POUŽITÍ PROGRAMU MATLAB SIMULINK A VIRTUAL REALITY TOOLBOXU PŘI NÁVRHU A EXPERIMENTÁLNÍM OVĚŘENÍ ŘÍZENÍ JEŘÁBOVÉ KOČKY. petr.noskievic@vsb.

Rozměr: px
Začít zobrazení ze stránky:

Download "POUŽITÍ PROGRAMU MATLAB SIMULINK A VIRTUAL REALITY TOOLBOXU PŘI NÁVRHU A EXPERIMENTÁLNÍM OVĚŘENÍ ŘÍZENÍ JEŘÁBOVÉ KOČKY. petr.noskievic@vsb."

Transkript

1 POUŽITÍ PROGRAMU MATAB SIMUIN A VIRTUA REAITY TOOBOXU PŘI NÁVRHU A EXPERIMENTÁNÍM OVĚŘENÍ ŘÍZENÍ JEŘÁBOVÉ OČY Doc.Ing.Per Nosievič,CSc., Ing.Milan VANĚ, Ing.arel STRNAD VŠB-TU Osrava, aula srojní, aedra auoaiační echni a říení per.nosievic@vsb.c Absrac. The design of he sae posiion conroller and observer of he crane using MATAB Siulin and Virual Reali Toolbo is he opic of his paper. The soluion presens he as solved b he sudens a he Deparen of Conrol Sses and Insruenaion acul of Mechanical Engineering Technical Universi of Osrava. Non-linear aheaical odel realised in Siulin was derived using aheaical odelling. The sae feedbac and observer were copued afer odel linearisaion using MATAB procedure. The designed conroller was esed using Siulin odel and using he es rig laboraor odel of he crane. The D-odel of he sae sse he laboraor odel of he crane - was creaed in he virual reali world and conneced wih he dnaic odel in Siulin using he virual reali Toolbo. The siulaed and easured resuls of he posiion conrol and he D-crane odel in are shown in presened figures. Úvod Příspěve uauje použií prograu MATAB Siulin rošířeného o Virual Reali Toolbo ve výuce a praicé činnosi sudenů na aedře auoaiační echni a říení aul srojní VŠB TU Osrava. Poocí aeaicého odelu jeřábové oč ísaného analicou idenifiací bl proveden návrh říení se savovou pěnou vabou a poorovaele savu, eré uožňuje přeísění oč s iniální ývání avěšeného břeene. Návrh říení bl eperienálně ověřen na realiované odelu a aniován v prosředí viruální reali poocí prosorového odelu propojeného s dnaicý odele realiovaný v Siulinu s vužií Virual Reali Toolbou. Obr. Jeřábová oča onačení proěnných

2 Analicá idenifiace odelu pojedu jeřábu vcháí e silového roboru podle obr.., e erého vplývá pohbová rovnice oč S sin, () a pohbová rovnice břeene S sin cos () cos g sin S. () Rovnice pro úhel vchýlení břeene se určí poocí vahů ei souřadnicei l sin () l cos. () Po dvojnásobné derivaci podle času l cos l sin (6) l sin l cos, (7) dosaení do pohbových rovnic břeene () a () l cos l sin S sin cos (8) l sin l cos S cos g sin. (9) a následné úpravě se obdrží nelineární diferenciální rovnice druhého řádu pro polohové souřadnice a () l( ) l cos cos cos cos l sin cos ( ) g sin g sin cos l sin. () cos ( ) Po apliaci vahů planých pro alé úhl se ísá lineariovaný odel ve varu ( ) g ( l ) (6). (7) Rovnice popisující chování ooru á var g u. (8)

3 Pro říení poloh jeřábové oč blo použio savové říení. Návrh poorovaele savu a savové pěné vab vcháí lineariovaného savového odelu sséu ) ( g M, (9) resp. apsáného v aicové varu () M u g Po dosaení číselných hodno onsan ají aice sséu var () 9,97 9,7,6 A B,97 8 E [ ] C [ ] D [ ]

4 Jeliož odel jeřábu obsahuje pě savových proěnných, nichž ěřen jsou jen dvě - poloha oč a vchýlení břeene, bl pro realiaci savové pěné vab navržen poorovael savu,. Po sanovení poloh vlasních čísel sséu se savovou pěnou vabou a poorovaele savu bl s vužií funce Acer proveden výpoče, erý shrnují následující přía. %jerabova oca g.6; ; l.8; g9.8;.;;;9; %vpoce prvu aice A a-g*g/; a/; a(g)*g//l; a//l; a-*; a-; %vpoce prvu aice B b*; %aice sseu A[ ; a a; ; -a a; a a]; %aice rieni B[; -.; ; -.8; b]; %aice vsupu C[ ]; %aice prevodu D[]; %NAVRH POZOROVATEE: %adane pol poorovaele pp[-9.;-9.;-.;-.7;-.7]; Tacer(A',C',pp); T'; %STAVOVA ZPETNA VAZBA %adane pol sseu p[-7.;-7.;-6.;-6.7;-6.7]; %onrola ridielnosi Cocrb(A,B); ran(co) %onrola poorovaelnosi: Obobsv(A,C); ran(ob) %vpoce regulaoru (esileni pene vab): acer(a,b,p) %vpoce orecniho clenu: Sinv(C*inv(B*-A)*B) Obr. Výpoče savové pěné vab a poorovaele savu Vpočené hodno: Veor esílení pěné vab [.9; -.89;.89; -.; -.7] oreční člen S.9 oreční veor poorovaele [; 7; -; -8;-] Siulační odel říení se savovou pěnou vabou a poorovaele savu realiovaný s Siulinu uauje obr..

