Matematika (KMI/PMATE)

Rozměr: px
Začít zobrazení ze stránky:

Download "Matematika (KMI/PMATE)"

Transkript

1 Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30

2 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam (smysl) koeficientů lineární funkce pojem limity funkce v bodě vlastní limita funkce jednostranné limity nevlastní limita funkce limita funkce v nevlastním bodě spojitost funkce spojitost funkce v bodě spojitost funkce na otevřeném intervalu spojitost funkce na uzavřeném intervalu početní operace s limitami Matematika (KMI/PMATE) 2 / 30

3 Lineární funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q k... směrnice, q... absolutní člen D(f) = R H(f) = R Příklady lineárních funkcí f(x) = 3x 2 k = 3, q = 2 f(x) = 2x 5 k = 2, q = 5 f(x) = 5x + 1 k = 5, q = 1 f(x) = 3x + 1 k = 3, q = 1 Matematika (KMI/PMATE) 3 / 30

4 Graf lineární funkce Grafem lineární funkce je přímka. Na obrázcích jsou uvedeny grafy funkcí f(x) = 2x 1 a f(x) = x + 4. Graf funkce f(x) = 2x 1 Graf funkce f(x) = x + 4 Matematika (KMI/PMATE) 4 / 30

5 Lineární funkce - shrnutí Mějme lineární funkci f(x) = kx + q. Hodnota q odpovídá funkční hodnotě pro x = 0. Je tedy q = f(0). Graf lineární funkce protíná svislou osu ve výšce q. Hodnota směrnice k je rovna změně funkční hodnoty v případě, že hodnota x se zvětší o jednotku. Hodnota směrnice k ovlivňuje sklon grafu lineární funkce - čím větší hodnota k, tím větší sklon dané přímky. Obecně je k = f(x 2) f(x 1 ) x 2 x 1. Matematika (KMI/PMATE) 5 / 30

6 Lineární funkce - shrnutí Mějme lineární funkci f(x) = kx + q. Hodnota q odpovídá funkční hodnotě pro x = 0. Je tedy q = f(0). Graf lineární funkce protíná svislou osu ve výšce q. Hodnota směrnice k je rovna změně funkční hodnoty v případě, že hodnota x se zvětší o jednotku. Hodnota směrnice k ovlivňuje sklon grafu lineární funkce - čím větší hodnota k, tím větší sklon dané přímky. Obecně je k = f(x 2) f(x 1 ) x 2 x 1. Matematika (KMI/PMATE) 5 / 30

7 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Matematika (KMI/PMATE) 6 / 30

8 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Matematika (KMI/PMATE) 6 / 30

9 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Závěr: Čím bĺıž je x číslu 5, tím bĺıž je f(x) číslu 9. Matematika (KMI/PMATE) 6 / 30

10 Limita funkce Mějme funkci f(x) = x + 4. Jak se chová f(x), jestliže se hodnota proměnné x bĺıží k číslu 5? Přibližování zleva x 4,9 4,99 4,999 4,9999 4, , f(x) = x + 4 8,9 8,99 8,999 8,9999 8, , Přibližování zprava x 5,1 5,01 5,001 5,0001 5, , f(x) = x + 4 9,1 9,01 9,001 9,0001 9, , Závěr: Čím bĺıž je x číslu 5, tím bĺıž je f(x) číslu 9. Matematika (KMI/PMATE) 6 / 30

11 Limita funkce Limita funkce Tento druh závislosti označujeme symbolem a čteme: lim(x + 4) = 9 x 5 limita funkce f(x) = x + 4 pro x jdoucí k pěti je rovna devíti. Otázka: Proč tak složitě? Proč to děláme tak složitě? Proč pouze nedosadíme za x číslo 5 do předpisu funkce f(x) = x + 4? Je přeci zřejmé, že platí f(5) = = 9. Matematika (KMI/PMATE) 7 / 30

12 Limita funkce Limita funkce Tento druh závislosti označujeme symbolem a čteme: lim(x + 4) = 9 x 5 limita funkce f(x) = x + 4 pro x jdoucí k pěti je rovna devíti. Otázka: Proč tak složitě? Proč to děláme tak složitě? Proč pouze nedosadíme za x číslo 5 do předpisu funkce f(x) = x + 4? Je přeci zřejmé, že platí f(5) = = 9. Matematika (KMI/PMATE) 7 / 30

13 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). Matematika (KMI/PMATE) 8 / 30

