5.1.7 Vzájemná poloha přímky a roviny
|
|
- Antonie Hrušková
- před 6 lety
- Počet zobrazení:
Transkript
1 5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné je nechat na samostudium. Př. : Zakresli do standardní krychle rovinu. Jakým jiným zůsobem můžeme tuto rovinu označovat? Rovinu můžeme označovat libovolnou kombinací tří ze čtyř vrcholů ležících v horní stěně:,,,. Pedagogická oznámka: Předchozí říklad kontroluje, zda žáci odstranili roblémy s kreslením nejjednodušších rovin (hodina 05005). Př. 2: Kolik solečných bodů může mít římka s rovinou? Jaká je v každém takovém říadě jejich vzájemná oloha? emonstruj ve standardní krychli na rovině a římkách určených jejími vrcholy. Mohou nastat tři možnosti Přímka nemá s rovinou žádný solečný bod. Přímka má s rovinou nekonečně mnoho solečných bodů.
2 Přímka je rovnoběžná s rovinou. Přímka má s rovinou rávě jeden solečný bod. Přímka je různoběžná s rovinou. Pedagogická oznámka: Slabší žáci často vnímají rovinu ohraničeně jako čtverec, roto ři solečné kontrole ředchozího říkladu modeluji tužkou i římky, které se rovinou rotínají mimo odstavu. Př. 3: Je dána standardní krychle. Urči všechny římky určené vrcholy krychle a rocházející bodem, které jsou: a) rovnoběžné s rovinou, b) různoběžné s rovinou. římky rovnoběžné s rovinou římky různoběžné s rovinou 2
3 římky,,, římky,, Př. 4: Je dána standardní krychle. Urči všechny roviny, které jsou určeny vrcholy krychle, rochází bodem a jsou: a) rovnoběžné s římkou, b) různoběžné s římkou. roviny rovnoběžné s římkou roviny různoběžné s římkou jediná rovina (může být určena i jinak) roviny bočních stěn, a roviny, Jak oznáme, že je římka rovnoběžná s rovinou? Máme římku rovnoběžnou s rovinou ρ. Sojíme římku s rovinou omocí další roviny σ, která je s ρ různoběžná vznikne růsečnice. Jaká je vzájemná oloha a? 3
4 musí být rovnoběžná s. Proč? Kdyby a nebyly rovnoběžné, existoval by jejich růsečík P ( i leží v rovině σ a nemohou tedy být mimoběžné) Průsečík a by ležel v rovině σ i v rovině ρ ( leží v obou rovinách) to nemůže nastat, rotože růsečík P by ležel také na římce, která je s ρ rovnoběžná a tedy s ní nemůže mít žádné solečné body. Pokud budeme měnit roviny σ i, vzniknou růsečnice i. Všechny římky i jsou navzájem rovnoběžné (tranzitivnost rovnoběžnosti). Kritérium rovnoběžnosti římky a roviny: Přímka je rovnoběžná s rovinou ρ, jestliže v rovině ρ leží alesoň jedna římka, která je s římkou rovnoběžná. Př. 5: olň věty: a) Je-li q a q ρ, ak b) Je-li q a ρ, ak c) Je-li q a q není rovnoběžná s ρ, ak a) Je-li q a q ρ, ak ρ. b) Je-li q a ρ, ak q ρ. c) Je-li q a q není rovnoběžná s ρ, ak není rovnoběžná s ρ. Př. 6: Je dána standardní krychle. Urči vzájemnou olohu: a) římky SS a roviny b) římky SS a roviny c) římky SS a roviny d) římky SS a roviny e) římky SS a roviny a) římka SS a rovina b) římky SS a roviny 4
5 S S S S římka SS je různoběžná s rovinou (rovina je vodorovná, římka SS ne) c) římka SS a rovina římka SS je rovnoběžná s římkou S S, která leží v rovině římka S S je rovnoběžná s rovinou d) římka SS a rovina S S S S římka SS je rovnoběžná s rovinou (leží v ní) e) římka SS a rovina římka SS je rovnoběžná s římkou S S, která je rovnoběžná s římkou ležící v rovině římka SS je rovnoběžná s rovinou 5
