12. SEMINÁŘ Z MECHANIKY

Rozměr: px
Začít zobrazení ze stránky:

Download "12. SEMINÁŘ Z MECHANIKY"

Transkript

1 SEMINÁŘ Z MECHANIKY O jaký úel se odcýlí od odoroné roin ladina kapalin cisternoém oze, který brzdí se zpomalením 5 m s? d s a = a dm Pro jejic ýslednici platí α d d s d d = d + d = a dm s t a 5 m s = ; α=? olná ladina kapalin je každém sém bodě kolmá k ýslednici sil, které daném bodě na kapalin působí našem případě na element dm kapalin každém bodě olné ladin působí síla tíoá d = dm, a setračná síla a α=, d t d = α ; s α = 7 Na plno koli e zdc působí tíoá síla o elikosti 90 N Na ttéž koli ponořeno e odě působí ýsledná síla o elikosti 40 N Hstota od je 0 k m Jaký je objem kole? Jaká je stota látk z níž je kole robena? Jaký objem b msela mít dtina koli, ab se e odě znášela? = 90 N; = 40 N; = 0 k m,, =? ýsledná síla působící na ponořeno koli je ýslednicí tíoé síl a drostatické ztlakoé síl Platí ted = + = ; = =, 5 0 = m Hstot látk, z níž je kole zotoena, rčíme z jejío objem a tíoé síl = = =, = 7,8 k m Objem dtin koli získáme z podmínk znášení kole e odě střední stota kole s dtino msí být rona stotě od - motnost kole s dtino msí ted být rona motnosti jí tlačené od při plném ponoření = =, = 4, 4 0 m oda prodí trbicí nestejnéo průřez Jaký je její objemoý tok, jestliže místec s průřez S = 0 cm, resp S = 0 cm místěné manometrické trbice kazjí rozdíl ladin = 0 cm? nitřní tření prodící od zanedbááme

2 S ; S = 0 ; = 0 m m = 0 m Q =? Pro rozdíl statickýc tlaků rozšířené a zúžené části trbice platí p p = S S Z BERNOULLIHO ronice sočasně dostááme p p = ), takže ( ( ) = = S Z ronice kontinit obdržíme S= S = Dosadíme-li tento ýraz do S předcozío zta, dostaneme S = S = S S S S S = S SS Q = S = S S, S S Q =, 0 m s 4 oda prodí trbicí nestejnéo průřez nejširší části trbice má rclost 5 4 = 0, 50 m s a tlak p = 5, 0 Pa žší části má tlak p =, 04 0 Pa Jako má oda rclost této žší části, zanedbááme-li nitřní tření? = 0 k m ; 0,50 m s 5 4 = ; p =,5 0 Pa ; p =,04 0 Pa ; =? Protože není edeno jinak, bdeme předpokládat, že trbice je odoroná Z BERNOULLIHO ronice dostááme p+ = p + p+ = p + ( ) p p = + 5 Na odoroném stole je nádoba, jejíž sislé stěně je několik otorů jeden nad drým Nádoba je naplněna kapalino Dokažte, že kapalina trskající z otorů dopadá na stůl rclostmi o téže elikosti stůl z ýšk je = Uažjme otor e ýšce < stěn nádob Hdrostatický tlak úroni p= otor je Pro ýtokoo rclost kapalin 0 z otor e ýšce (odorono složk rclosti odoronéo r) ted platí = ( ) 0 elikost sislé složk rclosti odoronéo r kapalin při dopad na

3 - 8 - elikost ýsledné rclosti kapalin při dopad na stůl je ted = + 0 = + = Z ýsledk je patrné, že elikost dopadoé rclosti kapalin na stůl nezáisí na poloze otor, z něož kapalina téká je ted stejná pro ýtok liboolným otorem e stěně nádob 6 e dně nádob je malý otor, kterým téká oda olná ladina od nádobě je 0 cm nade dnem Jako rclostí téká oda těcto případec? a) Nádoba je klid b) Nádoba se pobje ronoměrně zůr c) Nádoba se pobje zůr se zrclením 0 cm s d) Nádoba padá olným pádem = 0 ; = konst ; a, =, m s a, ; a, = ; =? a), b) Na od působí klidné nádobě poze objemoá síla a lobce pod olno ladino způsobje drostatický tlak p = oda téká obo případec rclostí = c) Na element od působí tomto případě kromě tíoé síl ještě (objemoá) setračná síla ds = a,d ( ds ) lobce pod olno ladino oláá proto sočasné působení těcto do objemoýc sil drostatický tlak ( ) = ( + a, ) p = + a, d) Na element od působí tomto případě kromě tíoé síl ještě (objemoá) setračná síla ds = a,d ( ds ) lobce pod olno ladino oláá proto sočasné působení těcto do objemoýc sil drostatický tlak p = a = = = 0, 0 7 Jaký tar má olná ladina kapalin nádobě tar álce, která se otáčí kolem sislé os úloo rclostí ω? () ω α d d o d 0 () t ω; ; = ( ) =? Na element kapalin o motnosti dm nacázející se na olné ladině působí při rotaci nádob tíoá síla d o elikosti d = dm a setračná odstřediá síla d o o elikosti do = ω dm; je zdálenost element od os otáčení, ω elikost úloé rclosti rotace nádob (kolem os o 0 ) ýsledná síla působící na ažoaný element dm kapalin je pak d = d + d o Hodnota fnkce tanens úl, síranéo α