14 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Matematika (KMI/PMATE) 8 / 30

15 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Proč nás zajímá hodnota v bodě x = 2? Proč je limita rovna právě 4? Matematika (KMI/PMATE) 8 / 30

16 Limita funkce - Příklad Vypočtěte lim x 2 x 2 4 x 2. Snadno ověříme, že bod x = 2 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(2). x 1,9 1,99 1,999 1, ,0001 2,001 2,01 2,1 f(x) 3,9 3,99 3,999 3,9999? 4,0001 4,001 4,01 4,1 Proč nás zajímá hodnota v bodě x = 2? Proč je limita rovna právě 4? Matematika (KMI/PMATE) 8 / 30

17 Limita funkce Odpověd na první otázku Limity nám pomáhají např. najít extrémní (největší a nejmenší) funkční hodnoty. Využíváme přitom pojem tečny grafu funkce. Tečna ke grafu funkce f(x) v bodě a. Připomeňme, že směrnici přímky, která prochází body o souřadnicích [a, f(a)] a [x, f(x)] lze vypočítat dle vzorce k = f(x) f(a). x a Tečna ke grafu funkce a její směrnice Matematika (KMI/PMATE) 9 / 30

18 Limita funkce Odpověd na druhou otázku Je: x 2 4 x 2 (x 2)(x + 2) =. x 2 Pro všechna x 2 je (x 2)(x + 2) x 2 = x + 2. x 1,9 1,99 1, ,001 2,01 2,1 f(x) 3,9 3,99 3,999? 4,001 4,01 4,1 Matematika (KMI/PMATE) 10 / 30

19 Limita funkce Odpověd na druhou otázku Je: x 2 4 x 2 (x 2)(x + 2) =. x 2 Pro všechna x 2 je (x 2)(x + 2) x 2 = x + 2. x 1,9 1,99 1, ,001 2,01 2,1 f(x) 3,9 3,99 3,999? 4,001 4,01 4,1 Matematika (KMI/PMATE) 10 / 30

20 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Matematika (KMI/PMATE) 11 / 30

21 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Nakreslete graf funkce f(x)! Matematika (KMI/PMATE) 11 / 30

22 Limita funkce Vysvětlení Pokud uvažujeme hodnoty f(x) pro x bĺıžící se 2 (a tedy x 2), potom lze výraz x2 4 nahradit výrazem x + 2, u kterého je zřejmé, že čím bĺıž x 2 jsme k hodnotě x = 2, tím víc se hodnota f(x) bĺıží ke čtyřem. Je tedy: x 2 4 lim x 2 x 2 = lim (x + 2) = 4. x 2 Nakreslete graf funkce f(x)! Matematika (KMI/PMATE) 11 / 30

23 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 Matematika (KMI/PMATE) 12 / 30

24 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Matematika (KMI/PMATE) 12 / 30

25 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Při přibližování zleva dostáváme jiné hodnoty, než při přibližování zprava (nakreslete graf funkce). Matematika (KMI/PMATE) 12 / 30

26 Limita funkce Příklad ( Vypočtěte lim x + x ). x 0 x Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). x -0,1-0,01-0, ,001 0,01 0,1 f(x) -1,1-1,01-1,001? 1,001 1,01 1,1 ( Je lim x + x ) ( = 1, lim x + x ) = 1 x 0 x x 0 + x Při přibližování zleva dostáváme jiné hodnoty, než při přibližování zprava (nakreslete graf funkce). Matematika (KMI/PMATE) 12 / 30

27 Limita funkce Neformální definice Necht platí, že pro x bĺıžící se číslu a (zleva i zprava) se funkční hodnoty funkce f(x) bĺıží jednomu číslu b. Potom říkáme, že f(x) se bĺıží b pro x jdoucí k a, resp. že limita f(x) pro x a je (rovna číslu) b. Píšeme lim f(x) = b. x a Jestliže se hodnoty f(x) nebĺıží k jedné konkrétní hodnotě b pro x jdoucí k číslu a (zprava i zleva), potom říkáme, že funkce f(x) nemá limitu pro x a. Matematika (KMI/PMATE) 13 / 30