5 . Consan S Gain Su Sauraion napei acni velicina B Sse () <> s Su Inegraor C poloha oč A Mu De u Su -_ A Mu De u Mu Scope Mu De u Sauraion Scope Bpo Su Deu Poorovael s Su Inegraor Cpo _ Scope Apo po -_ Cloc cas po po Obr. Bloové schéa říení savovou pěnou vabou s poorovaele savu. Navržené říení blo praic ověřeno na realiované laboraorní odelu jeřábové oč v laboraoři říené poocí PC. Za í účele bl navržen disréní poorovael savu a disréní savová pěná vaba. Obr. a obr. uaují průběh poloh oč a vchýlení břeene při soové ěně poloh oč všeřené siulačně a ěřené na laboraorní odelu. laboraorníu odelu jeřábové oč bl sesaven viruální odel a poocí Virual Reali Toolbou propojen se siulační odele v Siulinu, obr.6 a obr.7. V prosředí viruální reali pa blo ožné poorova ývání břeene při použií růných reguláorů obdobně jao na fiální odelu

6 Obr. 6 Porovnání průběhu poloh oč odelu jeřábu a siulačního odelu. Obr.7 Porovnání průběhu úhlu naočení břeena odelu jeřábu a siulačního odelu..

7 w Žad. hodnoa S Su Sauraion B Su s Inegraor C Vsup Acni velicina u A Mu Deu Mu Deu R Poloha v Rchlos v fi Úhel naoceni i -. Consan Consan Consan og Úhlová rchlos Sila Su BREMENO roaion [] OCA ranslaion [] Virual Reali.6 Consan Consan Obr. 6 Siulační odel jeřábu a jeho propojení s viruální odele poocí blou Virual Reali

8 Obr. 7 Pohled na vvořený viruální odel jeřábu obraený v MS IE. Závěr Snéa savového říení s poorovaele a jeho výna na ěnu dnaicých vlasnosí říeného sséu je uáána v příspěvu. Dnaicé vlasnosi sséu bl všeřen siulačně realiací nelineárního a lineariovaného odelu v prograu Siulin, dále eperienálně poocí realiovaného laboraorního odelu jeřábu a poocí aniace vvořeného prosorového odelu v prosředí viruální reali a propojeného s dnaicý odele prosřednicví Virual Reali Toolbou. Příspěve vnil v ráci řešení výuného áěru CEZ:J7/98:7 "Modelování, siulace a říení složiých dnaicých sséů výrobně-dopravních opleů". ieraura Nosievič, P.,999. Modelování a idenifiace sséů.. vd. Osrava: MONTANEX, a.s. 76s. ISBN Nosievič, P., 99. Siulace sséů. Sripa VŠB-TU Osrava. s. ISBN Ogaa,., 99. Solving Conrol Engineering Probles Wih MATAB. Englewood Cliffs (New Jerse), Prenice Hall. ISBN Pospíše, S., 999. Eperienální idenifiace dnaicých sséů. Diploová práce, VŠB TU Osrava. Vaně,M.,. Říení echaronicých sséů. Diploová práce S, VŠB-TU Osrava,, 6 sran. Srnad,.,. Viruální laboraoř echaronicých sséů. Diploová práce S, VŠB- TU Osrava,, 7 sran.

VYUŽITÍ MATLABU VE VÝUCE MECHANIKY NA FAKULTĚ ELEKTROTECHNICKÉ ČVUT Jiří Vondřich Katedra mechaniky a materiálů, Fakulta elektrotechnická, ČVUT Praha,

VYUŽITÍ MATLABU VE VÝUCE MECHANIKY NA FAKULTĚ ELEKTROTECHNICKÉ ČVUT Jiří Vondřich Katedra mechaniky a materiálů, Fakulta elektrotechnická, ČVUT Praha, VYUŽITÍ MATLABU VE VÝUCE MECHANIKY NA AKULTĚ ELEKTROTECHNICKÉ ČVUT Jiří Vondřich Kaedra echani a aeriálů, aula eleroechnicá, ČVUT Praha, Úvod Kaedra echani a aeriálů zališuje výuu echani pro oor Kerneia

Více

Využití programového systému MATLAB pro řízení laboratorního modelu

Využití programového systému MATLAB pro řízení laboratorního modelu Využií programového sysému MATLAB pro řízení laboraorního modelu WAGNEROVÁ, Renaa 1, KLANER, Per 2 1 Ing., Kaedra ATŘ-352, VŠB-TU Osrava, 17. lisopadu, Osrava - Poruba, 78 33, renaa.wagnerova@vsb.cz, 2

Více

ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení,

ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD. kde je u, - mezní hodnoty řízení, Transfer inovácií 4/9 9 ŘÍZENÍ POLOHY LEVITUJÍCÍ KULIČKY V MAGNETICKÉM POLI THE POSITION CONTROL OF LEVITATING BALL IN MAGNETIC FIELD Doc. Ing. Renaa Wagnerová, Ph.D. Ing. Lkáš Richr VŠB Technická niverzia

Více

ÚVOD DO DYNAMIKY HMOTNÉHO BODU

ÚVOD DO DYNAMIKY HMOTNÉHO BODU ÚVOD DO DYNAMIKY HMOTNÉHO BODU Obsah Co je o dnamika? 1 Základní veličin dnamik 1 Hmonos 1 Hbnos 1 Síla Newonov pohbové zákon První Newonův zákon - zákon servačnosi Druhý Newonův zákon - zákon síl Třeí

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava Kaedra obecné eleroechniy Faula eleroechniy a inforaiy, VŠB - U Osrava ELEKRIKÉ SROJE - rozdělení, druhy provedení, vlasnosi, dienzování. Rozdělení elericých srojů (přehled). Označování elericých srojů

Více

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ

PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ PREDIKCE OPOTŘEBENÍ NA KONTAKTNÍ DVOJICI V TURBODMYCHADLE S PROMĚNNOU GEOMETRIÍ Auoři: Ing. Radek Jandora, Honeywell spol s r.o. HTS CZ o.z., e-mail: radek.jandora@honeywell.com Anoace: V ovládacím mechanismu

