Body. 5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [8 bodů] Vypočtěte dvojný integrál x 2 dxdy. Množina
|
|
- Michaela Beranová
- před 6 lety
- Počet zobrazení:
Transkript
1 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] (Jerold T. Hanh [984], Tree volume and biomass equations for the lake states.) Odhad pro objem stromu v okolí jezera ichigan je dán vztahem 5. [0 bodů] Vyřešte diferenciální rovnici y + 2y + y = 2. V = b 0 + b D 2 H, kde V je brutto objem, D průměr v úrovni prsou, H užitková délka a b 0, b empirické koeficienty. Vyjádřete D jako funkci ostatních parametrů. 2. [4 bodů] Uvažujme diferenciální operátor L[y] = y + a()y. 6. [8 bodů] Vypočtěte dvojný integrál 2 ddy. nožina i funkce, která ji ohraničuje, jsou na obrázku. Případné body důležité pro výpočet integrálu si dopočítejte sami. y a) Dokažte, že zadaný operátor je lineární. b) Ukažte, jak se námi uvažovaný operátor chová vzhledem k součinu funkcí, tj. jsou-li u a v funkce, napište, čemu se rovná L[uv] c) Ukažte, jak se námi uvažovaný operátor chová vzhledem k součinu kostanty a funkce, tj. jsou-li C konstanta a u funkce, napište, čemu se rovná L[Cu] y = ( ) 2 3. [6 bodů] a) Napište, obecný tvar diferenciální rovnice se separovanými proměnnými. b) Jak poznáme, zda rovnice y = f(, y) je či není rovnice se separovatelnými proměnnými. Napište efektivní nutnou a postačující podmínku na funkci f, která zaručí, že uvažovaná rovnice je rovnicí se separovanými proměnnými. 4. [4 body] Napište definici a) parciální derivace podle, b) parciální derivace podle y a c) suprema množiny. 7. [4 body] Vypočtěte obě parciální derivace prvního řádu funkce z = 2 + y 2 8. [4 body] Je dán autonomní systém = 2 y y = y 2 a jeho stacionární bod [, ]. Určete vlastní hodnoty Jakobiho matice v tomto bodě a typ stacionárního bodu. Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od :00 do :5. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 = arcsin 2 A 2 ± B = ln + 2 ± B 2 + A 2 d = A arctan A A 2 d = 2 2A ln A + A
2 2
3 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] (Vyhláška inisterstva zemědělství č. 55/999 Sb., o způsobu výpočtu výše újmy nebo škody způsobené na lesích 9) Škoda ze snížení přírůstu lesního porostu v důsledku okusu zvěří nebo hospodářskými zvířaty se vypočte podle vzorce S = ZK N p N kde S je roční škoda ze snížení přírůstu lesního porostu v důsledku okusu zvěří nebo hospodářskými zvířaty, Z je hodnota ročního přírůstu podle skupin dřevin uvedená v příloze vyhlášky, K je koeficient vyjadřující míru poškození podle stupňů poškození, jehož hodnota se určí podle přílohy, N p je počet poškozených sazenic, maimálně však,3 násobek minimálního počtu a N je skutečný počet jedinců, maimálně do výše,3 násobku minimálního počtu. Pro správné stanovení a případnou opravu koeficientu K je nutno umět tento koeficient vyjádřit jako funkci ostatních proměnných. Vypočtěte ze vzorce K. 2. [4 bodů] Uvažujme diferenciální operátor prvního řádu L[y] = y + a()y. a) Dokažte, že zadaný operátor je lineární. b) Popište, jak spolu souvisí řešení nehomogenní a asociované homogenní lineární diferenciální rovnice. Jak tuto souvislost využíváme při hledání obecného řešení LDR? c) Ukažte, jak vlastnost popsaná v předchozím bodě vyplývá z linearity. 3. [6 bodů] Napište, jak poznáme zda funkce f(, y) dvou proměnných má ve svém stacionárním bodě ( 0, y 0 ) lokální etrém a jaký. 4. [4 body] Napište definici a) parciální derivace podle, b) parciální derivace podle y a c) hraničního bodu množiny R [8 bodů] Vyřešte diferenciální rovnici y + y + 2y =. 6. [8 bodů] Vypočtěte dvojný integrál ddy. nožina i funkce, která ji ohraničuje, jsou na obrázku. Případné body důležité pro výpočet integrálu si dopočítejte sami. y y = 2 7. [4 body] Vypočtěte obě parciální derivace prvního řádu funkce z = 2 ln( + y + ). 8. [6 bodů] Je dán autonomní systém a jeho stacionární bod S = = + y 2 y = y 2 + y [ 3 4, ]. 2 a) Určete vlastní hodnoty Jakobiho matice v tomto bodě a typ stacionárního bodu S. b) Najděte všechny stacionární body systému (Jakobiho matici v těchto bodech již nezkoumejte). Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od :00 do :5. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 = arcsin 2 A 2 ± B = ln + 2 ± B A 2 d = A arctan A A 2 d = 2 2A ln A + A
4 4