28 Limita funkce Neformální definice Necht platí, že pro x bĺıžící se číslu a (zleva i zprava) se funkční hodnoty funkce f(x) bĺıží jednomu číslu b. Potom říkáme, že f(x) se bĺıží b pro x jdoucí k a, resp. že limita f(x) pro x a je (rovna číslu) b. Píšeme lim f(x) = b. x a Jestliže se hodnoty f(x) nebĺıží k jedné konkrétní hodnotě b pro x jdoucí k číslu a (zprava i zleva), potom říkáme, že funkce f(x) nemá limitu pro x a. Matematika (KMI/PMATE) 13 / 30

29 Poznámky k definici Je důležité, aby se funkční hodnoty f(x) bĺıžily k jednomu stejnému číslu, když se hodnota x bĺıží k číslu a z obou stran. Pokud se například f(x) bĺıží hodnotě 1 pro x = 1, 9; 1, 99; 1, 999,..., tj. pro x 2 bĺıží hodnotě 3 pro x = 2, 1; 2, 01; 2, 001,..., tj. pro x 2 + potom limita f(x) pro x 2 neexistuje. Může se stát, že funkční hodnota f(x) se nepřibližuje k žádné konkrétní hodnotě při přibližování x k a z obou stran. Potom říkáme, že limita f(x) pro x a neexistuje. V uvedené neformální definici používáme poněkud nepřesný pojem přibližovat se k.... Je nutné tuto definici upřesnit. Matematika (KMI/PMATE) 14 / 30

30 Korektní definice limity funkce Korektní definice limity funkce Řekneme, že číslo b je limitou funkce f(x) pro x a, tedy: lim f(x) = b, x a jestliže ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 15 / 30

31 Jednostranná limita funkce Definice (jednostranné) limity funkce zleva Řekneme, že lim f(x) = b, x a jestliže existuje takové číslo b, že ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že když x (a δ, a), potom je f(x) (b ε, b + ε). Definice (jednostranné) limity funkce zprava Řekneme, že lim f(x) = b, x a + jestliže existuje takové číslo b, že ke každému reálnému číslu ε > 0 existuje reálné číslo δ > 0 takové, že když x (a, a + δ), potom je f(x) (b ε, b + ε). Matematika (KMI/PMATE) 16 / 30

32 Jednostranná limita funkce Příklad Necht je f(x) = x + x x. Potom je lim f(x) = 1 x 0 lim f(x) = +1 x 0 + lim x 0 f(x) neexistuje Matematika (KMI/PMATE) 17 / 30

33 Nevlastní limita funkce Příklad - nevlastní limita ( ) 1 Vypočtěte lim x 0 x 2. Snadno ověříme, že bod x = 0 nepatří do definičního oboru funkce, tedy nelze určit hodnotu f(0). Zleva: x -0,1-0,01-0,001-0,000 1 f(x) Zprava: x 0,1 0,01 0,001 0,000 1 f(x) Matematika (KMI/PMATE) 18 / 30

34 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Matematika (KMI/PMATE) 19 / 30

35 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Takovéto typy limit označujeme jako nevlastní limity a říkáme, že divergují k +, resp. k. lim f(x) =, lim x a f(x) =, lim x a x 0 1 x 2 = Matematika (KMI/PMATE) 19 / 30

36 Nevlastní limita funkce Z předchozích dvou tabulek bylo vidět, že když se hodnota x dostane dostatečně bĺızko k 0 (zleva i zprava), potom funkční hodnoty f(x) rostou bez omezení - nade všechny meze. Vlastní limita f(x) pro x 0 neexistuje, nebot neexistuje číslo, které by vykazovalo vlastnost limitní hodnoty b. Takovéto typy limit označujeme jako nevlastní limity a říkáme, že divergují k +, resp. k. lim f(x) =, lim x a f(x) =, lim x a x 0 1 x 2 = Matematika (KMI/PMATE) 19 / 30

37 Definice nevlastní limity funkce Definice nevlastní limity Řekneme, že lim x a f(x) =, jestliže ke každému reálnému číslu K > 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí nerovnost f(x) > K. Definice nevlastní limity Řekneme, že lim x a f(x) =, jestliže ke každému reálnému číslu K < 0 existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) platí nerovnost f(x) < K. Matematika (KMI/PMATE) 20 / 30

38 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Matematika (KMI/PMATE) 21 / 30

39 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Definice limity v nevlastním bodě Řekneme, že lim x f(x) = b, jestliže pro všechna reálná čísla ε > 0 existuje reálné číslo x 0 takové, že pro všechna x (x 0, ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 21 / 30