4 - 8 - nezáporno sořadnicoo polooso 0 a tečno ke raf fnkce odnotě prní deriace d d fnkce = bodě a ted d o d d t ω ω = α= = d = d d d d Interací této ronice (leo zledem k, prao zledem k ) dostááme ω = + 0 =, je rona Interací získaná fnkce je ronicí parabol s rcolem bodě [ 0; 0], jejíž osa je totožná s oso otáčení nádob s kapalino Přeneseme-li náš problém do trojrozměrnéo prostor, můžeme říci, že olná ladina kapalin rotjící nádobě má tar rotačnío paraboloid každém jejím bodě je tato kadratická ploca (olná ladina kapalin) kolmá na ýsledno síl d = d + d o 8 Z kolika motnostníc procent mědi ( C = 8 8 cm ) ( = 7 cm ), a cín Sn, se skládá bronzoá krcle má-li na zdc tí 6, kn a e odě 5, 54 kn C = 8,8 cm ; Sn = 7, cm,, = 5,54 kn,, = 6,0 kn ; %( m) C,Sn =? Z rozdíl tí na zdc a e odě rčíme elikost drostatické ztlakoé síl z ní objem tělesa,,,, = = HO = Dále platí: HO + = + = C Sn C C Sn Sn, a Z této sosta ronic dostááme = ( ) = + = Sn C C C C Sn, ( ) C, Sn C Sn Hmotnostní procentální zastopení mědi je pak Sn C =, (,, ) ( C Sn ) HO %( m) C 0 C C =, C Sn % C = m, (,, ) 0, ( C Sn ) HO 9 O kolik procent séo objem se noří ze rtti železná kole, nalije-li se na rtť tolik od, ab celá kole bla pod ní Hstota železa je e = 7,8 cm, stota rtti je H =,6 cm, stota od HO= cm e = 7,8 cm ; H =,6 cm ; HO cm ; % =? =

5 - 8 - Tía kole na zdc je = e Plae-li kole e rtti, je elikost tí kole rona elikosti drostatické ztlakoé síl = H, kde je objem do rtti ponořené části kole Platí ted e = e = H = Nalijeme-li na rtť od tak, ab celá kole bla ponořena [částí o objem ( < ) do H rtti, částí o objem do od], je ýsledná drostatická ztlakoá síla sočtem do složek drostatické ztlakoé síl H rtti a drostatické ztlakoé síl od HO Platí ted = + + = e H HO e HO = e = H + ( ) HO = Hledano odnot objem, o nějž se kole zalita odo noří ze rtti procentec (séo celkoéo objem) rčíme jako 0 e e HO = = 0 (% ) H H HO 0 nádobě je oda s ladino e ýšce = 0 cm Jak soko nade dnem msí být otor, ab z něj oda trskala nejdále na odorono roin, která je úroni dna? = 0 cm ; =? ma Element kapalin opstiší otor e stěně nádob se dále pobje odoroným rem 0 zdálenost dopad je maimální (etrémní), kdž H HO počáteční rclostí = ( ) Okamžik dopad element kapalin na odorono roin úroni dna nádob rčíme z podmínk = t = 0 jako t = zdálenost dopad element kapalin je ted = t = ( ) ( ) ( ) = d + = 0 = = 0 d =

6 e sislé stěně álcoé nádob jso nad sebo da otor e ýškác a nad jejím dnem jaké ýšce msí být držoána olná ladina kapalin nádobě, ab prod kapalin z obo otorů dopadal do téož místa odoronéo stol, na němž nádoba stojí? ; ; =? Pro rclosti kapalin tékající z otorů platí: a ted = = ( ) = t 0 0, = ( ) = t ; = t = 0 = ( ), a ted t = = t 0 = t ; Určíme nní (různé) okamžik ( t D,, t D, dopad těcto odoronýc rů na odorono roin níž leží dno nádob 0 Pro zdálenosti dopad ( d, d ) pak platí ) = = td, = ; td, = d = ( td,) = ( ) d = ( td) = ( ) d 4 ( ) =, 4 ( ) d = Podmínka dopad na stejné místo znamená, že d = d a ted 4 = 4 = = = = + Jaký tar msí mít osoě smetrická nádoba, ab při ýtok od otorem jejím dně blo klesání ladin nádobě ronoměrné? 4 rotační ploca s meridiánoo křiko = k Ueďme nejdříe, že naším úkolem je nalezení analtickéo jádření = obecně osoě smetrické roinné křik s oso smetrie o 0, jejíž rotací kolem os smetrie znikne nádoba splňjící zadání úlo ( = konst) Dané křice říkáme poledníkoá, nebo také meridiánoá křika její rotací zniklé smetrické ploc

7 = Je-li ýška olné ladin kapalin nádobě nade dnem rona, je rclost kapalin tékající otorem o průřez S e dně rona = Ronice kontinit má našem případě tar π = S π = S 4 π 4 4 π = S = = k 0 S álcoá nádoba naoře oteřená má ýšk H = 0 cm a poloměr r = 5 cm Uprostřed dna nádob je otor průřez S = cm Do nádob přitéká sora oda z odood při objemoém tok Q = 40 cm s a) Jak soko stopí oda nádobě? b) Za jak dloo se nádoba prázdní, jestliže při dosažení maimální ýšk ladin od nádobě přítok od zastaíme? c) Jaký pob koná ladina od e nádobě při ýtok od otorem e dně? Q πr Q = ; t = ; ron zpomalený S S 4 H = 0 cm; r = 50 ; S = 0 m ; Q =, 4 0 m ;, t, =? Q a) Při plnění nádob ladina od stopá a s ní roste i elikost rclosti ýtok od otorem e dně nádob Stopání ladin se zastaí a ladina se stálí e ýšce okamžik, kd je objemoý tok od otorem e dně nádob stejný jako objemoý tok Q od přitékající z odood Dostááme ted Q = S = S Q = S Q = S b) okamžik, kd ladina od klesne o zdálenost, je elikost ýtokoé rclost od otor S rona = následjícím nekonečně krátkém časoém interal dt ted r S () d H 0 otorem S teče objem od d = S dt d = S dt časoém interal dt se ted objem od nádobě zmenší o d těcto elementárníc objemů plne πr d S dt =πr d dt = S πr dt = d S Celkoý časoý interal t ýtok od z nádob získáme rčito interací =πr d Z ronosti πr πr t = d = S S 0 0 t = πr S Dosadíme-li za ýsledek z části a) této úlo, dostaneme postpně