5 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] ( Chézyho_rovnice) Chézyho rovnice je vztahem pro výpočet rychlosti vody v otevřeném korytě v = C Ri, kde v označuje rychlost, R hydraulický poloměr, i sklon čáry energie a C je Chézyho rychlostní součinitel. Vyjádřete R jako funkci proměnných v, C a i. 2. [2 bodů] a) Napište definici parciálních derivací funkce dvou proměnných f(, z) podle a podle y. b) Napište vzorec pro tečnou rovinu ke grafu funkce dvou proměnných z = f(, y) v bodě ( 0, y 0 ). c) Napište vzorec pro lineární aproimaci funkce dvou proměnných z = f(, y) v okolí bodu ( 0, y 0 ). d) Zformulujte Schwarzovu větu o smíšených parciálních derivacích druhého řádu. 3. [4 body] Napište, jak spolu souvisí lokální etrémy funkce dvou proměnných a parciální derivace (Fermatova věta). 4. [8 bodů] Napište obecný tvar lineární diferenciální rovnice druhého řádu s konstantními koeficienty a rozepište všechny případy, jak volíme dvě lineárně nezávislá řešení a kdy jednotlivé případy nastávají. 5. [8 bodů] Vyřešte diferenciální rovnici y + 2y = 2 e [8 bodů] Vypočtěte dvojný integrál ddy. nožina je čtvrtina jednotkového kruhu v prvním kvadrantu (na obrázku). y 7. [4 body] Vypočtěte obě parciální derivace prvního řádu funkce z = 2 + y [6 bodů] Je dán autonomní systém = ( y) y = 2 + y 2 8 a jeho stacionární bod S = [2, 2]. a) Určete vlastní hodnoty Jakobiho matice v tomto bodě a typ stacionárního bodu S. b) Najděte všechny stacionární body systému (Jakobiho matici v těchto bodech již nezkoumejte). Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Výsledky budou zaslány hromadným em na adresu studentů přihlášených na termín. Opravené písemky je možné si prohlédnout v pátek v době 9:00 9:30 v B2. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 2 = arcsin A 2 ± B = ln + 2 ± B A 2 d = A arctan A A 2 2 d = 2A ln A + A
6 6
7 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] Objem válce o výšce 30cm je l. Při zachování poloměru je nutno objem válce zvětšit o 5%. Jaká musí být výška nového válce, aby měl požadovaný objem? Vzorce pro objem a povrch válce o poloměru podstavy r a výšce h jsou 2. [2 bodů] V = πr 2 h a S = 2πr(r + h). a) Napište definici parciálních derivací funkce dvou proměnných f(, z) podle a podle y. b) Napište vzorec pro hesián a velmi stručně popište, při studiu jakých objektů jsme hesián používali a k čemu. c) Napište vzorec pro Jacobiho matici a velmi stručně popište, při studiu jakých objektů jsme Jacobiho matici používali a k čemu. 3. [4 body] Buď A neprázdná zdola ohraničení množina reálných čísel. Definujte pojmy dolní závora množiny A a infimum množiny A. 4. [8 bodů] Dvojný integrál počítáme převodem na integrál dvojnásobný. Za určitých podmínek je možné jej vypočítat jednodušeji, jako součin dvou integrálů funkce jedné proměnné. Zformulujte tyto podmínky a zformulujte příslušnou větu o převodu dvojného integrálu na součin dvou integrálů funkce jedné proměnné. (Jedná se o jeden z důsledků Fubiniovy věty. Napište jenom tvrzení věty, odvození uváděné na přednášce nepište.) 5. [8 bodů] Vyřešte diferenciální rovnici y + y 2 e = [6 bodů] Vypočtěte dvojný integrál sin y ddy. nožina je zadána na obrázku. y π [6 bodů] Najděte jeden libovolný stacionární bod funkce z = 2 + 2y 2 2 a rozhodněte, zda v něm nastává lokální etréma jaký. (Stacionární body jsou celkem tři. Stačí najít a vyšetřovat jeden libovolný z nich.) 8. [6 bodů] Je dán autonomní systém = 2 + y 2 8 y = 2 + y 2 a jeho stacionární bod S = [2, 2]. a) Určete typ stacionárního bodu S. Načrtněte tvar trajektorií typický pro okolí stacionárního bodu tohoto typu. b) Najděte i všechny další stacionární body systému. Jejich typ nezkoumejte. Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Opravené písemky je možné si prohlédnout dnes od 2:00 do 2:5 v B44. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 2 = arcsin A 2 ± B = ln + 2 ± B A 2 d = A arctan A A 2 2 d = 2A ln A + A
8 8
9 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] Hmotnost tatranek se po zavedení nové sazby DPH zmenšila ze 40 gramů na 33 gramů. O kolik to je procent? (Numericky dopočítávat nemusíte.) 2. [5 bodů] a) Napište rovnici pro tečnou rovinu ke grafu funkce z = f(, y) v bodě ( 0, y 0 ). b) Napište vzorec pro jeden krok velikosti h Eulerovou metodou pro počáteční úlohu y = f(, y), y( 0 ) = y [0 bodů] Vyřešte diferenciální rovnici y + 2y + y = 4e. Návod: partikulární řešení hledejte ve tvaru y p = (a+b)e 6. [4 body] Vypočtěte dvojný integrál ( 2 + y 2 )ddy. nožina je zadána na obrázku. y 3. [6 bodů] Buď L[y] = y + a()y lineární diferenciální operátor prvního řádu. Zapište pomocí tohoto operátoru následující výroky a) y je řešením rovnice y + a()y = sin(). b) y 2 je řešením rovnice y + a()y = 0. Jak musí vypadat pravá strana diferenciální rovnice, aby jedním z řešení byla c) funkce y + 2y 2 d) funkce 2y + y 2 4. [2 bodů] Vypište typy stacionárních bodů autonomních systémů a ke každému typu připojte obrázek zachycující typický tvar trajektorií a jak vypadají vlastní čísla v tomto bodě. Pokud pro daný typ stacionárního bodu eistuje stabilní a nestabilní varianta, uvažujte každou z těchto variant samostatně. 