Řezy těles rovinou II

Rozměr: px
Začít zobrazení ze stránky:

Download "Řezy těles rovinou II"

Transkript

1 Řezy těles rovinou II ředpoklady: 5109 e vždy nám vystačí spojování bodů a dělaní rovnoběžek. apříklad poslední příklad z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme pokračovat v řezu levou ani zadní stěnou. rohlédneme si jeden z příkladů z minulé hodiny: R Trochu změníme zadání: 1

2 ř. 1: estroj řez krychle rovinou. R Jde o téměř stejný příklad jako v minulé hodině. od neleží na hraně ale na hraně v místě bodu. ové body leží ve stejné rovině jako u původního příkladu rovina řezu musí být stejná. omocí rovnoběžek se k řešení nedostaneme. římka musí určitě pokračovat do místa, kde ležel bod v původním zadání. Jak toto místo najdeme? Určitě leží také na přímce. protáhneme přímky a a hledáme jejich průsečík Získaný bod leží také v pravé stěně můžeme ho použít ke konstrukci řezu pravou stěnou. 2

3 R úsečka bod rovnoběžka s bodem bod R úsečka úsečka R hrneme: otřebovali jsme najít bod v pravé stěně. Věděli jsme: přímka pravou stěnu protne přímka protne přímku (obě leží v přední stěně) průsečík přímky s přímkou je hledaným bodem (leží v rovině řezu kvůli a leží v pravé stěně, kvůli přímce ) ravidlo třetí (ravidlo protahování hran): Jsou-li každé dvě ze tří rovin různoběžné a mají-li tyto tři roviny jediný společný bod, procházejí tímto společným bodem všechny tři průsečnice. růsečnice rovin dvou sousedních stěn (tj. stěn se společnou hranou) s rovinou řezu a přímka, v níž leží společná hrana se protínají jednom bodě. okud máme jednu úsečku řezu můžeme ji protáhnou do ostatních stěn. růsečíky s ostatními stěnami najdeme tak, že protáhneme hranu, která: leží v rovině, ve které leží protahovaná úsečka leží v rovině, ve které potřebujeme najít další bod ř. 2: Je dána standardní krychle. estroj řez této krychle rovinou: a) b) c) a) 3

4 od leží v zadní stěně hledáme průsečík přímky se zadní stěnou protahujeme hranu, která leží v dolní podstavě (kde je přímka ) a v zadní stěně (kde je bod ) protahujeme hranu bod úsečka bod úsečka rovnoběžka s bodem bod úsečka b) od leží v zadní stěně hledáme průsečík přímky se zadní stěnou protahujeme hranu, která leží v pravé stěně (kde je přímka ) a v zadní stěně (kde je bod ) protahujeme hranu 4

5 bod polopřímka bod rovnoběžka s bodem bod rovnoběžka s bodem úsečka úsečka c) od leží v horní stěně hledáme průsečík přímky s horní stěnou protahujeme hranu, která leží v přední stěně (kde je přímka ) a v horní stěně (kde je bod ) protahujeme hranu bod úsečka bod úsečka rovnoběžka s bodem bod úsečka 5

6 ř. 3: Je dán pravidelný čtyřboký jehlan V. estroj řez jehlanu rovinou. V V a) a) V b) od leží v podstavě hledáme průsečík přímky s podstavou protahujeme hranu, která leží v zadní stěně (kde je přímka ) a v podstavě (kde je bod ) protahujeme hranu V R bod polopřímka bod hledáme další bod v pravé stěně pomocí průsečnice s podstavou prodlužujeme hranu bod úsečka bod R úsečka R b) 6

7 V V levé i zadní stěně máme pouze po jednom bodu zkusíme sestrojit průsečnici řezu s podstavou: první bodem je průsečík přímky s protaženou hranou (leží v pravé stěně a podstavě) druhým bodem je průsečík přímky s protaženou hranou (leží v přední stěně a podstavě) V body, přímka prodloužení bod prodloužení bod R polopřímka polopřímka R R V obou bodech předchozího příkladu jsme pro konstrukci řezu využili průsečnici řezu s rovinou podstavy (červená čárkovaná čára). U mnoha příkladu je výhodnější sestrojit nejdříve tuto průsečnici a poté protahováním hran dořešit zbytek řezu. 7

8 ř. 4: estroj řezy těles rovinou. Využij průsečnice této roviny s rovinou dolní podstavy. a) Z přímek a se ze spodní podstavou protne pouze přímka protahujeme hranu, která leží v přední stěně (kde je přímka ) a v dolní podstavě (kde chceme získat bod) protahujeme hranu bod rovnoběžka s přímkou bodem hledáme další bod v zadní stěně pomocí průsečnice s podstavou prodlužujeme hranu bod úsečka bod úsečka b) 8