8 πr Q πr Q t = t = S S S rq π t = S c) Pob ladin od nádobě při ýtok od otorem S e dně bde obecně zpomalený, neboť elikost ýtokoé rclosti od otorem S klesá důsledk zmenšjícío se drostatickéo tlak úroni dna nádob Posďme nní možnost ronoměrně zpomalenéo pob ladin od nádobě Pokd b tom tak blo, záisela b elikost rclosti pob ladin na čase lineárně moli bcom ji ted jádřit ztaem = 0 kt; k > 0 takoém případě b blo možno rčit průměrno rclost p klesání ladin časoém interal t jako aritmetický průměr její maimální ( ma ) a minimální ( min 0 ) klesání ladin bezprostředně po = ) odnot Maimální odnot ( ma zaření přítok rčíme pomocí zta otorem e dně z ronice kontinit = π rma = S ma pro ýtokoo rclost kapalin S = πr Průměrná rclost p klesání ladin časoém interal t je pak + S = πr ma min p = p Časoý interal t ýtok eškeré od z nádob pak rčíme jako πr πr t = t = t = S S p t = πr S Dosadíme-li za ýraz získaný řešení části a), dostaneme πr Q πrq t = t = S S S Poronáme-li nní dob ýtok eškeré od, získané řešením částí b) a c), zjistíme, že t = t Tento ýsledek znamená potrzení předpoklad o tom, že ladina od nádobě (álcoé) při ýtok otorem e dně koná ronoměrně zpomalený pob

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4)

Řešení úloh celostátního kola 60. ročníku fyzikální olympiády Úlohy navrhli J. Thomas (1, 2, 3) a V. Wagner (4) Řešení úlo elostátnío kola 60. ročníku fyzikální olympiády Úloy narli J. Tomas 1,, 3) a V. Wagner 4) 1.a) Z ronosti ydrostatiký tlaků 1,5Rρ 1 g = 1 ρ g 1 = 1,5R ρ 1 = 3 R = 3,75 m. ρ 8 1 b) Označme ýšku

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

1.6.7 Složitější typy vrhů

1.6.7 Složitější typy vrhů .6.7 Složitější tp rhů Předpoklad: 66 Pedaoická poznámka: Tato hodina přesahuje běžnou látku, probírám ji pouze případě, že mám přebtek času. Za normálních podmínek není příliš reálné s ětšinou tříd řešit

Více

3.3. Operace s vektory. Definice

3.3. Operace s vektory. Definice Operace s ektory.. Operace s ektory Výklad Definice... Nechť ϕ je úhel do nenloých ektorů, (obr. ). Skalárním sočinem ektorů, rozmíme číslo, které bdeme označoat. (někdy strčně ) a které definjeme roností.

Více

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslen vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..7 Znaménka Předpoklad: 4 Opakoání: Veličin s elikostí a směrem = ektoroé eličin. Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

1.8.9 Bernoulliho rovnice

1.8.9 Bernoulliho rovnice 89 Bernoulliho ronice Předpoklady: 00808 Pomůcky: da papíry, přicucáadlo, fixírka Konec minulé hodiny: Pokud se tekutina proudí trubicí s různými průměry, mění se rychlost jejího proudění mění se její

Více

Proudění mostními objekty a propustky

Proudění mostními objekty a propustky Fakulta staební ČVUT Praze Katedra draulik a droloie Předmět HYV K141 FS ČVUT Proudění mostními objekt a propustk Doc. In. Aleš Halík, CSc., In. Tomáš Picek PD. MOSTY ýška a šířka mostnío otoru přeládá

Více

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v

Na obrázku je nakreslený vlak, který se pohybuje po přímé trati, nakresli k němu vhodnou souřadnou soustavu. v ..6 Znaménka Předpoklad: 3, 5 Opakoání: Veličin s elikostí a směrem = ektoroé eličin Vektor je určen také sým koncoým bodem (pokud začíná počátku) polohu bodu můžeme určit pomocí ektoru, který začíná počátku

Více

7. SEMINÁŘ Z MECHANIKY

7. SEMINÁŘ Z MECHANIKY - 4-7 SEINÁŘ Z ECHANIKY 4 7 Prázdný železniční agón o hotnosti kgse pohbuje rchlostí,9 s po 4 odoroné trati a srazí se s naložený agóne o hotnosti kgstojící klidu s uolněnýi brzdai Jsou-li oba oz při nárazu

Více

7.2.3 Násobení vektoru číslem I

7.2.3 Násobení vektoru číslem I 7..3 Násobení ektor číslem I Předpoklad: 70 Př. : Zakresli do sosta sořadnic alespoň dě různá místění ektorů: = 3; = 3;0 = ; a) ( ) ( ) c) ( ) - - - x - Pedagogická poznámka: Předchozí příklad není zbtečný.