7. [8 bodů] Najděte všechny tři stacionární body funkce z = 2 y 2 + a rozhodněte, zda v nich nastávají lokální etrémy a jaké. 8. [5 bodů] Je dán autonomní systém = y y = 3 + y a jeho stacionární bod S = [2, 2]. Určete typ stacionárního bodu S. Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 2 = arcsin A 2 ± B = ln + 2 ± B A 2 d = A arctan A A 2 2 d = 2A ln A + A
10 0
11 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] aimální napětí τ ve smyku je při dimenzování nosníku dáno vzorcem τ = F a, πd 2 4 kde F a je síla a d jeden z rozměrů. Pro zadané F a a τ je nutno určit d. Vyjádřete z rovnice d jako funkci proměnných F a a τ. 2. [2 bodů] Buď L[y] = y + a()y lineární diferenciální operátor prvního řádu. a) Dokažte, že je opravdu lineární. Tj buď dokažte, že zachovává linární kombinaci funkcí, nebo že zachovává součet funkcí a násobek konstantou. b) Ukažte, jak z vlastností v předchozím bodě vyplývá, že násobek řešení homogenní lineární diferenciální rovnice prvního řádu ja také řešením této rovnice. c) Ukažte, jak z vlastností v prvním bodě vyplývá, že součet řešení dané nehomogenní LDR prvního řádu a asociované homogenní rovnice je řešením uvažované nehomogenní rovnice. 3. [5 bodů] V některých specializovaných případech je možno zapsat dvojný integrál jako součin dvou jednoduchých integrálů. Charakterizujte tyto případy. Přesněji: napište, jak musí vypadat integrační oblast, jak musí vypadat integrovaná funkce a jak vypadá výsledný vzorec. 4. [0 bodů] Vyřešte diferenciální rovnici y + 2y = e [6 bodů] Napište a) definici parciální derivace funkce z = f(, y) podle y, b) vzorec pro tečnou rovinu ke grafu funkce z = f(, y) v bodě ( 0, y 0 ). 6. [5 bodů] Vypočtěte dvojný integrál ( 2 + y 2 )ddy. nožina je zadána na obrázku. y 7. [7 bodů] Pro funkce f(, y) = 2e 2 y 2 a g = 2 + y 2 vypočtěte následující tři parciální derivace: f, f y, g y 8. [5 bodů] Je dán autonomní systém = 2 y y = + 2y 2 a jeho stacionární bod S = [, ]. Určete typ stacionárního bodu S. Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 2 = arcsin A 2 ± B = ln + 2 ± B 2 + A 2 d = A arctan A A 2 2 d = 2A ln A + A
12 2
13 Písemná zkouška z Inženýrské matematiky, (60 minut) Body Jméno: První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách.. [povinný] Při zkoumání proudění v otevřeném korytě se používá Froudeho číslo F, dané vzorcem F = v gh, kde v, g a h jsou příslušné fyzikální veličiny nebo konstanty. Vyjádřete z této rovnice veličinu h. 2. [6 bodů] Buď L[y] = y + a()y lineární diferenciální operátor prvního řádu. Dokažte, že je opravdu lineární. Tj buď dokažte, že zachovává linární kombinaci funkcí, nebo že zachovává součet funkcí a násobek konstantou. 3. [6 bodů] Napište, jak poznáme zda funkce f(, y) dvou proměnných má ve svém stacionárním bodě ( 0, y 0 ) lokální etrém a jaký. 4. [2 bodů] Napište a) Definici parciální derivace funkce z = f(, y) podle y. b) Vzorec pro tečnou rovinu ke grafu funkce z = f(, y) v bodě ( 0, y 0 ). c) Obecný tvar diferenciální rovnice se separovanými proměnnými. d) Kritérium, které umožňuje určit, zda rovnice y = ϕ(, y) je či není rovnicí se separovanými proměnnými. 5. [0 bodů] Vyřešte diferenciální rovnici y + 2y =. Návod: Při výpočtu využijte jeden z integrálů na dolní straně této stránky. 6. [5 bodů] Vypočtěte dvojný integrál ddy. nožina je zadána na obrázku. y [6 bodů] Pro funkci f(, y) = 2 ln( 2 y 2 ) vypočtěte obě parciální derivace prvního řádu. 8. [5 bodů] Je dán autonomní systém = y y = 2 y 2 3 a jeho stacionární bod S = [2, ]. Určete typ stacionárního bodu S. Požadavek: Povinný příklad a u dalších příkladů zisk alespoň 6 bodů z 50 možných. Známky budou zapsány do UISu až po zapsání do indeu! Řešení příkladů budou na webových stránkách předmětu. Informace o tom, kdy a kam se přijít podívat na písemky a nechat si zapsat známku podá dozor u termínu. Jakákoli komunikace s ostatními studenty nebo použití taháků má za následek klasifikaci F a propadnutí všech následujících termínů. Vzorce nejsou povoleny. A 2 2 d = arcsin A e 2 d = 2 e2 2 ± B d = ln + 2 ± B e 2 d = (2 )e A 2 d = A arctan A e 2 d = 2 e 2 A 2 2 d = 2A ln A + A e 2 d = (2 + )e 2 4
14 4