9 hledáme průsečíky s podstavou: první bodem je průsečík přímky s protaženou hranou (leží v přední stěně a podstavě) druhým bodem je průsečík přímky s protaženou hranou (leží v pravé stěně a podstavě) R T bod, přímka hledáme další bod v zadní stěně pomocí průsečnice s podstavou prodlužujeme hranu bod polopřímka bod hledáme další bod v pravé boční stěně pomocí průsečnice s podstavou prodlužujeme hranu bod R polopřímka R bod T úsečka T ř. 5: Je dána standardní krychle. estroj řez této krychle rovinou: a) b) c). říklady řeš bez použití pravidla pro konstrukci rovnoběžek (Tedy pouze protahováním hran). a) 9

10 přímka je průsečnicí roviny řezu z podstavou. další bod v zadní stěně získáme protažením hrany další bod v levé boční stěně získáme protažením hrany. b) V původním řešení jsme hledali druhý bod v zadní stěně. od jsme získali protažením úsečky a hrany (leží v pravé stěně jako a v zadní stěně, kde hledáme bod). odobně najdeme bod v podstavě jako průsečík přímek a (leží v pravé stěně jako a v zadní stěně, kde hledáme bod). olopřímku využijeme k nalezení druhého bodu () v podstavě jako průsečíku přímek a (leží v zadní stěně jako a v podstavě, kde hledáme bod). c). 10

11 V původním řešení jsme hledali druhý bod v horní stěně. od jsme získali protažením úsečky a hrany (leží v přední stěně jako a v horní stěně, kde hledáme bod). římku využijeme i k nalezení druhého bodu () v pravé stěně jako průsečíku přímek a (leží v přední stěně jako a v pravé stěně, kde hledáme bod). ř. 6: etáková: strana 90/cvičení 6 b) c) e) f) g) hrnutí: alší body řezu můžeme získat protažením už hotových částí řezu a vhodných hran řezaného tělesa. 11

Řezy těles rovinou III

Řezy těles rovinou III 5.1.11 Řezy těles rovinou III Předpoklady: 050110 Ne vždy nám vystačí spojování bodů a dělaní rovnoběžek. Jako třeba bod b) posledního příkladu z minulé hodiny: Rovnoběžné jsou pouze podstavy nemůžeme

Více

Řezy těles rovinou III

Řezy těles rovinou III 5.1.11 Řezy těles rovinou III ředpoklady: 5110 ř. 1: Je dána standardní krychle. estroj řez této krychle rovinou. roblém: Nemáme odkud začít, žádné dva ze zadaných bodů neleží ve stejné stěně krychle žádné

Více

5.1.9 Řezy těles rovinou I

5.1.9 Řezy těles rovinou I 5.1.9 Řezy těles rovinou I ředpoklady: 5108 edagogická poznámka: ře kreslení řezů platí ještě více než u zbytku stereometrie, že v rychlosti postupu budou mezi žáky obrovské rozdíly. Učebnice s tím počítá

Více

Další polohové úlohy

Další polohové úlohy 5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad

Více

Název: Stereometrie řez tělesa rovinou

Název: Stereometrie řez tělesa rovinou Název: Stereometrie řez tělesa rovinou Autor: Mgr. Lucia Klimková Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy Předmět (mezipředmětové vztahy) : Matematika (Deskriptivní geometrie) Tematický

Více

Elementární plochy-základní pojmy

Elementární plochy-základní pojmy -základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ),

Více

Dvěma různými body prochází právě jedna přímka.

Dvěma různými body prochází právě jedna přímka. Úvod Jestliže bod A leží na přímce p a přímka p leží v rovině, pak i bod A leží v rovině. Jestliže v rovině leží dva různé body A, B, pak také přímka p, která těmito body prochází, leží v rovině. Dvěma

Více

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ:

Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: Kapitola 1 Elementární plochy 1.1 Základní pojmy Elementární plochou budeme rozumět hranolovou, jehlanovou, válcovou, kuželovou a kulovou plochu. Pokud tyto plochy omezíme, popř. přidáme podstavy, můžeme

Více

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,...

STEREOMETRIE. Tělesa. Značení: body A, B, C,... přímky p, q, r,... roviny ρ, σ, τ,... STEREOMETRIE Stereometrie je část geometrie, která se zabývá studiem prostorových útvarů. Základními prostorovými útvary, se kterými budeme pracovat, jsou bod, přímka a rovina. Značení: body A, B, C,...