40 Limita v nevlastním bodě 2x Určete hodnotu lim x x x f(x) f(x) 3,5 2,0297 2,0003 2,0000 Definice limity v nevlastním bodě Řekneme, že lim x f(x) = b, jestliže pro všechna reálná čísla ε > 0 existuje reálné číslo x 0 takové, že pro všechna x (x 0, ) platí f(x) (b ε, b + ε). Matematika (KMI/PMATE) 21 / 30

41 Spojitost funkce Obecný náhled: Jestliže se hodnoty funkce mění plynule, tj. bez náhlých skoků, říkáme, že daná funkce je spojitá. Spojitost v bodě I Spojitost v bodě II Spojitost v bodě III Funkce f(x) je nespojitá v bodě a. Funkce f(x) je nespojitá v bodě a. Funkce f(x) je spojitá v bodě a. Matematika (KMI/PMATE) 22 / 30

42 Spojitost funkce Definice spojitosti funkce v bodě Necht f(x) je funkce a číslo a je prvkem definičního oboru funkce f(x). Řekneme, že funkce f(x) je spojitá v bodě a, jestliže existuje vlastní limita lim x a f(x) platí rovnost lim x a f(x) = f(a) Řekneme, že funkce je spojitá na otevřeném intervalu I, jestliže je spojitá v každém bodě intervalu I. Matematika (KMI/PMATE) 23 / 30

43 Spojitost funkce - alternativní definice Definice jednostranné spojitosti funkce v bodě Necht f(x) je funkce a číslo a je prvkem definičního oboru funkce f(x). Řekneme, že funkce f(x) je spojitá zleva v bodě a, jestliže existuje limita zleva lim f(x) x a platí rovnost lim f(x) = f(a) x a Řekneme, že funkce f(x) je spojitá zprava v bodě a, jestliže existuje limita zprava lim f(x) x a + platí rovnost lim f(x) = f(a) x a + Řekneme, že funkce je spojitá v uzavřeném intervalu a, b, jestliže je spojitá v každém bodě otevřeného intervalu (a, b) a dále je spojitá zprava v bodě a a současně je spojitá zleva v bodě b. Matematika (KMI/PMATE) 24 / 30

44 Spojitost funkce Která z uvedených funkcí je spojitá na svém definičním oboru? { x + 1 pro x 2, f(x) = 5 x pro x > 2 g(x) = { x + 1 pro x < 2, 6 x pro x > 2 h(x) = 1 { x 1/x pro x 0, k(x) = 0 pro x = 0 Matematika (KMI/PMATE) 25 / 30

45 Spojitost a limita funkce Z definice spojitosti funkce v bodě plyne, že pokud víme, že v bodě a je funkce f(x) spojitá, potom lze limitu lim x a f(x) vypočítat ze vztahu lim f(x) = f(a). x a Každá funkce, která vznikne z mocninné funkce, a dále pak z goniometrických, cyklometrických, exponenciálních a logaritmických funkcí pomocí konečného počtu početních operací sčítání, odčítání, násobení, dělení a skládání, je spojitá na svém definičním oboru. Matematika (KMI/PMATE) 26 / 30

46 Operace s limitami Pravidla pro počítání s limitami V následujících vzorcích předpokládáme, že existují limity Potom platí následující vzorce: lim f(x), a lim g(x). x a x a lim[f(x) + g(x)] = lim f(x) + lim g(x) x a x a x a [f(x) g(x)] = lim f(x) lim lim x a lim x a g(x) x a x a [f(x) g(x)] = lim f(x) lim g(x) x a x a f(x) lim x a g(x) = lim x a f(x) lim x a g(x) ( 0) Matematika (KMI/PMATE) 27 / 30

47 Významné vzorce sin x lim x 0 x = 1 e x 1 lim = 1 x 0 x a x 1 lim = ln a x 0 x ln(1 + x) lim = 1 x 0 x lim x 0 m (1 + x) n 1 x = n m Matematika (KMI/PMATE) 28 / 30

48 Významné vzorce sin x lim x 0 x = 1 e x 1 lim = 1 x 0 x a x 1 lim = ln a x 0 x ln(1 + x) lim = 1 x 0 x lim x 0 m (1 + x) n 1 x = n m Matematika (KMI/PMATE) 29 / 30