Více

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU

SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Křua Jiří, Víe Miloš (edioři). Sysémové onfliy. Vydání rvní, nálad, Vydavaelsví Univerziy Pardubice: Pardubice,, 56 s. ISBN 97887395443. SYNTÉZA FYZIKÁLNÍHO OPTIMÁLNÍHO SYSTÉMU Miroslav Barvíř Konec. a

Více

ecosyn -plast Šroub pro termoplasty

ecosyn -plast Šroub pro termoplasty ecosyn -plas Šroub pro ermoplasy Bossard ecosyn -plas Šroub pro ermoplasy Velká únosnos Velká procesní únosnos Vysoká bezpečnos při spojování I v rámci každodenního živoa: Všude je zapořebí závi vhodný

Více

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby

VŠB- Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti. Úvod do MKP Napěťová analýza tenkostěnné tlakové nádoby VŠB- Technická univerzia Osrava Fakula srojní Kaedra pružnosi a pevnosi Úvod do MKP Auor: Michal Šofer Verze 0 Osrava 2011 Zadání: Proveďe napěťovou analýzu lakové nádoby v ísě D (v polovině válcové čási),

Více

NCCI: Určení bezrozměrné štíhlosti I a H průřezů

NCCI: Určení bezrozměrné štíhlosti I a H průřezů Teno N předládá meodu pro určení beroměrné šíhlosi při ohbu be určení riicého momenu M cr. Záladní onervaivní meodu le přesni a, že se uváží eomerie průřeu a var momenového obrace. Obsah. Zjednodušená

Více

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku

Modelování vlivu parametrického buzení na kmitání vetknutého nosníku . ročík echické koferece ARaP, 4. a 5.. 4, Praha Modelováí vlivu paramerického buzeí a kmiáí vekuého osíku Jiří TŮMA, Per Ferfecki, Pavel ŠURÁNE, Miroslav MAHDA VŠB - Techická uiverzia Osrava ARaP 4 Osova

Více

Pasivní tvarovací obvody RC

Pasivní tvarovací obvody RC Sřední průmyslová škola elekroechnická Pardubice CVIČENÍ Z ELEKTRONIKY Pasivní varovací obvody RC Příjmení : Česák Číslo úlohy : 3 Jméno : Per Daum zadání : 7.0.97 Školní rok : 997/98 Daum odevzdání :

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

Výkonová nabíječka olověných akumulátorů

Výkonová nabíječka olověných akumulátorů Rok / Year: Svazek / Volume: Číslo / Number: 211 13 2 Výkonová nabíječka olověných akumuláorů Power charger of lead-acid accumulaors Josef Kadlec, Miroslav Paočka, Dalibor Červinka, Pavel Vorel xkadle22@feec.vubr.cz,

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty

6.3. Lineární diferenciální rovnice druhého řádu s konstantními koeficienty H VRBENSKÁ J BĚLOHLÁVKOVÁ 63 Lineární diferenciální rovnice druhého řádu s onstantními oeficienty 631 Definice Definice Lineární diferenciální rovnicí druhého řádu s onstantními oeficienty nazýváme rovnici

Více

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení

Měřicí a řídicí technika magisterské studium FTOP - přednášky ZS 2009/10. měřicí člen. porovnávací. člen. REGULÁTOR ruční řízení Měřicí a řídicí echnia magisersé sudium FTOP - přednášy ZS 29/1 REGULACE regulované sousavy sandardní signály ační členy reguláory Bloové schéma regulačního obvodu z u regulovaná sousava y ační člen měřicí

Více

Digitální učební materiál

Digitální učební materiál Číso projeu Název projeu Číso a název šabon íčové aivi Digiání učební aeriá CZ..7/.5./3.8 Zvainění výu prosřednicví ICT III/ Inovace a zvainění výu prosřednicví ICT Příjece podpor Gnáziu, Jevíčo, A. K.

Více

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha

UNIVERZITA PARDUBICE Fakulta elektrotechniky a informatiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR. Bc. David Mucha UNIVERZITA PARDUBICE Fakula elekroechniky a informaiky STAVOVÁ REGULACE SOUSTAVY MOTOR GENERÁTOR Bc. David Mucha Diplomová práce 2017 Prohlášení Prohlašuji: Tuo práci jsem vypracoval samosaně. Veškeré

Více

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT

Návrh číslicově řízeného regulátoru osvětlení s tranzistorem IGBT Návrh číslicově řízeného reguláoru osvělení s ranzisorem IGB Michal Brejcha ČESKÉ VYSOKÉ ČENÍ ECHNICKÉ V PRAZE Faula eleroechnicá Kaedra eleroechnologie OBSAH: 0. Úvod... 3. Analýza... 4.. Rozbor sávajícího

Více

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku

Řešený příklad: Návrh za studena tvarovaného ocelového nosníku Dokuen: SX06a-CZ-EU Lis 1 z 7 Řešený příklad: Návrh za sudena varovaného ocelového Teno příklad se zabývá návrhe prosě uloženého sropního C proilu. Předpokládá se že horní i dolní pásnice je spojiě příčně

Více

ROZJEZD MOSTOVÉHO JEŘÁBU S OHLEDEM NA ÚHEL NÁBĚHU LANA NA DRÁŽKOVANÝ LANOVÝ BUBEN

ROZJEZD MOSTOVÉHO JEŘÁBU S OHLEDEM NA ÚHEL NÁBĚHU LANA NA DRÁŽKOVANÝ LANOVÝ BUBEN Ročník 5., Číslo I., duben 010 ROZJEZD MOSOVÉHO JEŘÁU S OHLEDEM NA ÚHEL NÁĚHU LANA NA DRÁŽKOVANÝ LANOVÝ UEN SAR O AN OVERHEAD CRANE WIH REERENCE O LEE ANGLE ONO GROOVED WIRE ROPE DRUM Pavel Vraník 1 Anotace:

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ MULTIKOPTÉRY. Ing. Vlastimil Kříž FAKULTA ELEKTROTECHNKY A KOMUNKAČNÍCH TECHNOLOGÍ VYSOKÉ UČENÍ TECHNCKÉ V BRNĚ MULTKOPTÉRY ng. Vlastiil Kříž Koplení inoace studijních prograů a šoání kalit ýuk na FEKT VUT Brně OP VK CZ.1.07/2.2.00/28.0193

Více

MNOHAROZMĚROVÉ ADAPTIVNÍ ŘÍZENÍ S VYUŽITÍM DELTA MODELŮ V PROGRAMOVÉM PROSTŘEDÍ MATLAB. P. Navrátil, V. Bobál

MNOHAROZMĚROVÉ ADAPTIVNÍ ŘÍZENÍ S VYUŽITÍM DELTA MODELŮ V PROGRAMOVÉM PROSTŘEDÍ MATLAB. P. Navrátil, V. Bobál MNOHAROZMĚROVÉ ADAPIVNÍ ŘÍZENÍ S VYUŽIÍM DELA MODELŮ V PROGRAMOVÉM PROSŘEDÍ MALAB P. Navráil, V. Bobál Univerzia omáše Bai ve Zlíně Úsav eorie řízení, Insi informačních echnologií Anoace: Cílem adapivního

Více

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m

FYZIKA 3. ROČNÍK. Vlastní kmitání oscilátoru. Kmitavý pohyb. Kinematika kmitavého pohybu. y m Vlastní itání oscilátoru Kitavý pohb Kitání periodicý děj zařízení oná opaovaně stejný pohb a periodic se vrací do určitého stavu. oscilátor zařízení, teré ůže volně itat (závaží na pružině, vadlo) it

Více

Simulační schemata, stavový popis. Petr Hušek

Simulační schemata, stavový popis. Petr Hušek Simulační schemaa, savový popis Per Hušek Simulační schemaa, savový popis Per Hušek husek@fel.cvu.cz kaedra řídicí echniky Fakula elekroechnická ČVUT v Praze MAS 007/08 ČVUT v Praze 6,7 - Simulační schemaa,

Více

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

10 Transformace 3D. 10.1 Transformace a jejich realizace. Studijní cíl. Doba nutná k nastudování. Průvodce studiem Trnsformce 3D Sudijní cíl Teno blok je věnován rnsformcím 3D grfik. V eu budou popsán ákldní rnsformce v prosoru posunuí oočení kosení měn měřík používné při prcování 3D modelu. Jednolivé rnsformce budou

Více

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM

LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM LINEARNI A KVADRATICKE MOMENTY K POSUNUTYM OSAM - predpokladejme, e name linearni a kvadraticke moment k osam, a chceme urcit moment k osam a. - souradnice elementu ds k posunutm osam jsou potom: = - d

Více

QUADROTORY. Ing. Vlastimil Kříž

QUADROTORY. Ing. Vlastimil Kříž QUADROTORY ng. Vlastiil Kříž Obsah 2 Mateatický odel, říení transforace ei báei (rotace) staoý popis říení Eistující projekt unieritní hobb koerční Quadrotor 3 ožnost isu iniu pohbliých součástek dobrý

Více

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav

5. Využití elektroanalogie při analýze a modelování dynamických vlastností mechanických soustav 5. Využií elekroanalogie při analýze a modelování dynamických vlasnosí mechanických sousav Analogie mezi mechanickými, elekrickými či hydraulickými sysémy je známá a lze ji účelně využíva při analýze dynamických

Více

I. MECHANIKA 6. Kmity a vlnění I

I. MECHANIKA 6. Kmity a vlnění I I. MECHNIK 6. Ky a vlnění I Obsah Haroncé y význačná fora pohybu, přílady, výchyla, peroda, frevence, ruhová frevence. Haroncý oscláor. Neluené haroncé y aeacý pops, oplení noace, fázor. Tluené y, aperodcý

Více

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury.

Statika 2. Kombinace namáhání N + M y + M z. Miroslav Vokáč 19. října ČVUT v Praze, Fakulta architektury. 2. přednáška N + M + M Jádro průřeu Šikmý ohb M + N M + N M + M + N Jádro průřeu Ecenrický lak a vloučeného ahu Konrolní oák Miroslav Vokáč miroslav.vokac@cvu.c ČVUT v Prae, Fakula archiekur 19. října

Více

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická

LABORATORNÍ CVIENÍ Stední prmyslová škola elektrotechnická Sední rmslová škola elekroechnická a Všší odborná škola, Pardubice, Karla IV. 3 LABORATORNÍ CVIENÍ Sední rmslová škola elekroechnická Píjmení: Hladna íslo úloh: 2 Jméno: Jan Daum mení: 3. ÍJNA 2006 Školní

Více

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 6

Fakulta strojního inženýrství VUT v Brně Ústav konstruování. KONSTRUOVÁNÍ STROJŮ strojní součásti. Přednáška 6 Faula srojního nženýrsví VUT v Brně Úsav onsruování KONSTRUOVÁNÍ STROJŮ srojní součás řednáša 6 ředepjaé šrouové spoje The greaer our noledge ncreases, he greaer our gnorance unfolds. JOHN F. KENNEDY Osah

Více

FYZIKA I. Složené pohyby (vrh šikmý)

FYZIKA I. Složené pohyby (vrh šikmý) VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Složené pohb (vrh šikmý) Prof. RNDr. Vilém Mádr, CSc. Prof. In. Libor Hlaváč, Ph.D. Doc. In. Irena Hlaváčová, Ph.D. Mr. Art. Damar

Více

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY

Katedra obecné elektrotechniky Fakulta elektrotechniky a informatiky, VŠB - TU Ostrava 4. TROJFÁZOVÉ OBVODY Kaedra obecné elekroechniky Fakula elekroechniky a inormaiky, VŠB - T Osrava. TOJFÁZOVÉ OBVODY.1 Úvod. Trojázová sousava. Spojení ází do hvězdy. Spojení ází do rojúhelníka.5 Výkon v rojázových souměrných