6 S S S S zdá se, že římka SS je s rovinou různoběžná, ale ve skutečnosti směřuje také šikmo dolů nakreslíme si situaci zleva římka SS je rovnoběžná s římkou S S, která leží v rovině římka S S je rovnoběžná s rovinou Pedagogická oznámka: Z hlediska budoucnosti je na říkladu nejdůležitější zůsob, jakým žáci kreslí roviny v bodech c) a d). Jestliže i v tomto říkladu zůstávají u trojúhelníků, signalizuje to zásadní roblémy v budoucnu, je nanejvýš vhodné situaci začít řešit. od e) je ro studenty oměrně obtížný. Mohou si situaci namodelovat omocí krychličky. Pokud se jim ho neodaří vyřešit, není na místě anikařit. Jak najít římku rovnoběžnou se dvěma různoběžnými rovinami? Pokud je římka rovnoběžná s rovinou, rovina obsahuje její směr (nekonečně mnoho římek, které v rovině leží a jsou s ní rovnoběžné) obě roviny musí obsahovat její směr tento směr je oběma rovinám solečný je to směr jejich solečné římky (růsečnice). Př. 7: Je dána standardní krychle. Veď bodem S římku rovnoběžnou s rovinami a. Použijeme ředchozí úvahu: najdeme růsečnici rovin a, v bodě S narýsujeme rovnoběžku s nalezenou římkou. 6
7 S Př. 8: Petáková: strana 90/cvičení 2 a) b) c) d) strana 90/cvičení 5 b) Shrnutí: Přímka je rovnoběžná s rovinou ρ, rávě když v rovině leží římka rovnoběžná s římkou. 7
5.1.8 Vzájemná poloha rovin
5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat
VíceRoviny. 3.) MP O[5;7] Rovina je dána body A[-2;3;3], B[-4;1;5] a C[-7;4;1]. Zobrazte stopy roviny.
Roviny.) MP O 6 Zobrazte stoy rovin 6 ;3) a (-5;45 ;0 )..) MP O[9;5] Zobrazte stoy rovin (-4;h;4) a (5;;h). 3.) MP O[5;7] Rovina je dána body A[-;3;3], B[-4;;5] a C[-7;4;]. Zobrazte stoy roviny. 4.) MP
VíceHledání parabol
7.5.1 Hledání arabol Předoklad: 751, 7513 Pedagogická oznámka: Studenti jsou o řekonání očátečních roblémů s aměti vcelku úsěšní, všichni většinou zvládnou alesoň rvních ět říkladů. Hodinu organizuji tak,
VíceDalší polohové úlohy
5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad
Více5.2.4 Kolmost přímek a rovin II
5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze
Více1.3.3 Přímky a polopřímky
1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím
VíceŘezy těles rovinou II
5.1.10 Řezy těles rovinou II ředpoklady: 5109 e vždy nám vystačí spojování bodů a dělaní rovnoběžek. apříklad poslední příklad z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme pokračovat v řezu
VíceŘezy těles rovinou III
5.1.11 Řezy těles rovinou III ředpoklady: 5110 ř. 1: Je dána standardní krychle. estroj řez této krychle rovinou. roblém: Nemáme odkud začít, žádné dva ze zadaných bodů neleží ve stejné stěně krychle žádné
Více7.5.13 Rovnice paraboly
7.5.1 Rovnice arabol Předoklad: 751 Př. 1: Seiš všechn rovnice ro arabol a nakresli k nim odovídající obrázk. Na každém obrázku vznač vzdálenost. = = = = Pedagogická oznámka: Sesání arabol je důležité,
VíceS T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A
S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,
VíceMetrické vlastnosti v prostoru
Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii
Víces p nazýváme směrový vektor přímky p, t je parametr bodu
MATE ZS 2013 KONZ 3A Analytická geometrie lineárních útvarů v rovině a v rostoru Přímka v rovině 1 Parametrická rovnice římky v rovině: t R s o : X = A + t s, kde, Vektor s nazýváme směrový vektor římky,
VíceTechnická univerzita v Liberci. Fakulta přírodovědně-humanitní a pedagogická. Katedra matematiky a didaktiky matematiky PLOCHY PŘÍMKOVÉ
Technická univerzita v Liberci Fakulta řírodovědně-humanitní a edagogická Katedra matematiky a didaktiky matematiky PLOCHY PŘÍMKOÉ Pomocný učební text Petra Pirklová Liberec, leden 04 Přímková locha je
Více7.3.2 Parametrické vyjádření přímky II
7.. Parametriké vyjádření římky II Předoklady 701 Př. 1 Jso dány body [ ;] a [ ; 1]. Najdi arametriké vyjádření římky. Urči sořadnie bod C [ 1;? ] tak, aby ležel na říme. Na které části římky bod C leží?