Více

12 Rozvinutelné a zborcené plochy

12 Rozvinutelné a zborcené plochy 1 Rozinutelné a zborcené plochy ÚM FSI VUT Brně Studijní text 1 Rozinutelné a zborcené plochy 1. 1 Délka analytické křiky 1. Délka analytické křiky: je rona součtu délek oblouků l ohraničených body t ;

Více

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu

1. Dráha rovnoměrně zrychleného (zpomaleného) pohybu . Dráha ronoměrně zrychleného (zpomaleného) pohybu teorie Veličina, která charakterizuje změnu ektoru rychlosti, se nazýá zrychlení. zrychlení akcelerace a, [a] m.s - a a Δ Δt Zrychlení je ektoroá fyzikální

Více

Vzorové příklady - 7. cvičení

Vzorové příklady - 7. cvičení Voroé příklady - 7 cičení Voroý příklad 7 Nádobou na obráku protéká oda Nádoba je rodělena na tři ektory přepážkami otory Prní otor je čtercoý, o ploše S = cm, další da jou kruhoé, S = 5 cm, S = cm Otory

Více

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B)

Příklad 1 (25 bodů) Částice nesoucí náboj q vletěla do magnetického pole o magnetické indukci B ( 0,0, B) Přijímací zkouška na naazující magisterské studium - 05 Studijní program Fyzika - šechny obory kromě Učitelstí fyziky-matematiky pro střední školy, Varianta A Příklad Částice nesoucí náboj q letěla do

Více

1.8.10 Proudění reálné tekutiny

1.8.10 Proudění reálné tekutiny .8.0 Proudění reálné tekutiny Předpoklady: 809 Ideální kapalina: nestlačitelná, dokonale tekutá, bez nitřního tření. Reálná kapalina: zájemné posouání částic brzdí síly nitřního tření. Jaké mají tyto rozdíly

Více

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace

vzdálenost těžiště (myslí se tím těžiště celého tělesa a ne jeho jednotlivých částí) od osy rotace Přehled příkladů 1) Valiý pohyb, zákon zachoání energie ) Těžiště tělesa nebo moment setračnosti ýpočet integrací - iz http://kf.upce.cz/dfjp/momenty_setracnosti.pdf Nejčastější chyby: záměna momentu setračnosti

Více

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 10 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. 10 sadě Ma- Přípraa k matritě a PZ geometrie, analytická geometrie, analýza, komlexní čísla 14. Ator: Magda Krejčoá Datm: 1.08.01 Ročník: matritní ročníky Anotace DUM: Analytická

Více

Identifikátor materiálu: ICT 1 18

Identifikátor materiálu: ICT 1 18 Identifikátor ateriálu: ICT 8 Reistrační číslo rojektu Náze rojektu Náze říjece odory náze ateriálu (DUM) Anotace Autor Jazyk Očekáaný ýstu Klíčoá sloa Dru učenío ateriálu Dru interaktiity Cíloá skuina

Více

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie RNDr. Yetta Bartákoá Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles koule, kuloá plocha a jejich části VY INOVACE_05 9_M Gymnázium, SOŠ a VOŠ Ledeč nad Sázaou Objemy a porchy těles

Více

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA

DOPLŇKOVÉ TEXTY BB01 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ HYDRODYNAMIKA DOPLŇKOVÉ TEXTY BB0 PAVEL CHAUER INTERNÍ MATERIÁL FAT VUT V BRNĚ HYDRODYNAMIKA Obsah Úod... Průtok kapaliny... Ronice kontinuity... 3 Energie proudící kapaliny... 3 Objemoá hustota energie... 3 Bernoulliho

Více

Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D.

Hydraulická funkce mostních objektů a propustků Doc. Ing. Aleš Havlík, CSc. Ing. Tomáš Picek, Ph.D. oc. In. Aleš Halík, CSc. In. Tomáš Picek, P.. PF tořeno zkušební erzí pdffactor www.fineprint.cz Most ýška a šířka mostnío otoru přeládá nad délkou, ýznamné eneretické ztrát: tokem, ýtokem Propustk délka

Více

Hydrostatika a hydrodynamika

Hydrostatika a hydrodynamika Hydrostatika a hydrodynamika Zabýáme se kaalinami, ne tuhými tělesy HS Ideální tekutina Hydrostatický tlak Pascalů zákon Archimédů zákon A.z. - ážení HD Ronice kontinuity Bernoullioa ronice Pitotoa trubice

Více

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2

V = π f 2 (x) dx. f(x) 1 + f 2 (x) dx. x 2 + y 2 = r 2 Odození zorců pro ýpočet objemů porchů některých těles užitím integrálního počtu Objem rotčního těles, které znikne rotcí funkce y f(x) n interlu, b kolem osy x, lze spočítt podle zorce b V f (x) dx Porch

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, fakulta staební katedra hydraulky a hydrologe (K141) Přednáškoé sldy předmětu 1141 HYA (Hydraulka) erze: 9/8 K141 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pdf souborů složenýh

Více

Mechanika tekutin. 21. Určete, do jaké hloubky h se ponoří kužel výšky L = 100 mm z materiálu o hustotě

Mechanika tekutin. 21. Určete, do jaké hloubky h se ponoří kužel výšky L = 100 mm z materiálu o hustotě Mecanika ekuin. Určee do jaké loubky se ponoří kužel ýšky L mm z maeriálu o usoě 8 e odě s usoou. Kužel je zanořen do ody sým kg/m rcolem. kg/m Řešení: Podle Arcimédoa zákona při ploání musí bý ía G kužele

Více

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ

POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Předmět: Ročník: Vytořil: Datum: FYZIKA PRVNÍ MGR. JÜTTNEROVÁ 9. 9. 01 Náze zpracoaného celku: POHYBY V GRAVITAČNÍM POLI ZEMĚ POHYBY TĚLES V HOMOGENNÍM TÍHOVÉM POLI ZEMĚ Jde o pohyby těles blízkosti porchu

Více

6. Jehlan, kužel, koule

6. Jehlan, kužel, koule 6. Jehlan, kužel, koule 9. ročník 6. Jehlan, kužel, koule 6. Jehlan ( síť, objem, porch ) Jehlan je těleso, které má jednu podstau taru n-úhelníku. Podle počtu rcholů n-úhelníku má jehlan náze. Stěny toří

Více

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0

Kuželosečky. ( a 0 i b 0 ) a Na obrázku 1 je zakreslena elipsa o poloosách 3 a 7. Pokud střed elipsy se posunul do bodu S x 0 Generted b Foit PDF Cretor Foit Softwre http://www.foitsoftwre.com For elution onl. Kuželosečk I. Kuželosečk zákldních polohách posunuté to prtie je opkoání látk obkle probírné n střední škole. Kružnice

Více

Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole

Hydrodynamika. ustálené proudění. rychlost tekutiny se v žádném místě nemění. je statické vektorové pole Hydrodynamika ustálené proudění rychlost tekutiny se žádném místě nemění je statické ektoroé pole proudnice čáry k nimž je rychlost neustále tečnou při ustáleném proudění jsou proudnice skutečné trajektorie

Více

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu).