Více

Pravoúhlá axonometrie - řezy hranatých těles

Pravoúhlá axonometrie - řezy hranatých těles Pravoúhlá axonometrie - řezy hranatých těles KG - L MENDELU KG - L (MENDELU) Pravoúhlá axonometrie - řezy hranatých těles 1 / 1 Příklad (Řez šikmého hranolu) Sestrojte řez šikmého čtyřbokého hranolu ABCDA

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5.2.4 Kolmost přímek a rovin II Předpoklady: 5203 Př. 1: Zformuluj stereometrické věty analogické k planimetrické větě: aným bodem lze v rovině k dané přímce vést jedinou kolmici. Věta: aným bodem lze

Více

Základní geometrické útvary

Základní geometrické útvary RMP 2 KS MS Základní geometrické útvary Bod, přímka, rovina základní geometrické pojmy, vznikly v našem vědomí abstrakcí poznatků reálného světa. V geometrii jsou zavedeny axiomaticky, tj. pomocí jednoduchých

Více

5.1.7 Vzájemná poloha přímky a roviny

5.1.7 Vzájemná poloha přímky a roviny 5..7 Vzájemná oloha římky a roviny Předoklady: 506 Pedagogická oznámka: Tato a následující hodina je obtížně řiditelná. ni jedna z těchto hodin neobsahuje nic zásadního, v říadě časového skluzu je možné

Více

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika - stereometrie. Mgr. Hedvika Novotná

ICT podporuje moderní způsoby výuky CZ.1.07/1.5.00/ Matematika - stereometrie. Mgr. Hedvika Novotná Název projektu ICT podporuje moderní způsoby výuky Číslo projektu CZ.1.07/1.5.00/34.0717 Název školy Gymnázium, Turnov, Jana Palacha 804, přísp. organizace Číslo a název šablony klíčové aktivity III/2

Více

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2]

[obr. 1] Rozbor S 3 S 2 S 1. o 1. o 2 [obr. 2] Příklad Do dané kruhové výseče s ostrým středovým úhlem vepište kružnici (obr. ). M k l V N [obr. ] Rozbor Oblouk l a hledaná kružnice k se dotýkají v bodě T, mají proto v tomto bodě společnou tečnu t.

Více

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2]

MONGEOVO PROMÍTÁNÍ. ZOBRAZENÍ BODU - sdružení průměten. ZOBRAZENÍ BODU - kartézské souřadnice A[3; 5; 4], B[-4; -6; 2] ZOBRAZENÍ BODU - sdružení průměten MONGEOVO PROMÍTÁNÍ π 1... půdorysna π 2... nárysna x... osa x (průsečnice průměten) sdružení průměten A 1... první průmět bodu A A 2... druhý průmět bodu A ZOBRAZENÍ

Více

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru

SBÍRKA ÚLOH STEREOMETRIE. Polohové vlastnosti útvarů v prostoru SÍR ÚO STROTRI Polohové vlastnosti útvarů v prostoru Sbírka úloh STROTRI Polohové vlastnosti útvarů v prostoru gr. arie hodorová, Ph.. rafická úprava a sazba: arcel Vrbas OS SZN POUŽÍVNÝ SYOŮ 5. ZÁY STROTRI

Více

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

STEREOMETRIE INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky STEREOMETRIE Gymnázium Jiřího Wolkera v Prostějově Výukové materiály z matematiky pro vyšší gymnázia utoři projektu Student na prahu 21. století - využití IT ve vyučování matematiky na gymnáziu INVESTIE

Více

MONGEOVO PROMÍTÁNÍ - 2. část

MONGEOVO PROMÍTÁNÍ - 2. část MONGEOVO PROMÍTÁNÍ - 2. část ZOBRAZENÍ KRUŽNICE Příklad: V rovině ρ zobrazte kružnici o středu S a poloměru r. kružnice ležící v obecné rovině se v obou průmětech zobrazuje jako elipsa poloměr kružnice

Více

5.1.8 Vzájemná poloha rovin

5.1.8 Vzájemná poloha rovin 5.1.8 Vzájemná oloha rovin Předoklady: 5107 Př. 1: Kolik solečných bodů mohou mít dvě roviny? Každou možnost dokumentuj omocí dvou rovin určených vrcholy krychle a urči vzájemnou olohu rovin. Mohou nastat

Více

Pracovní listy MONGEOVO PROMÍTÁNÍ

Pracovní listy MONGEOVO PROMÍTÁNÍ Technická univerzita v Liberci Fakulta přírodovědně-humanitní a pedagogická Katedra matematiky a didaktiky matematiky MONGEOVO PROMÍTÁNÍ Petra Pirklová Liberec, únor 07 . Zobrazte tyto body a určete jejich

Více

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím

MONGEOVO PROMÍTÁNÍ. bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po dlouhou dobu bylo vojenským tajemstvím část 1. MONGEOVO PROMÍTÁNÍ kolmé promítání na dvě průmětny (půdorysna, nárysna), někdy se používá i třetí pomocná průmětna bokorysna bylo objeveno a rozvinuto francouzem Gaspardem Mongem (1746 1818) po