Více3.1.1 Přímka a její části
3.1.1 Přímka a její části Předoklady: Pedagogická oznámka: Úvod do geometrie atří z hlediska výuky mezi nejroblematičtější části středoškolské matematiky. Několik rvních hodin obsahuje oakování ojmů a
Více( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302
7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.
Více5.2.1 Odchylka přímek I
5..1 Odchylka přímek I Předpoklady: 5110 Metrické vlastnosti určování měřitelných veličin (délky a velikosti úhlů) Výhoda metrické vlastnosti jsme už určovali v planimetrii můžeme si brát inspiraci Všechny
VíceŘezy těles rovinou III
5.1.11 Řezy těles rovinou III Předpoklady: 050110 Ne vždy nám vystačí spojování bodů a dělaní rovnoběžek. Jako třeba bod b) posledního příkladu z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme
VíceDvěma různými body prochází právě jedna přímka.
Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma
VíceSTEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...
STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...
VíceUžití stejnolehlosti v konstrukčních úlohách
Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz
Více5.1.2 Volné rovnoběžné promítání
5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty
VíceAnalytická metoda aneb Využití vektorů v geometrii
KM/GVS Geometrické vidění světa (Design) nalytická metoda aneb Využití vektorů v geometrii Použité značky a symboly R, C, Z obor reálných, komleních, celých čísel geometrický vektor R n aritmetický vektor
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ
11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti: 1. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
VíceTechnická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta řírodovědně-humanitní a edagogická Katedra matematik a didaktik matematik MONGEOVO PROMÍTÁNÍ Pomocný učební text Petra Pirklová Liberec, říjen 6 PROMÍTÁNÍ Promítání
VíceVzdálenost roviny a přímky
511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,
Více3.2.4 Podobnost trojúhelníků II
3..4 Podobnost trojúhelníků II Předpoklady: 33 Př. 1: V pravoúhlém trojúhelníku s pravým uhlem při vrcholu sestroj výšku na stranu. Patu výšky označ. Najdi podobné trojúhelníky. Nakreslíme si obrázek:
Více5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
VíceAnalytická geometrie. přímka vzájemná poloha přímek rovina vzájemná poloha rovin. Název: XI 3 21:42 (1 z 37)
Analytická geometrie přímka vzájemná poloha přímek rovina vzájemná poloha rovin Název: XI 3 21:42 (1 z 37) Název: XI 3 21:42 (2 z 37) Rovnice přímky a) parametrická A B A B C A X Název: XI 3 21:42 (3 z
VíceRovnice přímky v prostoru
Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé
VíceParabola a přímka
755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout
VícePracovní listy MONGEOVO PROMÍTÁNÍ
Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich
Více7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Více1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.