49 Sendvičová věta Předpokládejme, že existuje reálné číslo δ > 0 takové, že pro všechna x (a δ, a) (a, a + δ) jsou splněny nerovnosti f(x) g(x) h(x). Dále předpokládejme, že jsou splněny rovnosti lim f(x) = lim h(x) = b. x a x a Potom existuje i limita lim x a g(x) a platí lim g(x) = b. x a Matematika (KMI/PMATE) 30 / 30

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)

Více

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =

Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y = 0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si

Více

Funkce. Limita a spojitost

Funkce. Limita a spojitost Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,

Více

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015 Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární

Více

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)

Funkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Limita posloupnosti, limita funkce, spojitost. May 26, 2018

Limita posloupnosti, limita funkce, spojitost. May 26, 2018 Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a

Více

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer

Derivace funkce. Přednáška MATEMATIKA č Jiří Neubauer Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady

Více

0.1 Úvod do matematické analýzy

0.1 Úvod do matematické analýzy Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Pojem funkce Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost

Více

Matematika I (KMI/PMATE)

Matematika I (KMI/PMATE) Přednáška první aneb Úvod do matematické analýzy Funkce a její vlastnosti Úvod do matematické analýzy Osnova přednášky pojem funkce definice funkce graf funkce definiční obor funkce obor hodnot funkce

Více

VII. Limita a spojitost funkce

VII. Limita a spojitost funkce VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná

Více

Přednáška 3: Limita a spojitost

Přednáška 3: Limita a spojitost 3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice

Více

Matematika (KMI/PMATE)

Matematika (KMI/PMATE) Úvod do matematické analýzy Funkce a její vlastnosti Funkce a její vlastnosti Veličina Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Funkce a její

Více

2. LIMITA A SPOJITOST FUNKCE

2. LIMITA A SPOJITOST FUNKCE . LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke

Více

7.1 Extrémy a monotonie

7.1 Extrémy a monotonie KAPITOLA 7: Průběh funkce [ZMA13-P38] 7.1 Extrémy a monotonie Řekneme, že funkce f nabývá na množině M Df svého globálního maxima globálního minima A v bodě x 0, jestliže x 0 M, fx 0 = A a pro každé x

Více

0.1 Funkce a její vlastnosti

0.1 Funkce a její vlastnosti 0.1 Funkce a její vlastnosti Veličina - pojem, který popisuje kvantitativní (číselné) vlastnosti reálných i abstraktních objektů. Příklady veličin: hmotnost (m) čas (t) výše úrokové sazby v bance (i) cena

Více

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.

1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x. 1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle

Více

Kapitola 2: Spojitost a limita funkce 1/20

Kapitola 2: Spojitost a limita funkce 1/20 Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)

Více

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu

verze 1.3 kde ρ(, ) je vzdálenost dvou bodů v R r. Redukovaným ε-ovým okolím nazveme ε-ové okolí bodu x 0 mimo tohoto bodu, tedy množinu Úvod Diferenciální počet více proměnných verze.3 Následující text popisuje základy diferenciálního počtu více proměnných. Měl by sloužit především studentům předmětu MATEMAT na Univerzitě Hradec Králové

Více

LIMITA A SPOJITOST FUNKCE

LIMITA A SPOJITOST FUNKCE PŘEDNÁŠKA 5 LIMITA A SPOJITOST FUNKCE 5.1 Spojitost funkce 2 Řekneme, že funkce f(x) je spojitá v bodě a D f, jestliže ke každému ε > 0 existuje δ > 0 takové, že pro každé x (a δ, a + δ) D f platí nerovnost:

Více

IX. Vyšetřování průběhu funkce

IX. Vyšetřování průběhu funkce IX. Vyšetřování průběhu funkce Úvodní poznámky: Cíl: vyšetřit průběh dané funkce f. Zahrnuje: základní vlastnosti: D(f), spojitost, limity v krajních bodech, průsečíky s osami souřadnic, intervaly, kde

Více

Základy matematické analýzy

Základy matematické analýzy Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních

Více

Matematická analýza pro informatiky I. Spojitost funkce

Matematická analýza pro informatiky I. Spojitost funkce Matematická analýza pro informatiky I. 6. přednáška Spojitost funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Matematická analýza pro informatiky I. Limita funkce

Matematická analýza pro informatiky I. Limita funkce Matematická analýza pro informatiky I. 5. přednáška Limita funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 18. března 2011 Jan Tomeček, tomecek@inf.upol.cz

Více

Spojitost a limita funkce

Spojitost a limita funkce Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové

Více

Pavlína Matysová. 5. listopadu 2018

Pavlína Matysová. 5. listopadu 2018 Soubor řešených úloh Vyšetřování průběhu funkce Pavlína Matysová 5. listopadu 018 1 Soubor řešených úloh Tento text obsahuje 7 úloh na téma vyšetřování průběhu funkce. Každé úloha je řešena dvěma způsoby

Více

Matematická analýza III.