5. [10 bodů] Vyřešte diferenciální rovnici y + 2y + y = x [4 body] Je dán autonomní systém
Inženýrská matematika Ukázk a archiv závěrečných písemných prací jaro 05 Vtvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakult ENDELU v Brně (LDF) s ohledem na
7.[4body] Jedánautonomnísystém. 8.[4 body] Integrál
Písemná část zkoušky z Inženýrské matematiky, 9.2.20(60 minut) Body Jméno:... 2 3 4 5 6 7 8 První příklad vypočítejte na samostatný podepsaný papír a odevzdejte po 5 minutách..[povinný] Pro mytí autobusů
Zkouška ze Základů vyšší matematiky ZVMTA (LDF, ) 60 minut. Součet Koeficient Body
Zkouška ze Základů vyšší matematiky ZVTA (LDF, 8.2.202) 60 minut 2 3 4 5 6 7 Jméno:................................. Součet Koeficient Body. [6 bodů] a) Definujte pojem primitivní funkce. Co musí platit,
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, minut. Součet Koeficient Body. 4. [10 bodů] Integrální počet. 5.
Zkouška ze Aplikované matematiky pro Arboristy (AMPA), LDF, 6.2.204 60 minut 2 3 4 5 6 Jméno:................................... Součet Koeficient Body. [2 bodů] V následující tabulce do každého z šesti
Přednášky z předmětu Aplikovaná matematika, rok 2012
Přednášky z předmětu Aplikovaná matematika, rok 2012 Robert Mařík 23. ledna 2015 2 Obsah 1 Přednášky 2012 5 2 Písemky 2012 9 3 4 OBSAH Kapitola 1 Přednášky 2012 1. prednaska, 16.2.2012 -----------------------
Základy vyšší matematiky arboristika Zadání písemek ze školního roku
Základy vyšší matematiky arboristika Zadání písemek ze školního roku 20 202 Robert ařík 9. ledna 203 Níže najdete zadání písemek předmětu ZVTA. Za některými písemkami je vloženo i řešení. Písemná část
Kapitola 1. Léto 2011
Kapitola 1 Léto 2011 1 Písemná část zkoušky z Matematiky (LDF, 25.5.2011) 60 minut Jméno:................................. 1. [11 bodů] Vyšetřete průběh funkce 1 y (určete intervaly kde je 2 ( + 1) funkce
6. [8 bodů] Neurčitý integrál
Zkouška ze Aplikované matematiky pro arboristy, LDF, 9..205, 60 minut 2 3 4 5 6 Jméno:................................... Body Známka. [2 bodů] Prostá a inverzní funkce a) Definujte pojmy prostá funkce
Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
METODICKÝ NÁVOD MODULU
Centrum celoživotního vzdělávání METODICKÝ NÁVOD MODULU Název Základy matematiky modulu: Zkratka: ZM Počet kreditů: 4 Semestr: Z/L Mentor: Petr Dolanský Tutor: Petr Dolanský I OBSAH BALÍČKU STUDIJNÍCH
Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené
22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které
Matematika I A ukázkový test 1 pro 2014/2015
Matematika I A ukázkový test 1 pro 2014/2015 1. Je dána soustava rovnic s parametrem a R x y + z = 1 x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a a) Napište Frobeniovu větu (existence i počet řešení). b)
Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏ Bonus
Zkoušková písemná práce č. 1 z předmětu 01MAB4 pondělí 25. května 2015, 9:00 11:00 Vypočítejte integrál y d(, y), kde Ω Objekt Ω načrtněte do obrázku! Ω = { (, y) R 2 :, y 0 4 + y 4 1 ( 4 + y 4 ) 3 16
Matematika I A ukázkový test 1 pro 2011/2012. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a
Matematika I A ukázkový test 1 pro 2011/2012 1. Je dána soustava rovnic s parametrem a R x y + z = 1 a) Napište Frobeniovu větu. x + y + 3z = 1 (2a 1)x + (a + 1)y + z = 1 a b) Vyšetřete počet řešení soustavy
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2
Vysoké učení technické v Brně, Fakulta strojního inženýrství MATEMATIKA 2 Požadavky ke zkoušce pro skupinu C 1. ročník 2014/15 I. Diferenciální počet funkcí více proměnných 1. Funkce více proměnných (a)
Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,
Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()
y = 1 x (y2 y), dy dx = 1 x (y2 y) dy y 2 = dx dy y 2 y y(y 4) = A y + B 5 = A(y 1) + By, tj. A = 1, B = 1. dy y 1
ODR - řešené příkla 20 5 ANALYTICKÉ A NUMERICKÉ METODY ŘEŠENÍ ODR A. Analtické meto řešení Vzorové příkla: 5.. Příklad. Řešte diferenciální rovnici = 2. Řešení: Přepišme danou rovnici na tvar = (2 ), což
Teorie. Hinty. kunck6am
kytaristka@gmail.com www.natur.cuni.cz/ kunck6am 5. cvičení Teorie Definice. Necht funkce f je definována na neprázdném otevřeném intervalu I. Řekneme, že funkce F je primitivní funkce k f na I, jestliže
MATEMATIKA II - vybrané úlohy ze zkoušek (2015)
MATEMATIKA II - vybrané úlohy ze zkoušek (2015) doplněné o další úlohy 24. 2. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi (e-mail: Frantisek.Mraz@fs.cvut.cz
Substituce ve vícenásobném integrálu verze 1.1
Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.