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/ Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol STEREOMETRIE

Více

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU

C. METRICKÉ VLASTNOSTI ÚTVARŮ V PROSTORU 36. Je dán pravidelný čtyřboký jehlan V. Určete průsečíky přímky s hranicí jehlanu. Pro body, platí: = S, = S SV, bod S je střed podstavy.. TRIÉ VSTOSTI ÚTVRŮ V PROSTORU.1 Odchylky přímek a rovin V odchylka

Více

5.2.1 Odchylka přímek I

5.2.1 Odchylka přímek I 5..1 Odchylka přímek I Předpoklady: 5110 Metrické vlastnosti určování měřitelných veličin (délky a velikosti úhlů) Výhoda metrické vlastnosti jsme už určovali v planimetrii můžeme si brát inspiraci Všechny

Více

Metrické vlastnosti v prostoru

Metrické vlastnosti v prostoru Metrické vlastnosti v prostoru Ž2 Metrické vlastnosti v prostoru Odchylka přímek p, q v prostoru V planimetrii jsme si definovali pojem odchylky dvou přímek p, q pro různoběžky a pro rovnoběžky. Ve stereometrii

Více

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty

= prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty STROMTRI STROMTRI = prostorová geometrie, geometrie v prostoru část M zkoumající vlastnosti prostor. útvarů vychází z tzv. axiómů, využívá věty xióm je jednoduché názorné tvrzení, které se nedokazuje.

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 5103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114

STEREOMETRIE. Odchylky přímek. Mgr. Jakub Němec. VY_32_INOVACE_M3r0114 STEREOMETRIE Odchylky přímek Mgr. Jakub Němec VY_32_INOVACE_M3r0114 ODCHYLKA DVOU PŘÍMEK V PROSTORU Další typy příkladů, v nichž budeme počítat vzdálenost dvou objektů, by bylo velmi složité počítat bez

Více

Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ.

Řez jehlanu. Mongeovo promítání. Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. Řez jehlanu Mongeovo promítání Pravidelný šestiboký jehlan o výšce v má podstavu ABCDEF v půdorysně. Zobrazte řez jehlanu rovinou σ. A[ 3; 1; 0], B[0; 2; 0], y C > y B, v = 8cm, σ(4; 7; 3) B 2 A 2 Vyneseme

Více

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117

STEREOMETRIE. Odchylky přímky a roviny. Mgr. Jakub Němec. VY_32_INOVACE_M3r0117 STEREOMETRIE Odchylky přímky a roviny Mgr. Jakub Němec VY_3_INOVACE_M3r0117 ODCHYLKA PŘÍMKY A ROVINY Poslední kapitolou, která se týká problematiky odchylek v prostoru, je odchylka přímky a roviny. V této

Více

ANOTACE nově vytvořených/inovovaných materiálů

ANOTACE nově vytvořených/inovovaných materiálů ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Stereometrie

Více

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) ---

DESKRIPTIVNÍ GEOMETRIE - elektronická skripta. ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- DESKRIPTIVNÍ GEOMETRIE - elektronická skripta ŘEZY HRANOLŮ A JEHLANŮ V MONGEOVĚ PROMÍTÁNÍ (sada řešených příkladů) --- PŘÍKLA: A4 na výšku, O [10,5; 9,5] Pravidelný šestiboký hranol má podstavu v půdorysně

Více

5.1.4 Obrazy těles ve volném rovnoběžném promítání II

5.1.4 Obrazy těles ve volném rovnoběžném promítání II 5.1.4 Obrazy těles ve volném rovnoběžném promítání II Předpoklady: 050103 tejně jako minule začneme opakováním pravidel. Pravidla uvádíme od nejvíce a nejsnáze používaných k méně a hůře použitelným. Útvary

Více

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44

Konstruktivní geometrie - LI. Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Kótované promítání Konstruktivní geometrie - LI Konstruktivní geometrie - LI () Kótované promítání 1 / 44 Obsah 1 Polohové úlohy 2 Spád přímky a roviny Konstruktivní geometrie - LI () Kótované promítání

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

3.3.5 Množiny bodů dané vlastnosti II (osa úsečky)

3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) 3.3.5 Množiny bodů dané vlastnosti II (osa úsečky) Předpoklady: 030304 Př. 1: Je dána úsečka, = 5,5cm. Narýsuj osu úsečky. Jakou vlastnost mají body ležící na této přímce? Pro všechny body na ose úsečky,

Více

9.5. Kolmost přímek a rovin

9.5. Kolmost přímek a rovin 9.5. Kolmost přímek a rovin Pro kolmost přímek a rovin platí následující věty, které budeme demonstrovat na krychli ABCDEFGH se středy podstav S, Q. Přímka kolmá k rovině je kolmá ke všem přímkám této