1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/
Více5.1.9 Řezy těles rovinou I
5.1.9 Řezy těles rovinou I ředpoklady: 5108 edagogická poznámka: ře kreslení řezů platí ještě více než u zbytku stereometrie, že v rychlosti postupu budou mezi žáky obrovské rozdíly. Učebnice s tím počítá
VíceP L A N I M E T R I E
M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů
VíceVzdálenosti přímek
5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
Více= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty
STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.
VíceMONGEOVO PROMÍTÁNÍ - 2. část
MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice
VíceVzdálenosti přímek
5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
Více2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21
2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému
Více14. přednáška. Přímka
14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1
Více( B A) ( ) Počítání s vektory. Předpoklady: 7204, 7205
76 Počítání s vektory Předpoklady: 704, 705 Pedagogická poznámka: V této hodině se neprobírá nová látka Jde o procvičení a některé aplikace předchozích hodin Rozhodně doporučuji nevynechávat Příklady v
Více3) Vypočtěte souřadnice průsečíku dané přímky p : x = t, y = 9 + 3t, z = 1 + t, t R s rovinou ρ : 3x + 5y z 2 = 0.
M1 Prog4 D1 1) Určete vektor c kolmý na vektory a = 2 i 3 j + k, b = i + 2 j 4 k. 2) Napište obecnou a parametrické rovnice roviny, která prochází bodem A[ 1; 1; 2] a je kolmá ke dvěma rovinám ρ : x 2y
Více1.5.2 Mechanická práce II
.5. Mechanická ráce II Předoklady: 50 Př. : Jakou minimální ráci vykonáš ři řemístění bedny o hmotnosti 50 k o odlaze o vzdálenost 5 m. Příklad sočítej dvakrát, jednou zanedbej třecí sílu mezi bednou a
VíceMONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]
ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ
VíceZákladní geometrické útvary
RMP 2 KS MS Základní geometrické útvary Bod, přímka, rovina základní geometrické pojmy, vznikly v našem vědomí abstrakcí poznatků reálného světa. V geometrii jsou zavedeny axiomaticky, tj. pomocí jednoduchých
VíceAXONOMETRIE - 2. část
AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.
Více[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]
Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.
VíceKonstrukce kružnic
3.4.10 Konstruce ružnic Předolady: 3404 Př. 1: Jsou dány body K, L a M. Narýsuj všechny ružnice, teré rochází těmito třemi body. Kružnice - množina bodů, teré mají stejnou vzdálenost od středu ružnice
VíceMATEMATIKA PŘÍKLADY NA PROCVIČENÍ Parametrický popis křivek
MATEMATIKA ŘÍKLADY NA RCVIČENÍ arametrický ois křivek 1 Jedánakřivka k(t)=[t t+ ; t 3 3t], t R. Nakresletečástkřivk kro t 3 ;3.Naišterovnicetečenkřivkvbodech k( 1), k(1) a k(). Dosazením několika hodnot
VíceSBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru
SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI
VíceNakloněná rovina III
6 Nakloněná rovina III Předoklady: 4 Pedagogická oznáka: Následující říklady oět atří do kategorie vozíčků Je saozřejě otázkou, zda tyto říklady v takové nožství cvičit Osobně se i líbí, že se studenti
VíceSTEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114
STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez
VícePatří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.
11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S
Více2.3.6 Práce plynu. Předpoklady: 2305
.3.6 Práce lynu Předoklady: 305 Děje v lynech nejčastěji zobrazujeme omocí diagramů grafů závislosti tlaku na objemu. Na x-ovou osu vynášíme objem a na y-ovou osu tlak. Př. : Na obrázku je nakreslen diagram
Více5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
VíceKonstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU
Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
VíceStřední příčky trojúhelníku
1.7.12 Střední příčky trojúhelníku Předpoklady: 010711 Př. 1: Narýsuj libovolný trojúhelník A (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused). Najdi středy všech stran S
VíceC. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU
36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka
VíceRozvoj prostorové představivosti
Rozvoj prostorové představivosti Rozvoj prostorové představivosti začínáme již v 1. ročníku základní školy, rozvojem vnějšní a vnitřní orientace ve čtvercové síti. Vnější orientace ve čtvercové síti je
Více1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další
VíceSTEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky
STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE
VíceVZÁJEMNÁ POLOHA DVOU PŘÍMEK
VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové
Více11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při
. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ Dovednosti:. Chápat pojmy orientovaná úsečka a vektor a geometrický význam součtu, rozdílu a reálného násobku orientovaných úseček a vektorů..