Více

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK

ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK ZPŮSOBY MODELOVÁNÍ ELASTOMEROVÝCH LOŽISEK Vzhledem ke skuečnosi, že způsob modelování elasomerových ložisek přímo ovlivňuje průběh vniřních sil v oblasi uložení, rozebereme v éo kapiole jednolivé možné

Více

Ě ť ž Š ú ť Š ť ú ž ž ú ž Ý ž ž ž ú ť Č ň Ú ň ť ť ť ú ť ž ž ť ú ú ť ú ž ž ť ť ť ú ž ž ť ť ž ž ť ž ž ž ú ž Ý ú ú ť ú ú ž ť ž ž ž ž ž ž ú Č ž ú ň ú ú ť ú ú Ý ú ť ú ž Ř ť ú ú ť Š Č Č ň Ú Č Š ú ť Č ť ď ž ň

Více

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV

Porovnání způsobů hodnocení investičních projektů na bázi kritéria NPV 3 mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-U Osrava, Ekonomická fakula, kaedra Financí 6-7 září 2006 Porovnání způsobů hodnocení invesičních projeků na bázi kriéria Dana Dluhošová

Více

KIV/PD. Sdělovací prostředí

KIV/PD. Sdělovací prostředí KIV/PD Sdělovací prosředí Přenos da Marin Šime Orienační přehled obsahu předměu 2 principy přenosu da mezi 2 propojenými zařízeními předměem sudia je přímá cesa, ne omuniační síť ja se přenáší signály

Více

ó Šú ž ó ó ó É Ž É Š Ž Š ú ů ó š Š Š Ž ó Š Ž ú ů Š Ž ň š ů É Ž š Ž ó Ž ů ň š š ů š Ú ů Š Ž ž ó Ž ů ú É Ú š É Ť ú ů Š Ž Š š Ť É Š Š Ž Ž Š Š ť ť ť Ž É Š Š Š Ž š Š Ž Ž Ů Š š Ž Ý Ý Š Ž Š Ž Ť Ž É Ý Š Š Ž š

Více

Bipolární tranzistor jako

Bipolární tranzistor jako Elekronické součásky - laboraorní cvičení 1 Bipolární ranzisor jako Úkol: 1. Bipolární ranzisor jako řízený odpor (spínač) ověření činnosi. 2. Unipolární ranzisor jako řízený odpor (spínač) ověření činnosi.

Více

TECHNICKÁ UNIVERZITA V LIBERCI

TECHNICKÁ UNIVERZITA V LIBERCI TECHNICKÁ UNIVERZIT V LIBERCI Savová regulace Liberec Ing. irolav Vavroušek . Savová regulace V práci e budu zabýva analýzou yému popaného diferenciální rovnicí: Řešení bude probíha pomocí yému TLB...

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

Diplomová práce. Plně aktivní podvozek automobilu. Pavel Mašita

Diplomová práce. Plně aktivní podvozek automobilu. Pavel Mašita Diplomová práce Plně aktivní podvoek automobilu Pavel Mašita Obsah Úvod Cíle práce Koncepce říení Rovinný model Prostorový model Říení Návrh trajektorie Experiment, vhodnocení Závěr Úvod Vývoj technik

Více

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut.

( ) ( ) NÁVRH CHLADIČE VENKOVNÍHO VZDUCHU. Vladimír Zmrhal. ČVUT v Praze, Fakulta strojní, Ústav techniky prostředí Vladimir.Zmrhal@fs.cvut. 21. konference Klimaizace a věrání 14 OS 01 Klimaizace a věrání STP 14 NÁVRH CHLADIČ VNKOVNÍHO VZDUCHU Vladimír Zmrhal ČVUT v Praze, Fakula srojní, Úsav echniky prosředí Vladimir.Zmrhal@fs.cvu.cz ANOTAC

Více

Matematika v automatizaci - pro řešení regulačních obvodů:

Matematika v automatizaci - pro řešení regulačních obvodů: . Komplexní čísla Inegrovaná sřední škola, Kumburská 846, Nová Paka Auomaizace maemaika v auomaizaci Maemaika v auomaizaci - pro řešení regulačních obvodů: Komplexní číslo je bod v rovině komplexních čísel.

Více

Zpracování výsledků dotvarovací zkoušky

Zpracování výsledků dotvarovací zkoušky Zpracování výsledků dovarovací zkoušky 1 6 vývoj deformace za konsanního napěí 5,66 MPa ˆ J doba zaížení [dny] počáek zaížení čas [dny] Naměřené hodnoy funkce poddajnosi J 12 1 / Pa 75 6 45 3 15 doba zaížení

Více

Dynamika hmotného bodu. Petr Šidlof

Dynamika hmotného bodu. Petr Šidlof Per Šidlof Úvod opakování () saika DYNAMIKA kinemaika Dynamika hmoného bodu Dynamika uhého ělesa Dynamika elasických ěles Teorie kmiání Aranz/Bombardier (Norwegian BM73) Před Galileem, Newonem: k udržení

Více

9 Viskoelastické modely

9 Viskoelastické modely 9 Viskoelasické modely Polymerní maeriály se chovají viskoelasicky, j. pod vlivem mechanického namáhání reagují současně jako pevné hookovské láky i jako viskózní newonské kapaliny. Viskoelasické maeriály

Více

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru

Klíčová slova: Astabilní obvod, operační zesilovač, rychlost přeběhu, korekce dynamické chyby komparátoru Asabilní obvod s reálnými operačními zesilovači Josef PUNČOCHÁŘ Kaedra eoreické elekroechniky Fakula elekroechnicky a informaiky Vysoká škola báňská - Technická universia Osrava ř. 17 lisopadu 15, 708