Příklady ke zkoušce z Aplikované matematiky
Příklady ke zkoušce z Aplikované matematiky Robert Mařík 2. února 205 Odpovědi nechápejte prosím jako vzorové odpovědi na jedničku. Často nejsou úplné, neodpovídají na všechny části otázky a slouží spíše
Zimní semestr akademického roku 2014/ prosince 2014
Cvičení k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikované matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičení Zimní semestr akademického roku 24/25 2. prosince 24 Předmluva iii
Pro jakou hodnotu parametru α jsou zadané vektory kolmé? (Návod: Vektory jsou kolmé, je-li jejich skalární součin roven nule.)
Vybrané příklady ze skript J. Neustupa, S. Kračmar: Sbírka příkladů z Matematiky I I. LINEÁRNÍ ALGEBRA I.. Vektory, vektorové prostory Jsou zadány vektory u, v, w a reálná čísla α, β, γ. Vypočítejte vektor
Příklady pro předmět Aplikovaná matematika (AMA) část 1
Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1
Matematická analýza 1, příklady na procvičení (Josef Tkadlec, )
Matematická analýza, příklady na procvičení (Josef Tkadlec, 6.. 7) Reálná čísla. Určete maximum, minimum, supremum a infimum následujících množin: Z; b) M = (, ), 5 ; c) M =, Q; d) M = { + n : n N}; e)
1. Obyčejné diferenciální rovnice
& 8..8 8: Josef Hekrdla obyčejné diferenciální rovnice-separace proměnných. Obyčejné diferenciální rovnice Rovnice, ve které je neznámá funkcí a v rovnici se vyskytuje spolu se svými derivacemi, se nazývá
1 1 x 2. Jedná se o diferenciální rovnici se separovanými proměnnými, která má smysl pro x ±1 a
. Řešené úlohy Příklad. (separace proměnných). Řešte počáteční úlohu y 2 + yy ( 2 ) = 0, y(0) = 2. Řešení. Rovnici přepíšeme do tvaru y 2 = yy ( 2 ) y = y2 y 2. Jedná se o diferenciální rovnici se separovanými
I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou
Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici
Otázky k ústní zkoušce, přehled témat A. Číselné řady
Otázky k ústní zkoušce, přehled témat 2003-2004 A Číselné řady Vysvětlete pojmy částečný součet řady, součet řady, řadonverguje, řada je konvergentní Formulujte nutnou podmínku konvergence řady a odvoďte
13. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET
. DIFERENCIÁLNÍ A INTEGRÁLNÍ POČET Dovednosti: Chápat pojem limita funkce v bodě a ovládat výpočet jednoduchých limit.. Na základě daného grafu funkce umět odhadnout limity v nevlastních bodech a nevlastní
MATEMATIKA I - vybrané úlohy ze zkoušek v letech
MATEMATIKA I - vybrané úlohy ze zkoušek v letech 008 0 doplněné o další úlohy. část DIFERENCIÁLNÍ POČET funkcí jedné proměnné Další část ( integrální počet) bude vydána na konci listopadu 9. 9. 0 Případné
Soustavy lineárních diferenciálních rovnic I. řádu s konstantními koeficienty
Soustavy lineárních diferenciálních rovnic I řádu s konstantními koeficienty Definice a) Soustava tvaru x = ax + a y + az + f() t y = ax + a y + az + f () t z = a x + a y + a z + f () t se nazývá soustava
CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19
CVIČNÝ TEST 5 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Zjednodušte výraz (2x 5) 2 (2x 5) (2x + 5) + 20x. 2 Určete nejmenší trojciferné
5.3. Implicitní funkce a její derivace
Výklad Podívejme se na následující problém. Uvažujme množinu M bodů [x,y] R 2, které splňují rovnici F(x, y) = 0, M = {[x,y] D F F(x,y) = 0}, kde z = F(x,y) je nějaká funkce dvou proměnných. Je-li F(x,y)