1.6.5 Vodorovný vrh. Předpoklady: Pomůcky: kulička, stůl, případně metr a barva (na měření vzdálenosti doapdu a výšky stolu). 165 Vodoroný rh Předpoklad: 164 Pomůck: kulička, stůl, případně metr a bara (na měření zdálenosti doapdu a ýšk stolu) Pedaoická poznámka: Stejně jako předchozí i tato hodina stojí a padá s tím, jak dobře

Více

MASARYKOVA UNIVERZITA

MASARYKOVA UNIVERZITA MASAYKOVA UNIVEZITA Přírodoědeká faklta OBÁLKY PLOCH teorie příklad aplikae BAKALÁŘSKÁ PÁCE Brno 3 Aleš Prhal Prohlašji že jsem na akalářské prái praoal samostatně a požití literatr edené senam s konltaemi

Více

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0

b) Maximální velikost zrychlení automobilu, nemají-li kola prokluzovat, je a = f g. Automobil se bude rozjíždět po dobu t = v 0 fg = mfgv 0 Řešení úloh. kola 58. ročníku fyzikální olympiády. Kategorie A Autoři úloh: J. Thomas, 5, 6, 7), J. Jírů 2,, 4).a) Napíšeme si pohybové rovnice, ze kterých vyjádříme dobu jízdy a zrychlení automobilu A:

Více

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně

Hydrostatika F S. p konst F S. Tlak. ideální kapalina je nestlačitelná l = konst. Tlak v kapalině uzavřené v nádobě se šíří ve všech směrech stejně Hdrostatika Tlak S N S Pa m S ideální kaalina je nestlačitelná l = konst Tlak kaalině uzařené nádobě se šíří e šech směrech stejně Pascalů zákon Každá změna tlaku kaalině uzařené nádobě se šíří nezměněná

Více

1.5.6 Zákon zachování mechanické energie I

1.5.6 Zákon zachování mechanické energie I 56 Záon zacoání mecanicé energie I Předolady: 505 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα Předmět, terý se oybuje ryclostí má ineticou energii E = m Předmět, terý se nacází e ýšce nad ladinou

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, Fakulta staební Katedra hydrauliky a hydroloie (K4) Přednáškoé slidy ředmětu 4 HYA (Hydraulika) erze: /04 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu df souborů složených

Více

Kinetická teorie plynů

Kinetická teorie plynů Kinetická teorie plynů 1 m 3 při tlaku 10 5 Pa teplotě o C obsahuje.,5 x 10 5 molekul při tlaku 10-7 Pa teplotě o C obsahuje.,5 x 10 13 molekul p>100 Pa makroskopické choání, plyn se posuzuje jako hmota

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpoklady: 713 Je dán ronoběžnostěn LMNOPR. R O P N M L Jeho objem umíme spočítat stereometrikým zorem: V = S. p Ronoběžnostěn je také určen třemi ektory a, b a R O P b N M a L jeho

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, akulta staební katedra hydrauliky a hydrologie (K4) Přednáškoé slidy předmětu 4 HYA (Hydraulika) erze: 09/008 K4 FS ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pd souborů složených

Více

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek

Bilance nejistot v oblasti průtoku vody. Mgr. Jindřich Bílek Bilance nejistot v oblasti průtok vody Mgr. Jindřich Bílek Nejistota měření Parametr přiřazený k výsledk měření ymezje interval, o němž se s rčito úrovní pravděpodobnosti předpokládá, že v něm leží sktečná

Více

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru

3. Vlny. 3.1 Úvod. 3.2 Rovnice postupné vlny v bodové řadě a v prostoru 3. Vlny 3. Úod Vlnění můžeme pozoroat například na odní hladině, hodíme-li do ody kámen. Mechanické lnění je děj, při kterém se kmitání šíří látkoým prostředím. To znamená, že například zuk, který je mechanickým

Více

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice).

VY_32_INOVACE_G hmotnost součástí konajících přímočarý vratný pohyb (píst, křižák, pístní tyč, část ojnice). Náze a adresa školy: třední škola průysloá a uělecká, Opaa, příspěkoá organizace, raskoa 399/8, Opaa, 74601 Náze operačního prograu: O Vzděláání pro konkurenceschopnost, oblast podpory 1.5 Registrační

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Základy fyziky + opakovaná výuka Fyziky I

Základy fyziky + opakovaná výuka Fyziky I Ústav fyziky a měřicí techniky Pohodlně se usaďte Přednáška co nevidět začne! Základy fyziky + opakovaná výuka Fyziky I Web ústavu: ufmt.vscht.cz : @ufmt444 1 Otázka 8 Rovinná rotace, valení válce po nakloněné

Více

1.5.7 Zákon zachování mechanické energie I

1.5.7 Zákon zachování mechanické energie I .5.7 Záon zacoání mecanicé energie I Předolady: 506 Oaoání: Síla ůsobící na dráze oná ráci W = Fs cosα. Předmět, terý se oybuje ryclostí má ineticou energii E = m. Předmět, terý se nacází e ýšce nad ladinou