Více

Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14

Hydrostatické váhy. HANA MALINOVÁ Katedra didaktiky fyziky, MFF UK. Princip hydrostatického vážení. Veletrh nápadů učitelů fyziky 14 Velerh nápadů učielů fyziky 4 Hydrosaické váhy HANA MALINOVÁ Kaedra didakiky fyziky, MFF UK V příspěvku bude prezenována eoda hydrosaického vážení, kerá se používá na určování husoy různých aeriálů. Žáci

Více

Válcová momentová skořepina

Válcová momentová skořepina Válcová momenová skořepina Momenová skořepina je enkosěnné ěleso, jež nesplňuje předpoklady o membánové napjaosi. Válcová skořepina je vlášním případem skořepiny oačně symeické, musí edy splňova podmínky

Více

Nové indikátory hodnocení bank

Nové indikátory hodnocení bank 5. mezinárodní konference Řízení a modelování finančních rizik Osrava VŠB-TU Osrava, Ekonomická fakula, kaedra Financí 8. - 9. září 2010 Nové indikáory hodnocení bank Josef Novoný 1 Absrak Příspěvek je

Více

6.1 Shrnutí základních poznatků

6.1 Shrnutí základních poznatků 6.1 Shrnutí ákladních ponatků Prostorová a rovinná napjatost Prostorová napjatost v libovolném bodě tělesa je v pravoúhlé soustavě souřadnic obecně popsána 9 složkami napětí, které le uspořádat do matice

Více

I. Soustavy s jedním stupněm volnosti

I. Soustavy s jedním stupněm volnosti Jiří Máca - aedra mechaniy - B325 - el. 2 2435 45 maca@fsv.cvu.cz 1. Záladní úlohy dynamiy 2. Dynamicá zaížení 3. Pohybová rovnice 4. Volné nelumené miání 5. Vynucené nelumené miání 6. Přílady 7. Oáčivé

Více

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII

ZÁKLADY AUTOMATIZACE TECHNOLOGICKÝCH PROCESŮ V TEORII VYSOKÁ ŠKOL ÁŇSKÁ TEHNIKÁ UNIVERZIT OSTRV FKULT STROJNÍ ZÁKLDY UTOMTIZE TEHNOLOGIKÝH PROESŮ V TEORII Ing. Romana Garzinová, Ph.D. Ing. Ondřj Zimný, Ph.D. rof. Ing. Zora Jančíková, Sc. Osrava 0 Ing. Romana

Více

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454

Základní škola národního umělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 Základní škola národního uělce Petra Bezruče, Frýdek-Místek, tř. T. G. Masaryka 454 íé= Zpracováno v ráci OP VK - EU peníze školá Jednička ve vzdělávání CZ.1.07/1.4.00/21.2759 Název DUM: Hustota v praxi

Více

Selected article from Tento dokument byl publikován ve sborníku

Selected article from Tento dokument byl publikován ve sborníku Selected article from Tento dokument byl publikován ve sborníku Nové metody a postupy v oblasti přístrojové techniky, automatického řízení a informatiky 2018 New Methods and Practices in the Instrumentation,

Více

Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění

Hlavní body. Úvod do vlnění. Harmonické vlny. Energie a intenzita vlnění. Popis, periodicita v čase a prostoru Huygensův princip, odraz a lom vlnění Vlnění Úvod do vlnění Hlavní bod Harmoniké vln Popis, periodiia v čase a prosoru Hugensův prinip, odraz a lom vlnění Energie a inenzia vlnění Inerferene vln, Dopplerův jev Vln přenos kmiů prosorem Prosředím

Více

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou:

Funkční měniče. A. Na předloženém aproximačním funkčním měniči s operačním zesilovačem realizujícím funkci danou tabulkou: Funční měniče. Zadání: A. Na předloženém aproximačním funčním měniči s operačním zesilovačem realizujícím funci danou tabulou: proveďte: U / V / V a) pomocí oscilosopu měnič nastavte b) změřte na něm jeho

Více

Vliv funkce příslušnosti na průběh fuzzy regulace

Vliv funkce příslušnosti na průběh fuzzy regulace XXVI. ASR '2 Seminar, Insrumens and Conrol, Osrava, April 26-27, 2 Paper 2 Vliv funkce příslušnosi na průběh fuzzy regulace DAVIDOVÁ, Olga Ing., Vysoké učení Technické v Brně, Fakula srojního inženýrsví,

Více

Teorie obnovy. Obnova

Teorie obnovy. Obnova Teorie obnovy Meoda operačního výzkumu, kerá za pomocí maemaických modelů zkoumá problémy hospodárnosi, výměny a provozuschopnosi echnických zařízení. Obnova Uskuečňuje se až po uplynuí určiého času činnosi

Více

MODELOVÁNÍ A ŘÍZENÍ INVERZNÍHO KYVADLA Michalík Michal Katedra elektromechaniky a výkonové elektroniky, Západočeská univerzita v Plzni Abstrakt Tento příspěvek se zabývá rovinnou úlohou simultánního balancování

Více

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07

SIMULACE. Numerické řešení obyčejných diferenciálních rovnic. Měřicí a řídicí technika přednášky LS 2006/07 Měřicí a řídicí echnika přednášky LS 26/7 SIMULACE numerické řešení diferenciálních rovnic simulační program idenifikace modelu Numerické řešení obyčejných diferenciálních rovnic krokové meody pro řešení

Více

3.1.3 Rychlost a zrychlení harmonického pohybu

3.1.3 Rychlost a zrychlení harmonického pohybu 3.1.3 Rychlost a zrychlení haronického pohybu Předpoklady: 312 Kroě dráhy (výchylky) popisujee pohyb i poocí dalších dvou veličin: rychlosti a zrychlení. Jak budou vypadat jejich rovnice? Společný graf

Více

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = =

Diferenciální počet funkcí více reálných proměnných SLOŽENÉ FUNKCE. PŘÍKLAD 1 t, kde = = Diferenciální poče funkcí více reálných proměnných -- SLOŽENÉ FUNKCE PŘÍKLAD Určee derivaci funkce h ( = f( g( g( kde g ( = + g ( = f ( / = e Podle pravidla o derivování složených funkcí více proměnných

