PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK

Rozměr: px
Začít zobrazení ze stránky:

Download "PODOBNÁ ZOBRÁZENÍ 1. SHODNOST TROJÚHELNÍKŮ 2. PRÁVOÚHLÝ TROJÚHELNÍK"

Transkript

1 PODOBNÁ ZOBRÁZENÍ Kždá stejnolehlost je podonost ne oráeně! Podonost má vždy koefiient podonosti kldný znčíme jej k k >0 k R zhovává rovnoěžnost podonost shodnost nevlstní podonost úhly poměry Dělíme ji n podle oriente Přímoshodná Nepřímoshodná shodnost + stejnolehlost = podonost Desrgov vět (orázek) 1. SHODNOST TROJÚHELNÍKŮ (=věty o kontrolovtelnosti trojúhelníků) Trojúhelníková erivnost SUS (strn, úhel, strn) Úhel je sevřený mezi strnmi USU (úhel, strn, úhel) Strn, ke které jsou úhly přilehlé SSU (strn, strn, úhel) Úhel proti delší strně Podonost trojúhelníků SSS trojúhelníky jsou podoné, pokud zhovávjí poměry UU trojúhelníky jsou si podoné, pokud jsou stejné úhly SUS (úhel strnmi sevřený) SSU stny jsou v poměru nproti je shodný úhel, pk jsou trojúhelníky shodné Prvoúhlý trojúhelník Jsou si podoné ÁCD. PRÁVOÚHLÝ TROJÚHELNÍK Prvoúhlý trojúhelník Jsou si podoné ÁCD Euklidov vět o výše v v Důkz Pythgorovy věty přeuspořádáním Pythgorijké trojúhelník (3,4,5) Pythgorijské tojie Euklidovské konstruke Prvítko kružítko ez potřey měřit přesně Některé věi nejdou konstruovt -9-

2 3. OBECNÝ TROJÚHELNÍKŮ Trojúhelník ÁBC je průnikem třeh polorovin, které jsou dány třemi ody Á, B, C, které nejsou kolineární Vždy řdit do poloroviny! Vnitřní úhly jsou uvnitř α+β+γ = 180 Vnější úhly se znčí s čárkou α, β, γ 3π-(α+β+γ) Výšky Poměr výšek je stejný jko převráený poměr délky strn Leží uvnitř, mimo neo n strnáh trojúhelník Průsečík je právě jeden Těžnie Těžnie dělí v poměru :1 Důkz z podonosti trojúhelníků neo z logiky teorie hmotného odu Pty těžni (příčky) Příčkový trojúhelník -??? Ortiký trojúhelník U prvoúhlém neexistuje V tupoúhlém trojúhelníku je částečně mimo trojúhelník Střed kružnie opsné je průsečík středů os strn Typologie trojúhelníků úhlů strn 3.1. KRUŽNICE V TROJÚHELNÍKU Opsná Střed n osáh úhlů Mimo prvoúhlá trojúhelník Ngelov vět (otiký trojúhelník) Vepsná Poloměr r sin Připsná Tylorová kružnie Orto-entrum Pty výšky spustím kolmie ke strnám získám 6 odů, které leží n Tylorově kružnii Kružnie devíti odů Feuerhov kružnie Středy strn (typy těžni, výšek, tři středy spojni, ortoentrum, vrhol) 4. GONÍOMETRÍCKÉ FUNKCE Stejnolehlé trojúhelníky podoné trojúhelníky Poměry dvou strn vzhledem k podonosti v prvoúhlýh trojúhelníků sin os V prvoúhlém trojúhelníku pltí: sin tg os otg V prvoúhlém trojúhelníku Pltí ykliký záměn Vět o průměteh: V kždém oeném trojúhelníku ÁBC pltí: os os -10-

3 Důkz: V kždém trojúhelníku ÁBC pltí: V tupoúhlém trojúhelníku prujeme s úhlem π-β 4.1. SÍNOVÁ VĚTA Odvodíme jí pomoí spuštěním výšky v jkémkoliv trojúhelníku podonost trojúhelníku do rovnie 4.. KOSINOVÁ VĚTA Pythgorov vět je speiální přípd Kosinovi věty 4.3. VÝPOČET OBSAHU S v sin 4S sin Kosinovy věty Hornův vzore S s ( s )( s )( s ) 5. DÍLČÍ POMĚRY Definie: Jsou dány 3 ody ÁBC ležíí n příme. Dělíí poměr je číslo λ, jehož solutní hodnot je AC BC pokud λ < 0, pk C leží mezi ÁB pokud λ > 0, pk C leží vně ÁB Vět: pltí-li ÁBC = λ, pk: ÁCB = 1 - λ BAC = Vět: jsou dány 3 ody ÁBC p jejih: ) rovnoěžný neo středový průmět n rovnoěžky ) rovnoěžný průmět n různoěžky pk ÁBC=Á B C Definie: Mějme 4 ody n příme ÁBCD. Číslo ABCD ABC ABD se nzývá dvojpoměr odů ABCD Vět: Jsou dány 3 ody ÁBC p jejih: A) rovnoěžný neo středový průmět n p p B) rovnoěžná průmět n q p pk (ABC) = (A B C ) -11-