Matematická analýza III. 1. - limita, spojitost Miroslav Hušek, Lucie Loukotová UJEP 2010 Úvod Co bychom měli znát limity posloupností v R základní vlastnosti funkcí jedné proměnné (definiční obor, monotónnost, omezenost,... )

Více

Derivace funkce Otázky

Derivace funkce Otázky funkce je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako směrnici tečny grafu

Více

Matematická analýza pro informatiky I.

Matematická analýza pro informatiky I. Matematická analýza pro informatiky I. 2. přednáška Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 17. února 2010 Jan Tomeček, tomecek@inf.upol.cz

Více

Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28

Helena R ˇ ı hova (CˇVUT) Funkce 5. rˇı jna / 28 Funkce Helena Říhová FBMI 5. října 2012 Helena Říhová (ČVUT) Funkce 5. října 2012 1 / 28 Obsah 1 Reálná funkce jedné reálné proměnné Limita funkce Věty o limitách Spojitost funkce Význačné limity Asymptoty

Více

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení

Více

1 Množiny, výroky a číselné obory

1 Množiny, výroky a číselné obory 1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou

Více

Přednáška 6, 6. listopadu 2013

Přednáška 6, 6. listopadu 2013 Přednáška 6, 6. listopadu 2013 Kapitola 2. Posloupnosti a řady funkcí. V dalším jsou f, f n : M R, n = 1, 2,..., reálné funkce jedné reálné proměnné definované na (neprázdné) množině M R. Co to znamená,

Více

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace

Derivace funkce DERIVACE A SPOJITOST DERIVACE A KONSTRUKCE FUNKCÍ. Aritmetické operace Derivace funkce Derivace je jedním z hlavních nástrojů matematické analýzy. V příští části ukážeme, jak mnoho různorodých aplikací derivace má. Geometricky lze derivaci funkce v nějakém bodě chápat jako

Více

Limita a spojitost LDF MENDELU

Limita a spojitost LDF MENDELU Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

9. Limita a spojitost

9. Limita a spojitost OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek

Více

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice

i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných

Více

Bakalářská matematika I

Bakalářská matematika I 1. Funkce Diferenciální počet Mgr. Jaroslav Drobek, Ph. D. Katedra matematiky a deskriptivní geometrie Bakalářská matematika I Některé užitečné pojmy Kartézský součin podrobnosti Definice 1.1 Nechť A,

Více

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis

( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis 1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž

Více

Limita a spojitost funkce a zobrazení jedné reálné proměnné

Limita a spojitost funkce a zobrazení jedné reálné proměnné Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé

Více

Přednáška 11, 12. prosince Část 5: derivace funkce

Přednáška 11, 12. prosince Část 5: derivace funkce Přednáška 11, 12. prosince 2014 Závěrem pasáže o spojitých funkcích zmíníme jejich podtřídu, lipschitzovské funkce, nazvané podle německého matematika Rudolfa Lipschitze (1832 1903). Fukce f : M R je lipschitzovská,

Více

Dodatek 2: Funkce dvou proměnných 1/9

Dodatek 2: Funkce dvou proměnných 1/9 Dodatek 2: Funkce dvou proměnných 1/9 2/9 Funkce dvou proměnných Definice: Reálnou funkcí dvou reálných proměnných, definovanou na množině M R 2, rozumíme předpis f, který každé uspořádané dvojici reálných

Více

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí

(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí 1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální

Více

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním

Více

Matematická analýza pro informatiky I. Limita posloupnosti (I)

Matematická analýza pro informatiky I. Limita posloupnosti (I) Matematická analýza pro informatiky I. 3. přednáška Limita posloupnosti (I) Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 25. února 2011 tomecek@inf.upol.cz

Více

Posloupnosti a jejich limity

Posloupnosti a jejich limity KMA/MAT Přednáška č. 7, Posloupnosti a jejich ity 5. listopadu 203 Motivační příklady Prozkoumejme, zatím laicky, následující posloupnosti: Posloupnost, 4, 9,..., n 2,... : Hodnoty rostou nade všechny