Více

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů

Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů 1/13 Základní pojmy: Objemy a povrchy těles Vzájemná poloha bodů, přímek a rovin Opakování: Obsahy a obvody rovinných útvarů STEREOMETRIE Stereometrie - geometrie v prostoru - zabývá se vzájemnou polohou

Více

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy 1 Metrické vlastnosti 9000153601 (level 1): Úhel vyznačený na obrázku znázorňuje: eometrie Odchylku boční hrany a podstavy Odchylku boční stěny a podstavy Odchylku dvou protilehlých hran Odchylku podstavné

Více

Pravoúhlá axonometrie - osvětlení těles

Pravoúhlá axonometrie - osvětlení těles Pravoúhlá axonometrie - osvětlení těles KG - L MZLU v Brně ZS 2008 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles ZS 2008 1 / 39 KG - L (MZLU v Brně) Pravoúhlá axonometrie - osvětlení těles

Více

JEVIŠTNÍ PERSPEKTIVA TABULKA 19

JEVIŠTNÍ PERSPEKTIVA TABULKA 19 OBSAH tabulka strana Předmluva 6 Úvod 7 Základní pojmy v perspektivě 1 8 Výška oka sedícího diváka 2 9 Průčelná perspektiva centrální, pozorovací bod je na ose symetrie, základna prochází stranou BC 3

Více

AXONOMETRIE - 2. část

AXONOMETRIE - 2. část AXONOMETRIE - 2. část Průmět přímky K určení přímky stačí její dva libovolné průměty, zpravidla používáme axonometrický průmět a půdorys. Bod ležící na přímce se zobrazí do bodu na přímce v každém průmětu.

Více

Deskriptivní geometrie pro střední školy

Deskriptivní geometrie pro střední školy Deskriptivní geometrie pro střední školy. díl Ivona Spurná Nakladatelství a vydavatelství R www.computermedia.cz Deskriptivní geometrie Díl Deskriptivní geometrie,. díl Mgr. Ivona Spurná Jazyková úprava:

Více

5.1.3 Obrazy těles ve volném rovnoběžném promítání I

5.1.3 Obrazy těles ve volném rovnoběžném promítání I 5.1.3 Obrazy těles ve volném rovnoběžném promítání I Předpoklady: 5102 Pedagogická poznámka: K obrazům těles ve volném rovnoběžném promítání je možné přistoupit dvěma způsoby: Látku v podstatě přeskočit

Více

3. Středoškolská stereometrie v anaglyfech

3. Středoškolská stereometrie v anaglyfech 3. Středoškolská stereometrie v anaglyfech V předchozích dvou kapitolách jsme zjistili, jak se zobrazují tělesa ve středovém promítání a hlavně v lineární perspektivě, a jak pomocí těchto promítání vytvořit

Více

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr

BA008 Konstruktivní geometrie. Kolmá axonometrie. pro kombinované studium. učebna Z240 letní semestr BA008 Konstruktivní geometrie pro kombinované studium Kolmá axonometrie Jan Šafařík Jana Slaběňáková přednášková skupina P-BK1VS1 učebna Z240 letní semestr 2016-2017 31. března 2017 Základní literatura

Více

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY

ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY ZBORCENÉ PŘÍMKOVÉ PLOCHY ŘEŠENÉ PŘÍKLADY Zpracovala: Kristýna Rožánková FA ČVUT 2011 ZBORCENÉ PŘÍMKOVÉ PLOCHY Zborcené přímkové plochy jsou určeny třemi křivkami k, l, m, které neleží na jedné rozvinutelné

Více

Geometrické vyhledávání

Geometrické vyhledávání mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY

NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY NÁVOD NA VYROBENÍ PERSPEKTIVNÍ KRABIČKY 1. PERSPEKTIVNÍ KRABIČKA Perspektivní krabička je krabička, většinou bez víka, s malým otvorem na jedné straně, uvnitř pomalovaná různými obrazci. Když se do krabičky

Více

Otázky z kapitoly Stereometrie

Otázky z kapitoly Stereometrie Otázky z kapitoly Stereometrie 10. února 015 Obsah 1 Krokované příklady (0 otázek) 1 Metrické vlastnosti (30 otázek) 1.1 Obtížnost 1 (16 otázek)....................................... 1. Obtížnost (14

Více

Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012

Fotogrammetrie. zpracovala Petra Brůžková. Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie zpracovala Petra Brůžková Fakulta Architektury ČVUT v Praze 2012 Fotogrammetrie je geometrický postup, který nám umožňuje určení tvaru, velikosti a polohy reálných objektů na základě fotografického

Více

Roviny. 3.) MP O[5;7] Rovina je dána body A[-2;3;3], B[-4;1;5] a C[-7;4;1]. Zobrazte stopy roviny.