2. Určte hromadné body, limitu superior a limitu inferior posloupností: 2, b n = n. n n n.
Písemka matematika 3 s řešením 1. Vypočtěte lim n( 1 + n 2 n), n lim n (( 1 + 1 n e ) n ) n. 1/2, 1/ e 2. Určte hromadné body, limitu superior a limitu inferior posloupností: a n = sin nπ ( 2, b n = n
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015)
MATEMATIKA II - vybrané úlohy ze zkoušek ( 2015 doplněné o další úlohy 13. 4. 2015 Nalezené nesrovnalosti ve výsledcích nebo připomínky k tomuto souboru sdělte laskavě F. Mrázovi ( e-mail: Frantisek.Mraz@fs.cvut.cz.
LDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
DEFINICE,VĚTYADŮKAZYKÚSTNÍZKOUŠCEZMAT.ANALÝZY Ib
INFORMACE O PRŮBĚHU A POŽADAVKY KE ZKOUŠCE Z MAT. ANALÝZYIbVLS2010/11 Ke zkoušce mohou přistoupit studenti, kteří získali zápočet. Do indexu jej zapíši na zkoušce, pokud cvičící potvrdí, že na něj student
pouze u některých typů rovnic a v tomto textu se jím nebudeme až na
Matematika II 7.1. Zavedení diferenciálních rovnic Definice 7.1.1. Rovnice tvaru F(y (n), y (n 1),, y, y, x) = 0 se nazývá diferenciální rovnice n-tého řádu pro funkci y = y(x). Speciálně je F(y, y, x)
NMAF 051, ZS Zkoušková písemná práce 16. ledna 2009
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte. Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů. Jméno a příjmení: Skupina: Příklad 3 5 Celkem bodů Bodů 8
Úvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH
DERIVACE FUKNCÍ VÍCE PROMĚNNÝCH Reálná funkce dvou proměnných a definiční obor Kartézský součin R R značíme R 2 R 2 je množina všech uspořádaných dvojic reálných čísel (rovina) Prvk R 2 jsou bod v rovině
Kapitola 10: Diferenciální rovnice 1/14
Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou
6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
Diferenciální rovnice 1
Diferenciální rovnice 1 Základní pojmy Diferenciální rovnice n-tého řádu v implicitním tvaru je obecně rovnice ve tvaru,,,, = Řád diferenciální rovnice odpovídá nejvyššímu stupni derivace v rovnici použitému.
Diferenciální rovnice
Obyčejné diferenciální rovnice - studijní text pro cvičení v předmětu Matematika - 2. Studijní materiál byl připraven pracovníky katedry E. Novákovou, M. Hyánkovou a L. Průchou za podpory grantu IG ČVUT
Nalezněte hladiny následujících funkcí. Pro které hodnoty C R jsou hladiny neprázdné
. Definiční obor a hladiny funkce více proměnných Nalezněte a graficky znázorněte definiční obor D funkce f = f(x, y), kde a) f(x, y) = x y, b) f(x, y) = log(xy + ), c) f(x, y) = xy, d) f(x, y) = log(x
Diferenciální rovnice 3
Diferenciální rovnice 3 Lineární diferenciální rovnice n-tého řádu Lineární diferenciální rovnice (dále jen LDR) n-tého řádu je rovnice tvaru + + + + = kde = je hledaná funkce, pravá strana a koeficienty
INTEGRÁLY S PARAMETREM
INTEGRÁLY S PARAMETREM b a V kapitole o integraci funkcí více proměnných byla potřeba funkce g(x) = f(x, y) dy proměnné x. Spojitost funkce g(x) = b a f(x, y) dy proměnné x znamená vlastně prohození limity
Ukázka závěrečného testu
Okruhy otázek pro závěrečný test ) Vlastnosti funkce ) Graf funkce ) Definiční obor funkce ) imita funkce ) Derivace funkce 6) Užití derivace 7) Matice 8) Řešení soustavy lineárních rovnic 9) Určitý integrál
1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
Katedra matematiky Fakulty jaderné a fyzikálně inženýrské ČVUT v Praze Příjmení a jméno ➊ ➋ ➌ ➍ ➎ ➏
Cvičící: KOLAR KOSTKOVA KOZAK NOVAK STRACHOTA Zápočtová písemná práce č. 1 z předmětu 01MAB4 varianta A pondělí 13. dubna 2015, 11:20 13:20 ➊ (1 bod) Do tabulky výše vyplňte své příjmení a jméno a zakroužkujte
9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
8.4. Shrnutí ke kapitolám 7 a 8
8.4. Shrnutí ke kapitolám 7 a 8 Shrnutí lekce Úvodní 7. kapitola přinesla informace o druzích řešení diferenciálních rovnic prvního řádu a stručné teoretické poznatky o podmínkách existence a jednoznačnosti
Diferenciální počet funkcí více proměnných
Vysoké učení technické v Brně Fakulta strojního inženýrství Diferenciální počet funkcí více proměnných Doc RNDr Miroslav Doupovec, CSc Neřešené příklady Matematika II OBSAH Obsah I Diferenciální počet
1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v
. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x
ALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
Matematika I. dvouletý volitelný předmět
Název předmětu: Zařazení v učebním plánu: Matematika I O7A, C3A, O8A, C4A dvouletý volitelný předmět Cíle předmětu Tento předmět je koncipován s cílem usnadnit absolventům gymnázia přechod na vysoké školy
rovnic), Definice y + p(x)y = q(x), Je-li q(x) = 0 na M, nazývá se y + p(x)y =
Cíle Přehled základních typů diferenciálních rovnic prvního řádu zakončíme pojednáním o lineárních rovnicích, které patří v praktických úlohách k nejfrekventovanějším. Ukážeme například, že jejich řešení
Matematika 2 (2016/2017)
Matematika 2 (2016/2017) Co umět ke zkoušce Průběh zkoušky Hodnocení zkoušky Co umět ke zkoušce Vybrané partie diferenciálního počtu funkcí více proměnných Vybrané partie integrálního počtu funkcí více
MKI Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0.