Více

Vybrané kapitoly z matematiky

Vybrané kapitoly z matematiky Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení

Více

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a

Více

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21

LDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21 Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu

Více

Limita a spojitost funkce

Limita a spojitost funkce Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném

Více

Funkce základní pojmy a vlastnosti

Funkce základní pojmy a vlastnosti Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické

Více

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel

MATEMATIKA. Příklady pro 1. ročník bakalářského studia. II. část Diferenciální počet. II.1. Posloupnosti reálných čísel MATEMATIKA Příklady pro 1. ročník bakalářského studia II. část II.1. Posloupnosti reálných čísel Rozhodněte, zda posloupnost a n (n = 1, 2, 3,...) je omezená (omezená shora, omezená zdola) resp. monotónní

Více

9. Limita a spojitost funkce

9. Limita a spojitost funkce Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,

Více

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57

Petr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57 Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost

Více

LIMITA FUNKCE, SPOJITOST FUNKCE

LIMITA FUNKCE, SPOJITOST FUNKCE MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin

Více

Kapitola 1: Reálné funkce 1/20

Kapitola 1: Reálné funkce 1/20 Kapitola 1: Reálné funkce 1/20 Funkce jedné proměnné 2/20 Definice: Necht M R. Jestliže každému x M je přiřazeno jistým předpisem f právě jedno y R, říkáme, že y je funkcí x. x... nezávisle proměnná (neboli

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =

Více

Definice derivace v bodě

Definice derivace v bodě Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +

Více

1 Topologie roviny a prostoru

1 Topologie roviny a prostoru 1 Topologie roviny a prostoru 1.1 Základní pojmy množin Intervaly a okolí Intervaly v rovině nebo prostoru jsou obdélníky nebo hranoly se stranami rovnoběžnými s osami souřadnic. Podmnožiny intervalů se

Více

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE,

DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, DIFERENCIÁLNÍ POČET SPOJITOST FUNKCE, LIMITA FUNKCE, DERIVACE FUNKCE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia Autoři projektu Student na prahu 21. století

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 8. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 14 Derivace funkce U lineárních funkcí ve tvaru

Více

Matematická analýza III.

Matematická analýza III. 2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom

Více

Aplikace derivace a průběh funkce

Aplikace derivace a průběh funkce Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy

MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy MATEMATIKA I. prof. RNDr. Gejza Dohnal, CSc. II. Základy matematické analýzy 1 Matematika I. I. Lineární algebra II. Základy matematické analýzy III. Diferenciální počet IV. Integrální počet 2 Matematika

Více

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je

2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 10. přednáška Blanka Šedivá KMA zimní semestr 016/017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 016/017 1 / 1 Použití derivace pro vyšetřování průběhu funkce

Více

LEKCE10-RAD Otázky

LEKCE10-RAD Otázky Řady -ekv ne ŘADY ČÍSEL 1. limita posloupnosti (operace založená na vzdálenosti bodů) 2. supremum nebo infimum posloupnosti (operace založená na uspořádání bodů). Z hlavních struktur reálných čísel zbývá

Více

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27

(1) Limity. Kristýna Kuncová. Matematika B2 18/19. Kristýna Kuncová (1) Limity 1 / 27 (1) Limity Kristýna Kuncová Matematika B2 18/19 Kristýna Kuncová (1) Limity 1 / 27 Proč studovat matematiku Zdroje: http://www.karlin.mff.cuni.cz/ pick/2018-10-02-prvni-prednaska-z-analyzy.pdf https://www.youtube.com/watch?v=6ec3ndnr86s

Více

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO

DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Spojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení.

Spojitost funkce. Spojitost je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. funkce je nejdůležitější obecná vlastnost funkcí. Umožňuje aproximace různých řešení. Je důležité vědět, kdy se malá změna nějakého měření projeví málo na konečném výsledku. Zpřesňuje-li se měření, měl

Více

Limita posloupnosti a funkce

Limita posloupnosti a funkce Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti

Více

MATURITNÍ TÉMATA Z MATEMATIKY

MATURITNÍ TÉMATA Z MATEMATIKY MATURITNÍ TÉMATA Z MATEMATIKY 1. Základní poznatky z logiky a teorie množin Pojem konstanty a proměnné. Obor proměnné. Pojem výroku a jeho pravdivostní hodnota. Operace s výroky, složené výroky, logické

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU Obsah 1. Pojmy... 2 1.1. Formule výrokového počtu... 2 1.2. Množina... 3 1.2.1. Operace s množinami... 3 1.2.2. Relace... 3 2. Číselné obory... 5 2.1. Uzavřenost množiny na operaci... 5 2.2. Rozšíření

Více

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik

MATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,

Více

1 L Hospitalovo pravidlo

1 L Hospitalovo pravidlo L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje

Více

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce

Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =

Více

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky Matematika III Řady Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská Ústav matematiky Přednášky ZS 202-203 Obsah Číselné řady. Součet nekonečné řady. Kritéria konvergence 2 Funkční řady. Bodová konvergence.