Roviny. 3.) MP O[5;7] Rovina je dána body A[-2;3;3], B[-4;1;5] a C[-7;4;1]. Zobrazte stopy roviny. Roviny.) MP O 6 Zobrazte stoy rovin 6 ;3) a (-5;45 ;0 )..) MP O[9;5] Zobrazte stoy rovin (-4;h;4) a (5;;h). 3.) MP O[5;7] Rovina je dána body A[-;3;3], B[-4;;5] a C[-7;4;]. Zobrazte stoy roviny. 4.) MP

Více

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU

Konstruktivní geometrie PODKLADY PRO PŘEDNÁŠKU Konstruktivní geometrie & technické kreslení PODKLADY PRO PŘEDNÁŠKU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného

Více

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1

Základní úlohy v Mongeově promítání. n 2 A 1 A 1 A 1. p 1 N 2 A 2. x 1,2 N 1 x 1,2. x 1,2 N 1 Základní úlohy v Mongeově promítání Předpokladem ke zvládnutí zobrazení v Mongeově promítání je znalost základních úloh. Ale k porozumění následujícího textu je třeba umět zobrazit bod, přímku a rovinu

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

Vzdálenosti přímek

Vzdálenosti přímek 5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy

Více

UNIVERZITA PALACKÉHO V OLOMOUCI

UNIVERZITA PALACKÉHO V OLOMOUCI UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDĚCKÁ FAKULTA KATEDRA ALGEBRY A GEOMETRIE PLOCHY A OBLÁ TĚLESA V KOSOÚHLÉM PROMÍTÁNÍ DO PŮDORYSNY DIPLOMOVÁ PRÁCE Vedoucí práce: Mgr. Marie Chodorová, Ph.D. Rok

Více

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21 2 ANALYTICKÁ GEOMETRIE V PROSTORU 21 21 Vektory 21 Úlohy k samostatnému řešení 21 22 Přímka a rovina v prostoru 22 Úlohy k samostatnému řešení 22 23 Vzájemná poloha přímek a rovin 25 Úlohy k samostatnému

Více

Základní geometrické tvary

Základní geometrické tvary Základní geometrické tvary č. 37 Matematika 1. Narýsuj bod A. 2. Narýsuj přímku b. 3. Narýsuj přímku, která je dána body AB. AB 4. Narýsuj polopřímku CD. CD 5. Narýsuj úsečku AB. 6. Doplň. Rýsujeme v rovině.

Více

5.1.2 Volné rovnoběžné promítání

5.1.2 Volné rovnoběžné promítání 5.1.2 Volné rovnoběžné promítání Předpoklady: 5101 Základní stereometrický problém: zabýváme se trojrozměrnými objekty, ale k práci používáme dvojrozměrný papír musíme najít způsob, jak trojrozměrné objekty

Více

Grafické řešení rovnic a jejich soustav

Grafické řešení rovnic a jejich soustav .. Grafické řešení rovnic a jejich soustav Předpoklady: 003 Pedagogická poznámka: V této hodině kreslíme na čtverečkovaný papír tak, aby jeden čtvereček představovala vzdálenost. Př. : Vyřeš graficky soustavu

Více

Deskriptivní geometrie 2

Deskriptivní geometrie 2 Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky Deskriptivní geometrie 2 Pomocný učební text - díl II Světlana Tomiczková Plzeň 4. května 2011 verze 1.0 Obsah 1 Středové promítání

Více

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další Kapitola 1 Planimetrie a stereometrie Doplňky ke středoškolské látce 1.1 Základní pojmy prostorové geometrie 1.1.1 Axiomy Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků.

Fotbalový míč má tvar mnohostěnu složeného z pravidelných pětiúhelníků a z pravidelných šestiúhelníků. FOTLOÝ MÍČ Popis aktivit ýpočt odchlek přímek a rovin v tělese, resp. velikostí úhlů, které svírají stěn a hran v mnohostěnu. Předpokládané znalosti Odchlka rovin a přímk, odchlka dvou rovin. Definice

Více

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části.

Zobrazení hranolu. Příklad 5: Sestrojte řez pravidelného šestibokého hranolu s podstavou v půdorysně rovinou ρ. Sestrojte síť seříznuté části. Zobrazení hranolu Příklad 1: Zobrazte pravidelný pětiboký hranol s podstavou v půdorysně π. Podstava je dána středem S a vrcholem A. Výška hranolu je v. Určete zbývající průmět bodu M pláště hranolu. 1

Více

Test č. 6. Lineární perspektiva

Test č. 6. Lineární perspektiva Test č. 6 Deskriptivní geometrie, I. ročník kombinovaného studia FAST, letní semestr 2008-2009 Lineární perspektiva (1) Nad průměrem A S B S (A, B leží v základní rovině π) sestrojte metodou osmi tečen