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

11. SEMINÁŘ Z MECHANIKY sin α 1 cos. což je vzhledem k veličinám, které známe, kvadratická rovnice vzhledem k tg α. Její diskriminant je

11. SEMINÁŘ Z MECHANIKY sin α 1 cos. což je vzhledem k veličinám, které známe, kvadratická rovnice vzhledem k tg α. Její diskriminant je - 9 - SEMINÁŘ Z MECHANIKY Dělo rá třel počáteční rclotí = m Je nutno zaánout cíl, který je orizontální zálenoti = m o ěla a e ýši = m na ním Jaký je minimální eleační úel ěla? = m ; = m ; = m ; = 9,8 m

Více

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA

VLASTNOSTI KAPALIN. Část 2. Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA HYDROMECHANIKA LASTNOSTI KAPALIN Část 2 Literatura : Otakar Maštovský; HYDROMECHANIKA Jaromír Noskijevič; MECHANIKA TEKUTIN František Šob; HYDROMECHANIKA lastnosti kapalin: Molekulární stavba hmoty Příklad

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

Fakulta životního prostředí HYDRAULIKA PŘÍKLADY

Fakulta životního prostředí HYDRAULIKA PŘÍKLADY Fakulta žiotnío prostředí HYDRAULIKA PŘÍKLADY prof Ing Pael Pec CSc Ing Radek Roub PD 0 Skripta znikla za finanční podpory projektu OP Praa Adaptabilita CZ7/300/369 Modernizace ýuky udržitelnéo ospodaření

Více

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1) .6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí

Více

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu.

Jehlan s obdélníkovou podstavou o rozměrech a dm a b dm má boční hranu délky s dm. Vypočítejte povrch a objem tohoto jehlanu. Jehlan obdélníkoou podtaou o rozměrech a dm a b dm má boční hranu délky dm. ypočítejte porch a objem tohoto jehlanu. a = b = = 5 dm 6,5 dm 1,8 dm a = 1,55348557 dm pomocí Pythagoroy ěty z praoúhlého E

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník

MECHANIKA KAPALIN A PLYNŮ. Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník MECHANIKA KAPALIN A PLYNŮ Mgr. Jan Ptáčník - GJVJ - Fyzika - Mechanika - 1. ročník Mechanika kapalin a plynů Hydrostatika - studuje podmínky rovnováhy kapalin. Aerostatika - studuje podmínky rovnováhy

Více

7. MECHANIKA TEKUTIN - statika

7. MECHANIKA TEKUTIN - statika 7. - statika 7.1. Základní vlastnosti tekutin Obecným pojem tekutiny jsou myšleny. a. Mají společné vlastnosti tekutost, částice jsou od sebe snadno oddělitelné, nemají vlastní stálý tvar apod. Reálné

Více

POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ

POVRCH A OBJEM KOULE A JEJÍCH ČÁSTÍ Pojekt ŠABLONY NA GVM Gymnázium Velké Meziříčí egistační číslo pojektu: CZ..07/.5.00/4.0948 IV- Inoace a zkalitnění ýuky směřující k ozoji matematické gamotnosti žáků středníc škol POVRCH A OBJEM KOULE

Více

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie

Zákony bilance. Bilance hmotnosti Bilance hybnosti Bilance momentu hybnosti Bilance mechanické energie Zákony bilance Bilance hmonosi Bilance hybnosi Bilance momenu hybnosi Bilance mechanické energie Koninuum ermodynamický sysém Pené ěleso = ěšinou uzařený sysém Konsanní hmonos - nezáisí na čase ochází

Více

Základní škola Kaplice, Školní 226

Základní škola Kaplice, Školní 226 Základní škola Kaplice, Školní 6 DUM VY_5_INOVACE_Y5 autor: Mical Benda období vytvoření: 0 ročník, pro který je vytvořen: 7 vzdělávací oblast: vzdělávací obor: tématický okru: téma: Člověk a příroda yzika

Více

Smíšený součin

Smíšený součin 7..14 Smíšený součin Předpokldy: 713 Je dán ronoěžnostěn LMNOPR. R O P N M L Jeho ojem umíme spočítt stereometrikým zorem: V = S. p Ronoěžnostěn je tké určen třemi ektory, : R O P N M L jeho ojem musí

Více

Obsah a průběh zkoušky 1PG

Obsah a průběh zkoušky 1PG Obsah a průběh zkoušky PG Zkouška se skládá z písemné a ústní části. Písemná část (cca 6 minut) dě konstrukční úlohy dle části po. bodech a jedna úloha ýpočetní úloha dle části za bodů. Ústní část jedna

Více

F n = F 1 n 1 + F 2 n 2 + F 3 n 3.

F n = F 1 n 1 + F 2 n 2 + F 3 n 3. Plošný integrál Několik pojmů Při našich úvahách budeme často vužívat skalární součin dvou vektorů. Platí F n F n cos α, kde α je úhel, který svírají vektor F a n. Vidíme, že pokud je tento úhel ostrý,

Více

fyzika v příkladech 1 a 2

fyzika v příkladech 1 a 2 Sbírka pro předmět Středoškolská fyzika v příkladech 1 a 2 Mechanika: kapaliny a plyny zadání 1. Ve dně nádoby je otvor, kterým vytéká voda. Hladina vody v nádobě je 30 cm nade dnem. Jakou rychlostí vytéká

Více

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D.