4 Definie: Mějme 4 ody n příme ABDC. Číslo D ABC ABCD se nzývá dvojpoměr odů A, B, C, ABD Vět: Dvojpoměr (ABCD) je: ) kldný C, D leží vně úsečky ÁB neo C, D leží uvnitř úsečky ÁB ) záporný C leží uvnitř zároveň D vně neo C leží vně D uvnitř Definie: Pltí-li (ABCD)=-1 nzýváme čtveřii odů Á, B, C, D hrmonikou čtveřií (čtveřinou) odů A,B,C,D 5.1. MELELOVÁ VĚTA Nehť je dán trojúhelník ÁBC přímk p, která neprohází žádným z vrholů Á, B, C, le protíná přijímky AB, BC, AC po řdě v odeh C, A, B. Potom pltí: (ABC )(BCA )(CAB ) = CAVOVA VĚTA Neh%t je dán trojúhelník ÁBC vnitřní od M, veďme z vrholů A, B, C po řdě přijímky ÁM, BM, CM. Průsečíky těhto přímek strn trojúhelník oznčme po řdě Á, B. C. Pk pltí_ KONSTRUKCE HARMONICKÉ ČTVEŘICE 1) Liovolné přímky ÁX, BX ) Liovolné přímky ex., y M, N 3) AN BM P 4) D XP ÁB (užití Cv. Věty) (ABC )(BCA )(CAB ) = -1-1-

5 5.3. POPPOVA VĚTA Nehť A, B, C, D jsou rovnoěžné neo středové průměty 4 nvzájem různýh odů Á, B, C, D p n p. Pk (ABCD)=(A B C D ) -13-

. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. /

. V trojúhelníku ABC platí 180. Součet libovolného vnitřního úhlu a jemu odpovídajícího vnějšího úhlu je úhel přímý. / TROJÚHELNÍK Trojúhelník, vlstnosti trojúhelníků Trojúhelník ABC je průnik polorovin ABC, BCA, CAB; přitom ody A, B, C jsou různé neleží v jedné příme. Trojúhelník ABC zpisujeme symoliky ABC. Symoliky píšeme:

Více

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky.

2.cvičení. 1. Polopřímka: bod O dělí přímku na dvě navzájem opačné polopřímky. 2.cvičení 1. Polopřímk: od O dělí přímku n dvě nvzájem opčné polopřímky. Úsečk: průnik dvou polopřímek,. Polorovin: přímk dělí rovinu n dvě nvzájem opčné poloroviny. Úhel: průnik polorovin (pozor n speciální

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

Užití stejnolehlosti v konstrukčních úlohách

Užití stejnolehlosti v konstrukčních úlohách Užití stejnolehlosti v konstrukčních úlohách Příklad 1: Je dána kružnice k(o,r) a bod M ležící uvnitř kružnice k. Bodem M veďte tětivu AB, jejíž délka je bodem M rozdělena v poměru 2 : 1. Sestrojte obraz

Více

PLANIMETRIE úvodní pojmy

PLANIMETRIE úvodní pojmy PLANIMETRIE úvodní pojmy Je část geometrie zabývající se studiem geometrických útvarů v rovině. Základními stavebními kameny v rovině budou bod a přímka. 1) Přímka a její části Dvěma různými body lze vést

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik TROJÚHELNÍK Definice Nechť body A, B, C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, CAB. Viz příloha: obecny_trojuhelnik Definice trojúhelníku Uzavřená, jednoduchá (neprotínající

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

8 Podobná (ekviformní) zobrazení v rovině

8 Podobná (ekviformní) zobrazení v rovině Typeset by LATEX2ε 1 8 Podobná (ekviformní) zobrazení v rovině 8.1 Stejnolehlost (homotetie) v rovině Definice 8.1.1. Nechť jsou dány 3 různé kolineární body A, B, C. Dělicím poměrem λ = (ABC) rozumíme

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Definice (Vzdálenost) Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB

Více

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2.