Více1.7.10 Střední příčky trojúhelníku
1710 Střední příčky trojúhelníku Předpoklady: Př 1: Narýsuj libovolný trojúhelník (zvol ho tak, aby se co nejvíce lišil od trojúhelníku, který narýsoval soused) Najdi středy všech stran S a, S b a S c
VícePravoúhlá axonometrie - řezy hranatých těles
Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA
VíceZÁKLADNÍ PLANIMETRICKÉ POJMY
ZÁKLADNÍ PLANIMETRICKÉ POJMY Základní geometrické pojmy jsou bod, přímka a rovina. Geometrie je chápána jako část matematiky, která se zabývá studiem geometrických útvarů v rovině. Body určujeme jako průsečíky
VícePLANIMETRIE 2 mnohoúhelníky, kružnice a kruh
PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh Lomená čára A 0 A 1 A 2 A 3..., A n (n 2) se skládá z úseček A 0 A 1, A 1 A 2, A 2 A 3,..., A n 1 A n, z nichž každé dvě sousední mají společný jeden krajní
VíceDeskriptivní geometrie 2
Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání
VíceMONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím
část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po
VíceKrychle. Předpoklady: Př. 3:
2.11.1 Krychle ředpoklady: 021101 ř. 1: Čím se vyznačuje krychle? Všechny hrany stejné dlouhé, všechny stěny shodné čtverce, sousední hrany navzájem kolmé, hrany kolmé na stěny, jde o analogii čtverce
Více( ) ( ) ( ) ( ) Skalární součin II. Předpoklady: 7207
78 Skalární součin II Předpoklady: 707 Pedagogická poznámka: Hodina má tři části, považuji tu prostřední za nejméně důležitou a proto v případě potřeby omezuji hlavně ji Na začátku hodiny je důležité nechat
VíceZákladní stereometrické pojmy
ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; trám, komín; střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou věží,
VíceNázev: Stereometrie řez tělesa rovinou
Název: Stereometrie řez tělesa rovinou Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Matematika (Deskriptivní geometrie) Tematický
Více5.1.4 Obrazy těles ve volném rovnoběžném promítání II
5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary
Více2.3.20 Grafické řešení soustav lineárních rovnic a nerovnic
.3.0 Grafické řešení soustav lineárních rovnic a nerovnic Předpoklad: 307, 311 Př. 1: Vřeš soustavu rovnic + =. Pokud se také o grafické řešení. = 5 Tak jednoduchou soustavu už jsme dlouho neměli: + =
VíceRovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R
Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice
VíceMatematika I, část I Vzájemná poloha lineárních útvarů v E 3
3.6. Vzájemná poloha lineárních útvarů v E 3 Výklad A. Vzájemná poloha dvou přímek Uvažujme v E 3 přímky p, q: p: X = A + ru q: X = B + sv a hledejme jejich společné body, tj. hledejme takové hodnoty parametrů
Více3.3.5 Množiny bodů dané vlastnosti II (osa úsečky)
3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) Předpoklady: 030304 Př. 1: Je dána úsečka, = 5,5cm. Narýsuj osu úsečky. Jakou vlastnost mají body ležící na této přímce? Pro všechny body na ose úsečky,
VíceZákladní stereometrické pojmy
ákladní stereometrické ojmy (ákladní ojmy a jejich modely) uer dvojče 01 a) hrací kostka, krabice; cihla, akvárium; c) trám, komín; d) střecha kostelní věže, svíčka (vhodného tvaru) e) střecha nad válcovou
VíceElementární plochy-základní pojmy
-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),
Více4.3.5 Dělení úseček. Předpoklady:
4..5 Dělení úseček Předpoklady: 04004 Př. : Jak se možné pomocí kružítka a pravítka rozdělit libovolnou úsečku bez měření na dva stejné díly. Na jaké další počty stejných dílů je možné tímto postupem úsečky
VíceKonstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44
Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání
VícePLANIMETRIE úvodní pojmy
PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést
Více7.2.1 Vektory. Předpoklady: 7104
7..1 Vektory Předpoklady: 7104 Některé fyzikální veličiny (například rychlost, síla) mají dvě charakteristiky: velikost, směr. Jak je znázornit? Jedno číslo (jako například pro hmotnost m = 55kg ) nestačí.