Více

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy. strana 9 3.1a Sestrojte sdružené průměty stopníků přímek a = AB, b = CD, c = EF. A [-2, 5, 1], B [3/2, 2, 5], C [3, 7, 4], D [5, 2, 4], E [-5, 3, 3], F [-5, 3, 6]. 3.1b Určete parametrické vyjádření přímek

Více

1.3.3 Přímky a polopřímky

1.3.3 Přímky a polopřímky 1.3.3 římky a olořímky ředoklady: 010302 edagogická oznámka: oslední říklad je oakování řeočtu řes jednotku. okud hodina robíhá dobře, dostanete se k němu řed koncem hodiny. edagogická oznámka: Nakreslím

Více

Vzdálenost rovin

Vzdálenost rovin 510 zdálenost rovin ředpokldy: 509 Kdy má cenu uvžovt o vzdálenosti dvou rovin? ouze, když jsou rovnoběžné, jink se protínjí ř 1: Nvrhni definici vzdálenosti dvou rovnoběžných rovin Z vzdálenost dvou rovnoběžných

Více

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ

STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191. Obor 23-41-M/01 STROJÍRENSTVÍ STŘEDNÍ PRŮMYSLOVÁ ŠKOLA STROJÍRENSKÁ a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Obor 23-41-M/01 STROJÍRENSTVÍ 1. ročník TECHNICKÉ KRESLENÍ ÚVOD A DESKRIPTIVNÍ GEOMETRIE

Více

P L A N I M E T R I E

P L A N I M E T R I E M T E M T I K P L N I M E T R I E rovinná geometrie Základní planimetrické pojmy od - značí se velkými tiskacími písmeny, např.,,. P, Q. Přímka - značí se malými písmeny, např. a, b, p, q nebo pomocí bodů

Více

Opravná zkouška 2SD (druhé pololetí)

Opravná zkouška 2SD (druhé pololetí) Opravná zkouška SD 01-01 (druhé pololetí) 1) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Na obrázku jsou gray dvou unkcí. Urči jejich unkční předpisy a základní charakteristiky. ma. 4b) g ) Řeš

Více

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu:

Test žáka. Zdroj testu: Celoplošná zkouška 2. Školní rok 2012/2013 MATEMATIKA. Jméno: Třída: Škola: Termín provedení testu: Test žáka Zdroj testu: Celoplošná zkouška 2 Školní rok 2012/2013 MATEMATIKA Jméno: Třída: Škola: Termín provedení testu: Datum vytvoření: 15. 10. 2013 Obtížnost 1 Úloha 1 Přednáška trvala 80 minut a skončila

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

Několik úloh z geometrie jednoduchých těles

Několik úloh z geometrie jednoduchých těles Několik úloh z geometrie jednoduchých těles Úlohy ke cvičení In: F. Hradecký (author); Milan Koman (author); Jan Vyšín (author): Několik úloh z geometrie jednoduchých těles. (Czech). Praha: Mladá fronta,

Více

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na

Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na Tělesa Geometrické těleso je prostorový omezený geometrický útvar. Jeho hranicí neboli povrchem je uzavřená plocha. Geometrická tělesa dělíme na mnohostěny a rotační tělesa. - Mnohostěny mají stěny, hrany

Více

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol.

ŘEŠENÉ PŘÍKLADY DESKRIPTIVNÍ GEOMETRIE. ONDŘEJ MACHŮ a kol. ŘEŠENÉ PŘÍKLADY Z DESKRIPTIVNÍ GEOMETRIE ONDŘEJ MACHŮ a kol. Předmluva Otevíráte sbírku, která vznikla z příkladů zadaných studentům pátého ročníku PřF UP v Olomouci, učitelů matematiky a deskriptivní

Více

5.4.1 Mnohostěny. Předpoklady:

5.4.1 Mnohostěny. Předpoklady: 5.4.1 Mnohostěny Předpoklady: Geometrické těleso je prostorově omezený geometrický útvar, jehož hranicí je uzavřená plocha. Hranoly Je dán n-úhelník A... 1A2 A n (řídící n-úhelník) ležící v rovině ρ a

Více

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika

Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika. Bítov Blok 1: Kinematika Využití Rhinoceros ve výuce předmětu Počítačová geometrie a grafika Bítov 13.-17.8.2012 Blok 1: Kinematika Pro lepší orientaci v obrázku je vhodné umísťovat. Nabízí se dvě rychlé varianty. Buď pomocí příkazu

Více

Sada 7 odchylky přímek a rovin I

Sada 7 odchylky přímek a rovin I Sada 7 odchylky přímek a rovin I Odchylky přímek 1) Je dána krychle ABCDEFGH. Určete odchylku daných přímek a) AB, AE b) AB, AD c) AE, AF d) AB, BD e) CD, GH f) AD, FG g) AB, SAEF h) ED, FC 2) Je dána