MKI -00 Funkce f(z) má singularitu v bodě 0. a) Stanovte oblast, ve které konverguje hlavní část Laurentova rozvoje funkce f(z) v bodě 0. V jakém rozmezí se může pohybovat poloměr konvergence regulární
Limita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
MATEMATIKA III. Olga Majlingová. Učební text pro prezenční studium. Předběžná verze
Fakulta strojního inženýrství Univerzity J. E. Purkyně v Ústí nad Labem Pasteurova 7 Tel.: 475 285 511 400 96 Ústí nad Labem Fax: 475 285 566 Internet: www.ujep.cz E-mail: kontakt@ujep.cz MATEMATIKA III
Obsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
i=1 Přímka a úsečka. Body, které leží na přímce procházející body a a b můžeme zapsat pomocí parametrické rovnice
I. Funkce dvou a více reálných proměnných 1. Úvod Značení: V textu budeme používat označení: N pro množinu všech přirozených čísel; R pro množinu všech reálných čísel; R n pro množinu všech uspořádaných
Limita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
Věta 12.3 : Věta 12.4 (princip superpozice) : [MA1-18:P12.7] rovnice typu y (n) + p n 1 (x)y (n 1) p 1 (x)y + p 0 (x)y = q(x) (6)
1. Lineární diferenciální rovnice řádu n [MA1-18:P1.7] rovnice typu y n) + p n 1 )y n 1) +... + p 1 )y + p 0 )y = q) 6) počáteční podmínky: y 0 ) = y 0 y 0 ) = y 1 y n 1) 0 ) = y n 1. 7) Věta 1.3 : Necht
7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí
202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají
Petr Hasil
Základy Vyšší Matematiky Petr Hasil hasil@mendelu.cz Poznámka 1. Vytvořeno s podporou projektu Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na disciplíny
8.1. Separovatelné rovnice
8. Metody řešení diferenciálních rovnic 1. řádu Cíle V předchozí kapitole jsme poznali separovaný tvar diferenciální rovnice, který bezprostředně umožňuje nalézt řešení integrací. Eistuje široká skupina
1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu
[M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika BA01. Cvičení, zimní semestr DOMÁCÍ ÚLOHY. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika BA0 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 005 () Určete rovnici kručnice o poloměru
Uzavřené a otevřené množiny
Teorie: Uzavřené a otevřené množiny 2. cvičení DEFINICE Nechť M R n. Bod x M nazveme vnitřním bodem množiny M, pokud existuje r > 0 tak, že B(x, r) M. Množinu všech vnitřních bodů značíme Int M. Dále,
Řešení. Označme po řadě F (z) Odtud plyne, že
Úloha Nechť ~ R(, ) a Y = Jinak řečeno, Y je odmocnina čísla vybraného zcela náhodně z intervalu (, ) Popište rozdělení veličiny Y a určete jeho modus, medián, střední hodnotu a rozptyl Řešení Označme
Diferenciální rovnice
Diferenciální rovnice Průvodce studiem Touto kapitolou se náplň základního kurzu bakalářské matematiky uzavírá. Je tomu tak mimo jiné proto, že jsou zde souhrnně využívány poznatky získané studiem předchozích
dx se nazývá diferenciál funkce f ( x )
6 Výklad Definice 6 Nechť je 0 vnitřním bodem definičního oboru D f funkce f ( ) Funkce proměnné d = 0 definovaná vztahem df ( 0) = f ( 0) d se nazývá diferenciál funkce f ( ) v bodě 0, jestliže platí
( ) ( ) ( ) ( ) ( ) ( ) Užití derivací. x, x a, b : x x f x f x MATA P12. Funkce rostoucí a klesající: Definice rostoucí a klesající funkce
MATA P1 Užití derivací Funkce rostoucí a klesající: Deinice rostoucí a klesající unkce Funkce je rostoucí v intervalu (a,b), právě když platí: ( ) ( ) ( ), a, b : 1 1 1 Funkce je klesající v intervalu
MATEMATIKA II - vybrané úlohy ze zkoušek v letech
MATEMATIKA II - vybrané úlohy ze zkoušek v letech 2009 2012 doplněné o další úlohy 3. část KŘIVKOVÉ INTEGRÁLY, GREENOVA VĚTA, POTENIÁLNÍ POLE, PLOŠNÉ INTEGRÁLY, GAUSSOVA OSTROGRADSKÉHO VĚTA 7. 4. 2013
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál
Drsná matematika III 1. přednáška Funkce více proměnných: křivky, směrové derivace, diferenciál Jan Slovák Masarykova univerzita Fakulta informatiky 16. 9. 2008 Obsah přednášky 1 Literatura 2 Funkce a
NMAF 051, ZS Zkoušková písemná práce 26. ledna x. x 1 + x dx. q 1. u = x = 1 u2. = 1 u. u 2 (1 + u 2 ) (1 u 2 du = 2.
