ DIFERENCIÁLNÍ ROVNICE Diferenciální rovnice jsou velmi důležitou částí matematické analý protože umožňují řešit mimo jiné celou řadu úloh fik a technické prae Při řešení

Více

Matematika 1 pro PEF PaE

Matematika 1 pro PEF PaE Tečny a tečné roviny 1 / 16 Matematika 1 pro PEF PaE 7. Tečny a tečné roviny Přemysl Jedlička Katedra matematiky, TF ČZU Tečny a tečné roviny Tečny a normály grafů funkcí jedné proměnné / 16 Tečny a normály

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

Parametrická rovnice přímky v rovině

Parametrická rovnice přímky v rovině Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou

Více

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH

6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Přijímací zkouška na MFF UK v Praze

Přijímací zkouška na MFF UK v Praze Přijímací kouška na MFF UK v Prae Studijní program Matematika, bakalářské studium Studijní program Informatika, bakalářské studium 2013, varianta A U každé deseti úloh je nabíeno pět odpovědí: a, b, c,

Více

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály

Plynové turbíny. Nevýhody plynových turbín: - menší mezní výkony ve srovnání s parní turbínou - vyšší nároky na palivo - kvalitnější materiály Plynoé turbíny Plynoá turbína je teeý stroj řeměňujíí teeou energie obsaženou raoní láte q roházejíí motorem na energii mehanikou a t (obr.). Praoní látkou je zduh, resektie saliny, které se ytářejí teeém

Více

Analytická geometrie v E 3 - kvadriky

Analytická geometrie v E 3 - kvadriky Analtická geometrie v E 3 - kvadrik ROVNICE KVADRIKY ( v ákladní a posunuté poloe) Kvadrik v ákladní poloe - střed nebo vrchol leží v počátku ( vi příloha na konci) Posunutí v rovnici nahradíme všechn

Více

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3,

Analytická geometrie přímky, roviny (opakování středoškolské látky) = 0. Napište obecnou rovnici. 8. Jsou dány body A [ 2,3, Analytická geometrie přímky roviny opakování středoškolské látk Jsou dány body A [ ] B [ 5] a C [ 6] a) přímky AB b) osy úsečky AB c) přímky na které leží výška vc trojúhelníka ABC d) přímky na které leží

Více

2. přednáška 8. října 2007

2. přednáška 8. října 2007 2. přednáška 8. října 2007 Konvergence v metrických prostorech. Posloupnost bodů (a n ) M v metrickém prostoru (M, d) konverguje (je konvergentní), když v M existuje takový bod a, že lim n d(a n, a) =

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

4.2. Graf funkce více proměnných

4.2. Graf funkce více proměnných V této kapitole se soustředíme na funkce dvou proměnných. Poue v tomto případě jsme schopni graf funkcí dvou proměnných obrait. Pro funkce tří a více proměnných trácí grafické vjádření smsl. Výklad Definice

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205

( ) ( ) Pythagorova věta, Euklidovy věty II. γ = 90, je-li dáno: c = 10, c = 6. Předpoklady: 3205 3..6 Pythgoro ět, Euklidoy ěty II Předpokldy: 305 V kždém proúhlém trojúhelníku s oděsnmi, přeponou pltí: =, =, =, kde je ýšk n přeponu, jsou úseky přepony přilehlé ke strnám,. Kždou z předhozíh ět je

Více

Základní topologické pojmy:

Základní topologické pojmy: Křivky Marie Ennemond Camille Jordan (88 9): Křivka je množina bodů, která je surjektivním obrazem nějakého intervalu Giuseppe Peano (858 9): Zobrazení intervalu na čtverec Wacław Franciszek Sierpiński

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce

14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce . Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0 Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

ů č š š ě Ť Ú Š č š ů šš ú ě š ď č žň š ů ú ů Ž ž Ť ů š ěžš č žň Ž Š č ď č š ě ž ě č č č š ě č ě š ě ě ž č š ů č Ž ů ě Ž ě č ů š ě č ž š ů ů Ž ěž č ě Ž š š č č č š č č ž č Ú žň š š ž č žň š Š ě č ž ě č

Více

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z.

II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z. II.7.* Derivace složené funkce Necht jsou dán diferencovatelné funkce z = f(,), = (u,v), = (u,v). Pak u = u + u, v = v + v. Vpočítejte derivace daných diferencovatelných funkcí. Příklad 0. Jsou dán diferencovatelné

Více

Speciální teorie relativity IF relativistická kinematika

Speciální teorie relativity IF relativistická kinematika Prinip relatiity Speiální teorie relatiity IF relatiistiká kinematika Newtonoy pohyboé zákony umožňují popis hoání těles pohybujííh se nízkými ryhlostmi Při ryhlosteh, kterýh dosahují částie uryhloačíh,

Více

Soustavy rovnic obsahující kvadratickou rovnici II

Soustavy rovnic obsahující kvadratickou rovnici II .7. Soustavy rovnic obsahující kvadratickou rovnici II Předpoklady: 70 Soustavy s kvadratickou rovnicí se často vyskytují v analytické geometrii (náplň druhého pololetí třetího ročníku). Typický příklad

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný.