Více

Opravná zkouška 2SD 2012-2013 (celý rok)

Opravná zkouška 2SD 2012-2013 (celý rok) Opravná zkouška SD 01-01 (celý rok) 1) Přímá železniční trať má stoupání 5 a délku,5 km. Vypočítej její celkové převýšení. b) ) Na množině celých čísel řeš rovnici: 6 8. ma. b) ) Vypočítej obsah vybarveného

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce kvádr a jejích součástí. Konstrukce kvádru

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce kvádr a jejích součástí. Konstrukce kvádru METODICKÝ LIST DA58 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa II. - kvádr Astaloš Dušan Matematika šestý frontální,

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce krychle a jejích součástí. Konstrukce krychle

Svobodná chebská škola, základní škola a gymnázium s.r.o. pochopení konstrukce krychle a jejích součástí. Konstrukce krychle METODICKÝ LIST DA57 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Prostorová tělesa I. - krychle Astaloš Dušan Matematika šestý frontální,

Více

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem:

Poznámka 1: Každý příklad začneme pro přehlednost do nového souboru tímto krokem: Mongeovo promítání základní úlohy polohové (bod, přímka, rovina, bod v rovině, hlavní přímky roviny, rovina daná různoběžkami, průsečnice rovin, průsečík přímky s rovinou) Budeme pracovat v rovině nejlépe

Více

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11].

Konstruktivní geometrie Bod Axonometrie. Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. Konstruktivní geometrie Bod Axonometrie Úloha: V pravoúhlé axonometrii (XY = 10; XZ = 12; YZ = 11) zobrazte bod A[2; 3; 5] a bod V[9; 7.5; 11]. VŠB-TU Ostrava 1 Jana Bělohlávková Konstruktivní geometrie

Více

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 CVIČNÝ TEST 9 Mgr. Václav Zemek OBSAH I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19 I. CVIČNÝ TEST 1 Vypočítejte (7,5 10 3 2 10 2 ) 2. Výsledek zapište ve tvaru a 10 n, kde

Více

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou

Rozvinutelné plochy. tvoří jednoparametrickou soustavu rovin a tedy obaluje rozvinutelnou plochu Φ. Necht jsou Rozvinutelné plochy Rozvinutelná plocha je každá přímková plocha, pro kterou existuje izometrické zobrazení do rov iny, tj. lze ji rozvinout do roviny. Dá se ukázat, že každá rozvinutelná plocha patří

Více

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

CVIČNÝ TEST 51. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 CVIČNÝ TEST 51 Mgr. Tomáš Kotler OBSAH I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17 I. CVIČNÝ TEST VÝCHOZÍ TEXT A OBRÁZEK K ÚLOZE 1 V obchodě s kouzelnickými potřebami v Kocourkově

Více

Vzdálenost roviny a přímky

Vzdálenost roviny a přímky 511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,

Více

5.2.9 Vzdálenost bodu od roviny

5.2.9 Vzdálenost bodu od roviny 5..9 zdálenost bodu od roiny ředpokldy: 508 Opkoání z minulé hodiny (definice zdálenosti bodu od přímky): Je dán přímk p bod. zdáleností bodu od přímky p rozumíme zdálenost bodu od bodu, který je ptou

Více

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna Předmět: Matematika Náplň: Stereometrie, Analytická geometrie Třída: 3. ročník a septima Počet hodin: 4 hodiny týdně Pomůcky: PC a dataprojektor, učebnice Stereometrie Volné rovnoběžné promítání Zobrazí

Více

Krychle. Předpoklady: Př. 3:

Krychle. Předpoklady: Př. 3: 2.11.1 Krychle ředpoklady: 021101 ř. 1: Čím se vyznačuje krychle? Všechny hrany stejné dlouhé, všechny stěny shodné čtverce, sousední hrany navzájem kolmé, hrany kolmé na stěny, jde o analogii čtverce

Více

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch.

Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o. nebo zborcených ploch. TEORETICKÉ ŘEŠENÍ STŘECH TEORETICKÉ ŘEŠENÍ STŘECH Menší stavby (zejména obytné domy) se z většinou zastřešují pomocí rovin, mluvíme pak o tzv. střešních rovinách. Velké stavby se často zastřešují pomocí

Více

Poznámka: U pravidelných těles lze sestrojit jejich síť i bez jejich zobrazení v Mongeově

Poznámka: U pravidelných těles lze sestrojit jejich síť i bez jejich zobrazení v Mongeově SÍTĚ TĚLES SÍTĚ TĚLES síť tělesta se skládá z pláště tělesa a z jeho podstavy či podstav příklady řešíme v Mongeově promítání volíme vhodně polohu těles vzhledem k průmětnám v případě šikmého hranolu a

Více