Více

Parciální derivace a diferenciál

Parciální derivace a diferenciál Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem

Více

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace

Derivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny 2/13 N = {1, 2, 3, 4,... }... přirozená čísla N 0 = N {0} = {0, 1, 2, 3, 4,... } Z = {..., 2, 1, 0, 1, 2, 3, 4,... }... celá čísla Q = { p q p, q Z}... racionální

Více

Funkce, elementární funkce.

Funkce, elementární funkce. Kapitola 2 Funkce, elementární funkce. V této kapitole si se budeme věnovat studiu základních vlastností funkcí jako je definiční obor, obor hodnot. Připomeneme si pojmy sudá, lichá, rostoucí, klesající.

Více

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k),

Definice Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo. z f(x 0 + h,y 0 + k) f(x 0,y 0 ) = Ah + Bk + ρτ(h,k), Definice 5.2.1. Řekneme, že funkce z = f(x,y) je v bodě A = [x 0,y 0 ] diferencovatelná, nebo má v tomto bodě totální diferenciál, jestliže je možné její přírůstek z na nějakém okolí bodu A vyjádřit jako

Více

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy

Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)

Více

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina Přednáška č. 5 Vlastnosti funkcí Jiří Fišer 22. října 2007 Jiří Fišer (KMA, PřF UP Olomouc) KMA MMAN1 Přednáška č. 4 22. října 2007 1 / 1 Omezenost funkce Definice Funkce f se nazývá (shora, zdola) omezená

Více

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce.

V této kapitole si zobecníme dříve probraný pojem limita posloupnosti pro libovolné funkce. Kapitola 7 Limita funkce V této kapitole budeme studovat pojem ita funkce, který lze zařadit mezi základní pojmy matematiky, speciálně pak matematické analýzy Využití ity funkce je široké Pomocí ity lze

Více

Kapitola 1: Reálné funkce 1/13

Kapitola 1: Reálné funkce 1/13 Kapitola 1: Reálné funkce 1/13 Číselné množiny N, N 0, Z, Q, I, R, C Definice: Kartézský součin M N množin M a N je množina všech uspořádaných dvojic, ve kterých je první složka prvkem množiny M a druhá

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 4. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 27 Množiny Zavedení pojmu množina je velice

Více

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů

f( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů 3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

Zimní semestr akademického roku 2014/ prosince 2014

Zimní semestr akademického roku 2014/ prosince 2014 Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 2014/2015 7. prosince 2014 Předmluva

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]

Limita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1] KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu

Více

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze

Asymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě

Více

Diferenciální počet funkcí jedné proměnné

Diferenciální počet funkcí jedné proměnné Diferenciální počet funkcí jedné proměnné 1 3. Limita funkce 3.2. Limita funkce v nevlastním bodě 2 Limita funkce v nevlastním bodě Ukážeme, že je možné definovat limitu funkce i pro x +, x - Uvažujme

Více

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z:

Občas se používá značení f x (x 0, y 0 ), resp. f y (x 0, y 0 ). Parciální derivace f. rovnoběžného s osou y a z: PARCIÁLNÍ DERIVACE Jak derivovat reálné funkce více proměnných aby bylo možné tyto derivace použít podobně jako derivace funkcí jedné proměnné? Jestliže se okopíruje definice z jedné proměnné dostane se

Více

Matematická analýza 1

Matematická analýza 1 VŠB TECHNICKÁ UNIVERZITA OSTRAVA, FAKULTA ELEKTROTECHNIKY A INFORMATIKY Matematická analýza 1 Pracovní listy Martina Litschmannová 2015 / 2016 Definice, věty i mnohé příklady jsou převzaty z: KUBEN, Jaromír

Více

Úvodní informace. 17. února 2018

Úvodní informace. 17. února 2018 Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní

Více