= b a. V případě, že funkce f(x) je v intervalu <a,b> záporná, je integrál rovněž záporný. 5. přednášk APLIKAE URČITÉHO INTERÁLU Pomocí integálního počtu je možné vpočítt osh ovinných útvů ojem otčních těles délk ovinných křivek. Velké upltnění má učitý integál tké ve zice chemii. eometické

Více

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost:

Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá. z ] leží na kulové ploše, právě když platí = r. Dosadíme vzorec pro vzdálenost: 753 Kulová plocha Předpoklady: 750 Pedagogická poznámka: Celý obsah se za hodinu stihnout nedá Kulová plocha = kružnice v prostoru Př : Vyslov definici kulové plochy Kulová plocha je množina všech bodů

Více

Teorie. Hinty. kunck6am

Teorie. Hinty.   kunck6am kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže

Více

8.1. Separovatelné rovnice

8.1. Separovatelné rovnice 8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina

Více

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem

Šroubovice... 5 Šroubové plochy Stanovte paprsek tak, aby procházel bodem A a po odrazu na rovině ρ procházel bodem Geometrie Mongeovo promítání................................ 1 Řezy těles a jejich průniky s přímkou v pravoúhlé axonometrii......... 3 Kuželosečky..................................... 4 Šroubovice......................................

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

Analytická geometrie v rovině

Analytická geometrie v rovině nltická geometrie roině Zč je toho loket (ořnice) ) [ ], [ 7], [ ], [ 5] ; b) = 7 j, = j, = 4 j, = 8 j, = j R M P 9 8 7 6 5 4 ) L[ 7], M[ ] ; b) Q[ ], R[ 5] 9 8 7 6 5 4 4 5 6 7 [ 5], [, 5], [ ] Q 9 5 c),

Více

Proč (a jak) učit lineární algebru na technických školách. Zdeněk Dostál

Proč (a jak) učit lineární algebru na technických školách. Zdeněk Dostál Nadpis Proč a jak čit lineární alger na technických školách Zdeněk Dostál Katedra aplikoané matematiky 470 FE VŠB-U Ostraa Projekt MLeden 00 Osnoa Náze prezentace Motiace a cíl přednášky Přehled základních

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}.

Takže platí : x > 0 : x y 1 x = x+1 y x+1 x < 0 : x y 1 x = x+1 y x+1 D 1 = {[x,y] E 2 : x < 0, x+1 y 1 x}, D 2 = {[x,y] E 2 : x > 0, 1 x y x+1}. E. Brožíková, M. Kittlerová, F. Mráz: Sbírka příkladů z Matematik II (206 II. Diferenciální počet funkcí více proměnných II.. Definiční obor funkce z = f(, Určete definiční obor funkcí a zakreslete jej

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

Určete a graficky znázorněte definiční obor funkce

Určete a graficky znázorněte definiční obor funkce Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro

Více

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim.

PRIMITIVNÍ FUNKCE. Primitivní funkce primitivní funkce. geometrický popis integrály 1 integrály 2 spojité funkce konstrukce prim. PRIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Rovinná a prostorová napjatost

Rovinná a prostorová napjatost Rovinná a prostorová napjatost Vdělme v bodě tělesa elementární hranolek o hranách d, d, d Vnitřní síl ve stěnách hranolku se projeví jako napětí na příslušné ploše a le je roložit do směrů souřadnicových

Více

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li

Více

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha.

Klíčová slova Mongeovo promítání, kuželosečka, rotační plocha. Abstrakt Tento text je určen všem zájemcům z řad široké veřejnosti, především jako studijní materiál pro studenty Konstruktivní a počítačové geometrie. Práce pojednává o rotačních kvadratických plochách,

Více

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod,

Definice Tečna paraboly je přímka, která má s parabolou jediný společný bod, 5.4 Parabola Parabola je křivka, která vznikne řezem rotační kuželové plochy rovinou, jestliže odchylka roviny řezu od osy kuželové plochy je stejná jako odchylka povrchových přímek plochy a rovina řezu

Více

Diferenciáln. lní geometrie ploch

Diferenciáln. lní geometrie ploch Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní

Více

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho

půdorysu; pro každý bod X v prostoru je tedy sestrojen pouze jeho nárys X 2 a pro jeho Řešené úlohy Rotační paraboloid v kolmém promítání na nárysnu Příklad: V kolmém promítání na nárysnu sestrojte tečnou rovinu τ v bodě A rotačního paraboloidu, který má ohnisko F a svislou osu o, F o, rotace;

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE

PRIMITIVNÍ FUNKCE DEFINICE A MOTIVACE PIMITIVNÍ FUNKCE V předchozích částech byly zkoumány derivace funkcí a hlavním tématem byly funkce, které derivace mají. V této kapitole se budou zkoumat funkce, které naopak jsou derivacemi jiných funkcí

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit.

, p = c + jω nejsou zde uvedeny všechny vlastnosti viz lit. Statiké a dynamiké harakteristiky Úvod : Základy Laplaeovy transformae dále LT: viz lit. hlavní užití: - převádí difereniální rovnie na algebraiké (nehomogenní s konstantními koefiienty - usnadňuje řešení

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více