Jednotlivé kroky při výpočtech stručně, ale co nejpřesněji odůvodněte Pokud používáte nějaké tvrzení, nezapomeňte ověřit splnění předpokladů Jméno a příjmení: Skupina: Příklad 4 Celkem bodů Bodů 5 6 8
II.7.* Derivace složené funkce. Necht jsou dány diferencovatelné funkce z = f(x,y), x = x(u,v), y = y(u,v). Pak. z u = f. x x. u + f. y y. u, z.
II.7.* Derivace složené funkce Necht jsou dán diferencovatelné funkce z = f(,), = (u,v), = (u,v). Pak u = u + u, v = v + v. Vpočítejte derivace daných diferencovatelných funkcí. Příklad 0. Jsou dán diferencovatelné
8.3). S ohledem na jednoduchost a názornost je výhodné seznámit se s touto Základní pojmy a vztahy. Definice
9. Lineární diferenciální rovnice 2. řádu Cíle Diferenciální rovnice, v nichž hledaná funkce vystupuje ve druhé či vyšší derivaci, nazýváme diferenciálními rovnicemi druhého a vyššího řádu. Analogicky
Matematická analýza III.
2. Parciální derivace Miroslav Hušek, Lucie Loukotová UJEP 2010 Parciální derivace jsou zobecněním derivace funkce jedné proměnné. V této kapitole poznáme jejich základní vlastnosti a využití. Co bychom
Parciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Funkce dvou a více proměnných
Funkce dvou a více proměnných. Motivace V praxi nevstačíme s funkcemi jedné proměnné, většina veličin závisí více než na jedné okolnosti, např.: obsah obdélníka: S( ) kinetická energie: Ek = = x mv ekonomika:
WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017
Matematika I - Sbírka příkladů WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 7 Obsah Limity a spojitost. l Hôpitalovo pravidlo zakázáno............................ 4. l Hôpitalovo pravidlo povoleno............................
Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých
Obyčejné diferenciální rovnice Obyčejnými diferenciálními rovnicemi (ODR) budeme nazývat rovnice, ve kterých se vyskytují derivace neznámé funkce jedné reálné proměnné. Příklad. Bud dána funkce f : R R.
, = , = , = , = Pokud primitivní funkci pro proměnnou nevidíme, pomůžeme si v tuto chvíli jednoduchou substitucí = +2 +1, =2 1 = 1 2 1
ŘEŠENÉ PŘÍKLADY Z MB ČÁST 7 Příklad 1 a) Vypočtěte hmotnost oblasti ohraničené přímkami =1,=3,=1,= jestliže její hustota je dána funkcí 1,= ++1 b) Vypočtěte statický moment čtverce ohraničeného přímkami
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2
INŽENÝRSKÁ MATEMATIKA DIFERENCIÁLNÍ ROVNICE 2 Robert Mařík 5. října 2009 c Robert Mařík, 2009 Obsah 1 LDR druhého řádu 4 2 Homogenní LDR, lineární nezávislost a wronskián 9 3 Homogenní LDR s konstantními
Vybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 2017-2018 Vybrané kapitoly z matematiky 2017-2018 1 / 19 Základní informace předmět: 714-0513, 5 kreditů přednáší: Radek Kučera kontakt: radek.kucera@vsb.cz,
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/2 BA07. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/ BA07 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 0 () Integrace užitím základních vzorců.
ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika I/1 BA06. Cvičení, zimní semestr
Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika I/1 BA06 Cvičení, zimní semestr DOMÁCÍ ÚLOHY Jan Šafařík Brno c 2014 1 (1) Určete rovnici kručnice o
Extrémy funkce dvou proměnných
Extrémy funkce dvou proměnných 1. Stanovte rozměry pravoúhlé vodní nádrže o objemu 32 m 3 tak, aby dno a stěny měly nejmenší povrch. Označme rozměry pravoúhlé nádrže x, y, z (viz obr.). ak objem této nádrže
9.5. Soustavy diferenciálních rovnic
Cíle Budeme se nyní zabývat úlohami, v nichž je cílem najít dvojici funkcí y(x), z(x), pro které jsou zadány dvě lineární rovnice prvního řádu, obsahující tyto funkce a jejich derivace. Výklad Omezíme-li
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE
PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se