BIOMECHANIKA. Studijní program, obor: Tělesná výchovy a sport Vyučující: PhDr. Martin Škopek, Ph.D. BIOMECHANIKA 8, Disipativní síly II. (Hydrostatický tlak, hydrostatický vztlak, Archimédův zákon, dynamické veličiny, odporové síly, tvarový odpor, Bernoulliho rovnice, Magnusův jev) Studijní program,

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

Vnitřní energie ideálního plynu podle kinetické teorie

Vnitřní energie ideálního plynu podle kinetické teorie Vnitřní energie ideálního plynu podle kinetické teorie Kinetická teorie plynu, která prní poloině 9.století dokázala úspěšně spojit klasickou fenoenologickou terodynaiku s echanikou, poažuje plyn za soustau

Více

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné.

Fyzika kapalin. Hydrostatický tlak. ρ. (6.1) Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Fyzika kapalin Kapaliny zachovávají stálý objem, nemají stálý tvar, jsou velmi málo stlačitelné. Plyny nemají stálý tvar ani stálý objem, jsou velmi snadno stlačitelné. Tekutina je společný název pro kapaliny

Více

silový účinek proudu, hydraulický ráz Proudění v potrubí

silový účinek proudu, hydraulický ráz Proudění v potrubí : siloý účinek proudu, hydraulický ráz SILOVÝ ÚČINEK PROUDU: x nější síly na ymezený objem kapaliny: stupní ýstupní i Výpočtoá ektoroá ronice pro reálnou kapalinu: Q rychlost y G A G R A R A = p S... tlakoá

Více

Mechanika tekutin. Tekutiny = plyny a kapaliny

Mechanika tekutin. Tekutiny = plyny a kapaliny Mechanika tekutin Tekutiny = plyny a kapaliny Vlastnosti kapalin Kapaliny mění tvar, ale zachovávají objem jsou velmi málo stlačitelné Ideální kapalina: bez vnitřního tření je zcela nestlačitelná Viskozita

Více

Cyklografie. Cyklický průmět bodu

Cyklografie. Cyklický průmět bodu Cyklografie Cyklografie je nelineární zobrazovací metoda - bodům v prostoru odpovídají kružnice v rovině a naopak. Úlohy v rovině pak převádíme na řešení prostorových úloh, např. pomocí cyklografie řešíme

Více

přechodová (Allen) 0,44 ξ Re Poznámka: Usazování v turbulentní oblasti má omezený význam, protože se částice usazují velmi rychle.

přechodová (Allen) 0,44 ξ Re Poznámka: Usazování v turbulentní oblasti má omezený význam, protože se částice usazují velmi rychle. Nerušené usazoání kuloých a nekuloých ástic Úod: Měřením rychlostí nerušeného usazoání oěřujeme platnost ronic pro ýpoet usazoacích rychlostí ástic různé elikosti a taru nebo naopak ronic pro ýpoet elikosti

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

- 1 - Obvodová síla působící na element lopatky větrné turbíny

- 1 - Obvodová síla působící na element lopatky větrné turbíny - - Tato Příloha 898 je sočástí článk č.. Větrné trbíny a ventlátory, http://www.transformacntechnologe.cz/vetrne-trbny-a-ventlatory.html. Odvození základních rovnc aerodynamckého výpočt větrné trbíny

Více

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI

CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI CVIČENÍ č. 10 VĚTA O ZMĚNĚ TOKU HYBNOSTI Stojící povrch, Pohybující se povrch Příklad č. 1: Vodorovný volný proud vody čtvercového průřezu o straně 25 cm dopadá kolmo na rovinnou desku. Určete velikost

Více

Mechanika tekutin. Hydrostatika Hydrodynamika

Mechanika tekutin. Hydrostatika Hydrodynamika Mechanika tekutin Hydrostatika Hydrodynamika Hydrostatika Kapalinu považujeme za kontinuum, můžeme využít předchozí úvahy Studujeme kapalinu, která je v klidu hydrostatika Objem kapaliny bude v klidu,

Více

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s. 3.4. Výklad Předpokládejme, že v prostoru E 3 jsou dány body A, B, C neležící na jedné přímce. Těmito body prochází jediná rovina, kterou označíme ABC. Určíme vektory u = B - A, v = C - A, které jsou zřejmě

Více

CVIČENÍ č. 7 BERNOULLIHO ROVNICE

CVIČENÍ č. 7 BERNOULLIHO ROVNICE CVIČENÍ č. 7 BERNOULLIHO ROVNICE Výtok z nádoby, Průtok potrubím beze ztrát Příklad č. 1: Určete hmotnostní průtok vody (pokud otvor budeme považovat za malý), která vytéká z válcové nádoby s průměrem

Více

BIOMECHANIKA KINEMATIKA

BIOMECHANIKA KINEMATIKA BIOMECHANIKA KINEMATIKA MECHANIKA Mechanika je nejstarším oborem fyziky (z řeckého méchané stroj). Byla původně vědou, která se zabývala konstrukcí strojů a jejich činností. Mechanika studuje zákonitosti

Více

1141 HYA (Hydraulika)

1141 HYA (Hydraulika) ČVUT Praze, fakulta staební katedra hydrauliky a hydrologie (K) Přednáškoé slidy předmětu HYA (Hydraulika) erze: 0/0 K ČVUT Tato weboá stránka nabízí k nahlédnutí/stažení řadu pdf souborů složených z přednáškoých

Více

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP

MECHANIKA HYDROSTATIKA A AEROSTATIKA Implementace ŠVP Projekt Efektivní Učení Reformou oblastí gymnaziálního vzdělávání je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky. MECHANIKA HYDROTATIKA A AEROTATIKA Implementace ŠVP

Více

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé.