Více

Základy matematiky pracovní listy

Základy matematiky pracovní listy Dagmar Dlouhá, Michaela Tužilová Katedra matematiky a deskriptivní geometrie VŠB - Technická univerzita Ostrava Úvod Pracovní listy jsou určeny pro předmět Základy matematiky vyučovaný Katedrou matematiky

Více

NEW LABORATORY TASK MEMS ACCELEROMETER SENSOR. František HRUŠKA

NEW LABORATORY TASK MEMS ACCELEROMETER SENSOR. František HRUŠKA /009 Volume Issue ISSN 80-57X OTHER RTICLES NEW LBORTORY TSK MEMS CCELEROMETER SENSOR rantišek HRUŠK Resumé: MEMS technolog in the field of sensors is subject with great progress. evelopment of new laborator

Více

1 - Úvod. Michael Šebek Automatické řízení

1 - Úvod. Michael Šebek Automatické řízení 1 - Úvod Michael Šebek Auomaické řízení 2018 9-6-18 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo) Sysém: určiá čás objeku, kerou se zabýváme, řídíme, Moor, sojka,

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

9.2. Zkrácená lineární rovnice s konstantními koeficienty

9.2. Zkrácená lineární rovnice s konstantními koeficienty 9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,

Více

Laplaceova transformace Modelování systémů a procesů (11MSP)

Laplaceova transformace Modelování systémů a procesů (11MSP) aplaceova ransformace Modelování sysémů a procesů (MSP) Bohumil Kovář, Jan Přikryl, Miroslav Vlček 5. přednáška MSP čvrek 2. března 24 verze: 24-3-2 5:4 Obsah Fourierova ransformace Komplexní exponenciála

Více

Laborato regula ních systém a prost edk Název prezentace ídicích systém Umíst ní laborato E228 Správce laborato Ing. Št pán O ana, Ph.D.

Laborato regula ních systém a prost edk Název prezentace ídicích systém Umíst ní laborato E228 Správce laborato Ing. Št pán O ana, Ph.D. Laboratoř regulačních systémů a prostředků Náev preentace řídicích systémů Umístění laboratoře: E228 Správce laboratoře: Ing. Štěpán Ožana, Ph.D. Zaměření laboratoře Návrh a realiace měřicích a řídicích

Více

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS

ZÁKLADY ELEKTRICKÝCH POHONŮ (EP) Určeno pro posluchače bakalářských studijních programů FS ZÁKLADY ELEKTRICKÝCH OHONŮ (E) Určeno pro posluchače bakalářských sudijních programů FS Obsah 1. Úvod (definice, rozdělení, provozní pojmy,). racovní savy pohonu 3. Základy mechaniky a kinemaiky pohonu

Více

České vysoké učení technické v Praze

České vysoké učení technické v Praze České vysoké učení echnické v Praze Fakula elekroechnická Kaedra řídící echniky Bakalářská práce Sysém roačního inverzního kyvadla Praha 7 Bohumír Baier Absrak Tao práce se zabývá idenifikací a následným

Více

DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET

DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET DIGITÁLNÍ FILTRACE V REÁLNÍM ČASE PRO ZPRACOVÁNÍ BIOMEDICÍNSKÝCH SIGNÁLŮ POMOCÍ MATLAB - XPC TARGET Grobelný David, Martinák Lukáš, Nevřiva Pavel, Plešivčák Přemysl Department of measurement and control,

Více

Energetický audit. Energetický audit

Energetický audit. Energetický audit ČVUT v Praze Fakula savební Kaedra echnických zařízení budov Energeický audi VYHLÁŠ ÁŠKA č.. 213/2001 Sb. Minisersva průmyslu a obchodu ze dne 14. června 2001, kerou se vydávaj vají podrobnosi náležiosí

Více

4. Střední radiační teplota; poměr osálání,

4. Střední radiační teplota; poměr osálání, Sálavé a průmyslové vyápění (60). Sřední radiační eploa; poměr osálání, operaivní a výsledná eploa.. 08 a.. 08 Ing. Jindřich Boháč TEPLOTY Sřední radiační eploa - r Sálavé vyápění = PŘEVÁŽNĚ sálavé vyápění

Více

Repetitorium matematiky (soubor testů) KMA/P113

Repetitorium matematiky (soubor testů) KMA/P113 Univerzita J. E. Purkyně v Ústí nad Labem Přírodovědecká fakulta Repetitorium matematiky (soubor testů) KMA/P Lenka Součková Ústí nad Labem 0 Obor: Klíčová slova: Anotace: Fyzika (dvouoborové studium),

Více

Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost

Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost Vliv konfigurace obráběcího stroje na jeho prostorovou geometrickou přesnost Ing Martin Morávek Vedoucí práce: oc Ing avel Bach CSc bstrakt Úkolem této práce je sestavit sstém výpočtových rovnic pro charakteriování

Více

Bakalářská práce. Řízení tlumení vibrací mechanických soustav

Bakalářská práce. Řízení tlumení vibrací mechanických soustav Bakalářská práce Řízení tluení vibrací echanických soustav Praha 26 . Úvod...4 2. Popis odelů...5 2.. Čtvrtinový odel Autoobilu... 5 2... Diferenciální rovnice...6 2..2. Stavový popis...6 2..3. Chování

Více

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha.