Více5.1.3 Obrazy těles ve volném rovnoběžném promítání I
5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit
Více1. MONGEOVO PROMÍTÁNÍ
Mongeovo promítání 1 1. MONGEOVO PROMÍTÁNÍ 1.1 Základní pojmy V Mongeově promítání promítáme na dvě navzájem kolmé průmětny. Vodorovná průmětna se nazývá půdorysna a značí se, svislá průmětna se nazývá
VíceVZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ
VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ
VíceFotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012
Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického
VíceZÁKLADNÍ ZOBRAZOVACÍ METODY
ZÁKLADNÍ ZOBRAZOVACÍ METODY Prostorové útvary zobrazujeme do roviny pomocí promítání, což je jisté zobrazení trojrozměrného prostoru (uvažujme rozšířený Eukleidovský prostor) do roviny, které je zadáno
VíceHranoly I. Předpoklady:
11 Hranoly I Předpoklady: 01101 Pedagogická poznámka: Při výuce v sekundě se jako největší problém ukázalo počítání s výrazy Ačkoliv žáci písmenka používali bez větších problémů v jednoduchých vzorcích
Více7.5.12 Parabola. Předpoklady: 7501, 7507. Pedagogická poznámka: Na všechny příklady je potřeba asi jeden a půl vyučovací hodiny.
75 Paabola Předoklad: 750, 7507 Pedagogická oznámka: Na všechn říklad je otřeba asi jeden a ůl vučovací hodin Paabolu už známe: matematika: Gafem každé kvadatické funkce = a + b + c je aabola fzika: Předmět,
VíceA[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz
1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině
VíceVŠB-Technická univerzita Ostrava
Úvod do promítání Mgr. František Červenka VŠB-Technická univerzita Ostrava 6. 2. 2012 Mgr. František Červenka (VŠB-TUO) Úvod do promítání 6. 2. 2012 1 / 15 osnova 1 Semestr 2 Historie 3 Úvod do promítání
VíceAB = 3 CB B A = 3 (B C) C = 1 (4B A) C = 4; k ]
1. část 1. (u 1, u 2, u, u 4 ) je kladná báze orientovaného vektorového prostoru V 4. Rozhodněte, zda vektory (u, 2u 1 + u 4, u 4 u, u 2 ) tvoří kladnou, resp. zápornou bázi V 4. 0 2 0 0 0 0 0 1 0 2 0
Více11 Vzdálenost podprostorů
11 Vzdálenost podprostorů 11.1 Vzdálenost bodů Eukleidovský bodový prostor E n = afinní bodový prostor, na jehož zaměření je definován skalární součin. (Pech:AGLÚ/str.126) Definováním skalárního součinu
VíceZápočtová úloha. Příčka mimoběžek. Grafický software ve výuce deskriptivní geometrie
Záočtová úloh Grfický softwre ve výuce deskritivní geometrie říčk mimoběžek Obsh: říčk mimoběžek dným bodem říčk mimoběžek rovnoběžná s dným směrem nejkrtší říčk mimoběžek vyrcovl: Jn Helm školní rok:
VíceMANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH
Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro
VíceGrafické řešení rovnic a jejich soustav
.. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu
Více