FYZIKA 2. ROČNÍK. Pozorovaný pohyb vlny je pohybem stavu hmoty, a nikoli pohybem hmoty samé. Poěst, která znikne jednom městě, pronikne elmi brzo do druhého města, i když nikdo z lidí, kteří mají podíl na šíření zprá, neodcestuje z jednoho města do druhého. Účast na tom mají da docela různé pohyby,

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita

Zachování hmoty Rovnice kontinuity. Ideální kapalina. Zachování energie Bernoulliho rovnice. Reálná kapalina - viskozita Tektiny ve farmacetickém průmysl Tektiny Charakteristika, prodění tektin» Kapaliny» rozpoštědla» kapalné API, lékové formy» disperze» Plyny» Vzdchotechnika» Sšení» Flidní operace Ideální kapalina» Ideální

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Vzorové příklady - 5.cvičení

Vzorové příklady - 5.cvičení Vzoroé příklady - 5.cičení Vzoroý příklad 5.. Voda teplá je ypouštěna z elké nádrže outaou potrubí ýtokem do olna B. Určete délku potrubí =? průměru ( = 0,6 mm, oceloé, ařoané po použití), při níž bude

Více

KATEDRA FYZIKY VŠB-TU OSTRAVA

KATEDRA FYZIKY VŠB-TU OSTRAVA Stdent Skpina/Osob. číslo KATEDA FYZIKY VŠB-TU OSTAVA NÁZEV PÁCE Měření povrcovéo napětí z kapilární elevace Číslo práce 4 Datm Spolpracoval Podpis stdenta: Cíle měření: Změřit odnoty povrcovéo napětí

Více

S S obsahy podstav S obsah pláště

S S obsahy podstav S obsah pláště Předmět: Ročník: ytořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROÁ 7.. 04 Náze zpacoaného celku: PORCHY A OBJEMY KOMOLÝCH TĚLE, KOULE A JEJÍCH ČÁTÍ PORCH A OBJEM KOMOLÉHO JEHLANU Komolý jehlan: má dě podstay,

Více

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku

CVIČENÍ 5: Stabilita částice v korytě, prognóza výmolu v oblouku CVIČENÍ 5: Stabilita částice korytě prognóza ýmolu oblouku Výpočet stability (odolnosti koryta) metoda tečnýc napětí Výpočtem stability se prokazuje že koryto jako celek je pro nároé ydraulické zatížení

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

Analytická geometrie lineárních útvarů

Analytická geometrie lineárních útvarů ) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod

Více

Šíření elektromagnetických vln Smithův diagram

Šíření elektromagnetických vln Smithův diagram Šíření elektromanetických ln Smithů diaram Příklady k procičení jsou podle [] Diaram nese náze podle inženýra společností RCA Philipa H. Smitha, který e třicátých letech minulého století odstranil leou

Více

4.1 Řešení základních typů diferenciálních rovnic 1.řádu

4.1 Řešení základních typů diferenciálních rovnic 1.řádu 4. Řešení základních tpů diferenciálních rovnic.řádu 4..4 Určete řešení z() Cauchov úloh pro rovnici + = 0 vhovující počáteční podmínce z =. Po separaci proměnných v rovnici dostaneme rovnici = d a po

Více

PRINCIP IZOSTÁZE TEORIE

PRINCIP IZOSTÁZE TEORIE GEOOGIE PRINIP IZOTÁZE TEORIE Princip izostáze spočívá v předpokladu, že existuje určitá ladina, na které je odnota všesměrnéo tlaku konstantní na celé Zemi. Tato ladina se nacází na ranici pevné litosféry

Více

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t

Dilatace času. Řešení Čas t 0 je vlastní čas trvání děje probíhajícího na kosmické lodi. Z rovnice. v 1 c. po dosazení za t 0 a v pak vyplývá t Dilatae času 1 Na kosmiké lodi zdalujíí se od Země ryhlostí,1 probíhal určitý děj, který podle měření účastníků letu tral jednu hodinu Jak dlouho trá tento děj pro pozoroatele na Zemi? Je možné, aby děj

Více

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb:

MOMENT SETRVAČNOSTI. Obecná část Pomocí Newtonova pohybového zákona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: MOMENT SETRVAČNOST Obecná část Pomocí Newtonova pohybového záona síly můžeme odvodit pohybovou rovnici pro rotační pohyb: dω M = = ε, (1) d t de M je moment vnější síly působící na těleso, ω úhlová rychlost,

Více

Úloha IV.5... vrhač nožů

Úloha IV.5... vrhač nožů Fyziální orespondenční seminář MFF UK Úloha IV5 rhač nožů 4 body; průměr 1,41; řešilo 37 studentů Vrhací nůž opustí ruu e chíli, dy je jeho těžiště e ýšce h a má pouze horizontální složu rychlosti 0 Jaou

Více

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí

Fakulta stavební ČVUT v Praze Katedra hydrauliky a hydrologie. Předmět HYA2 K141 FSv ČVUT. Hydraulika potrubí Fakulta staební ČVUT Praze Katedra hydrauliky a hydrologie Předmět HYA K4 FS ČVUT Hydraulika potrubí Doc. Ing. Aleš Halík, CSc., Ing. Tomáš Picek PhD. K4 HYA Hydraulika potrubí 0 DRUHY PROUDĚNÍ V POTRUBÍ

Více

6. Mechanika kapalin a plynů

6. Mechanika kapalin a plynů 6. Mechanika kapalin a plynů 1. Definice tekutin 2. Tlak 3. Pascalův zákon 4. Archimedův zákon 5. Rovnice spojitosti (kontinuity) 6. Bernoulliho rovnice 7. Fyzika letu Tekutiny: jejich rozdělení, jejich

Více

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení...

34_Mechanické vlastnosti kapalin... 2 Pascalův zákon _Tlak - příklady _Hydraulické stroje _PL: Hydraulické stroje - řešení... 34_Mechanické vlastnosti kapalin... 2 Pascalův zákon... 2 35_Tlak - příklady... 2 36_Hydraulické stroje... 3 37_PL: Hydraulické stroje - řešení... 4 38_Účinky gravitační síly Země na kapalinu... 6 Hydrostatická

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více