Statika 1. Miroslav Vokáč ČVUT v Praze, Fakulta architektury. Statika 1. M. Vokáč. Plocha. Saika 1 Saika 1 2. přednáška ové veličin Saický momen Těžišě Momen servačnosi Hlavní ěžiš ové os a hlavní cenrální momen servačnosi Elipsa servačnosi Miroslav Vokáč miroslav.vokac@klok.cvu.cz Konrolní

Více

1.5.4 Kinetická energie

1.5.4 Kinetická energie .5.4 Kineicá energie Předolady: 50 Energie je jeden z nejoužívanějších, ale aé nejhůře definovaelných ojmů ve sředošolsé fyzice. V běžném živoě: energie = něco, co ořebujeme vyonávání ráce. Vysyuje se

Více

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

1 - Úvod. Michael Šebek Automatické řízení Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti 1 - Úvod Michael Šebek Auomaické řízení 2016 Evroský sociální fond Praha & EU: Invesujeme do vaší budoucnosi 23-2-16 Základní názvosloví Auomaické řízení - Kyberneika a roboika Objek: konkréní auo (amo)

Více

Příklad 4 Ohýbaný nosník - napětí

Příklad 4 Ohýbaný nosník - napětí Příklad 4 Oýaný nosník - napěí Teorie Prosý o, rovinný o Při prosé ou je průře naáán oový oene oáčející kole jedné lavníc os servačnosi průřeu, ovkle os. oen se načí neo jeno. Běžněji je ožné se seka s

Více

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel STAVEBNÍ STATIKA Ing. Petr Konečný, Ph.D. LPH 47/3 tel. 59 732 1394 petr.konecny@vsb.c http://fast1.vsb.c/konecny roklad síly v rovině síla pod úhlem γ - (k ose ) až -18 až +18 x A γ P P P x γ + x P x

Více

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s.

TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD. 9, m s. TÍHOVÉ ZRYCHLENÍ TEORETICKÝ ÚVOD Soustavu souřadnic spojenou se Zemí můžeme považovat prakticky za inerciální. Jen při několika jevech vznikají odchylky, které lze vysvětlit vlastním pohybem Země vzhledem

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. 6 Ing. Petra Schreiberová, Ph.D. Ostrava Ing. Petra Schreiberová, Ph.D. Vsoká škola báňská Technická

Více

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité

Téma 5 Kroucení Základní principy a vztahy Smykové napětí a přetvoření Úlohy staticky určité a staticky neurčité Pružnos a plasicia, 2.ročník bakalářského sudia Téma 5 Kroucení Základní principy a vzahy Smykové napěí a převoření Úlohy saicky určié a saicky neurčié Kaedra savební mechaniky Fakula savební, VŠB - Technická

Více

4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb

4. KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolují pohyb 2. pružně poddajné vazby - dovolují pohyb 4. MITÁNÍ VOLNÉ 4. Lineární kiání (haronický osciláor ve fyzice) Veli časný pohye honého odu je kiavý pohy. iání ude lineární, jesliže síla, kerá při výchylce x vrací honý od do rovnovážné polohy, je úěrná

Více

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu

Praktikum 1. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Úloha č...xvi... Název: Studium Brownova pohybu Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK Praktiku 1 Úloha č...xvi... Název: Studiu Brownova pohybu Pracoval: Jan Kotek stud.sk.: 17 dne: 7.3.2012 Odevzdal dne:... ožný počet

Více

Laboratorní mostový jeřáb. The Laboratory Overhead Crane 2012 FUNKČNÍ VZOREK. Název funkčního vzorku v originále. Název funkčního vzorku anglicky

Laboratorní mostový jeřáb. The Laboratory Overhead Crane 2012 FUNKČNÍ VZOREK. Název funkčního vzorku v originále. Název funkčního vzorku anglicky Název funkčního vzorku v originále Laboratorní mostový jeřáb Název funkčního vzorku anglicky The Laboratory Overhead Crane Obrázek 1: Fotografie funkčního vzorku Laboratorní mostový jeřáb (4DOHC) Autoři

Více

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y

DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE. y y Předmě: Ročník: Vvořil: Daum: MATEMATIKA ČTVRTÝ Mgr Tomáš MAŇÁK 5 srpna Název zpracovaného celku: DERIVACE A MONOTÓNNOST FUNKCE DERIVACE A MONOTÓNNOST FUNKCE je monoónní na celém svém deiničním oboru D

Více

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2

JAN JUREK. Jméno: Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENERÁTORU FUNKCÍ Číslo měření: 6. Třída: E4B Skupina: 2 STŘEDNÍ ŠKOLA ELEKTOTECNICKÁ FENŠTÁT p.. Jméno: JAN JEK Podpis: Název měření: OVĚŘOVÁNÍ ČINNOSTI GENEÁTO FNKCÍ Číslo měření: 6 Zkoušené předměy: ) Komparáor ) Inegráor ) Generáor unkcí Funkce při měření:

Více

Fyzikální korespondenční seminář MFF UK

Fyzikální korespondenční seminář MFF UK Úloha V.E... gumipuk 8 bodů; průměr 4,40; řešilo 25 studentů Závaží o hmotnosti m na gumičce délk l 0 je zavěšeno v pevném bodě o souřadnicích = = 0 a = 0. Z os, která je horizontálně, závaží pouštíme.

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice

Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Střídavý proud Vznik střídavého proudu Obvod střídavého proudu Výkon Střídavý proud v energetice Vznik střídavého proudu Výroba střídavého napětí:. indukční - při otáčivé pohybu cívky v agnetické poli

Více

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016

e²ení testu 1 P íklad 1 v 1 u 1 u 2 v 2 Mechanika a kontinuum NAFY listopadu 2016 e²ení testu Mechania a ontinuu NAFY00 8. listopadu 06 P ílad Zadání: Eletron o ineticé energii E se srazí s valen ní eletrone argonu a ionizuje jej. P i ionizaci se ást energie nalétávajícího eletronu

Více

Identifikace dynamických vlastností soustavy s ruční zpětnou vazbou

Identifikace dynamických vlastností soustavy s ruční zpětnou vazbou Proceedngs of Internatonal Scentfc Conference of FME Sesson 4: Automaton Control and Appled Informatcs Paper 4 Identface dnamcých vlastností soustav s ruční pětnou vabou TŮMA, Jří DocIngCSc, VŠB - T Ostrava,

Více