A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY 2. ČÁST MAT. OT 2. OT. Č.. 15: SHODNÁS HODNÁ ZOBRAZENÍ V ROVINĚ, PODOBNOST A STEJNOLEHLOST,, EUKLIDOVYE VĚTY PODOBNOST KDE LÁTKU NAJDETE Kapitola Základy planimetrie

Více

9. Planimetrie 1 bod

9. Planimetrie 1 bod 9. Plnimetrie 1 bod 9.1. Do rovnostrnného trojúhelníku ABC o strně je vepsán rovnostrnný trojúhelník DEF tk, že D AB, E BC, F CA. Jestliže obsh trojúhelníku DEF je roven polovině obshu trojúhelníku ABC,

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:

( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady: 4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové

Více

3.2.1 Shodnost trojúhelníků I

3.2.1 Shodnost trojúhelníků I 3.2.1 hodnost trojúhelníků I Předpokldy: 3108 v útvry jsou shodné, pokud je možné je přemístěním ztotožnit. v prxi těžko proveditelné hledáme jinou možnost ověření shodnosti v útvry jsou shodné, pokud

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Předmět: Ročník: Vytvořil: Datum: MATEMATIKA DRUHÝ MGR. JÜTTNEROVÁ 7. 5. 0 Název zpracovaného celku: PODOBNOST A STEJNOLEHLOST PODOBNOST Je každé zobrazení v rovině takové, že pro libovolné body roviny

Více

Syntetická geometrie I

Syntetická geometrie I Shodnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Vzdálenost dvou bodů Necht A, B, C ρ. Vzdálenost dvou bodů A, B v rovině je číslo AB a platí AB 0 AB = 0 A = B AB = BA pozitivně definitní

Více

x A - vzor y B - je obraz pokud y f(x )

x A - vzor y B - je obraz pokud y f(x ) GEOMETR)CKE ZOBRAZEN) KARTÉZSKÝ SOUČIN Je to vlastně soustava souřadnic. Lze je také chápat jako dvě množiny A, B. Množinu A můžeme chápat jako definiční obor a množinu B jako obor hodnot. Ke každému a

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna 16. Trojúhelník, Mnohoúhelník, Kružnice (typy trojúhelníků a jejich vlastnosti, Pythagorova věta, Euklidovy věty, čtyřúhelníky druhy a jejich vlastnosti, kružnice obvodový a středový, úsekový úhel, vzájemná

Více

5. P L A N I M E T R I E

5. P L A N I M E T R I E 5. P L A N I M E T R I E 5.1 Z Á K L A D N Í P L A N I M E T R I C K É P O J M Y Bod (definice, značení, znázornění) Přímka (definice, značení, znázornění) Polopřímka (definice, značení, znázornění, počáteční

Více

3 Elementární geometrické objekty v rovině a vztahy mezi nimi

3 Elementární geometrické objekty v rovině a vztahy mezi nimi 3. Elementární geometrické ojekty v rovině vzthy mezi nimi 3 Elementární geometrické ojekty v rovině vzthy mezi nimi 3.1 Zákldní pojmy Část geometrie, která se zývá geometrickými útvry v rovině se oznčuje

Více

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem Shodná zobrazení Otočení Příklad 1. Jsou dány tři různé soustředné kružnice a, b a c. Sestrojte rovnostranný trojúhelník ABC tak, aby A ležel na a, B ležel na b a C ležel na c. Řešení. Zvolíme vrchol A

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Trigonometrie - Sinová a kosinová věta

Trigonometrie - Sinová a kosinová věta Trigonometrie - Sinová kosinová vět jejih užití v Tehniké mehnie Dn Říhová, Pvl Kotásková Mendelu rno Perspektiv krjinného mngementu - inove krjinářskýh disipĺın reg.č. Z.1.7/../15.8 Osh 1 Goniometriké

Více

Obrázek 101: Podobné útvary

Obrázek 101: Podobné útvary 14 Podobná zobrazení Obrázek 101: Podobné útvary Definice 10. [Podobné zobrazení] Geometrické zobrazení f se nazývá podobné zobrazení, jestliže existuje kladné reálné číslo k tak, že pro každé dva body

Více

Syntetická geometrie I

Syntetická geometrie I Kolineace Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Incidence Incidence je základní vztah - nedefinujeme ji. Bod leží na přímce = Přímka prochází bodem = Bod je incidentní s přímkou. Definice

Více

Planimetrie. Obsah. Stránka 668

Planimetrie. Obsah. Stránka 668 Obsh 3. Plnimetrie... 669 3.. Úhel... 669 3.. Prvidelné mnohoúhelníky... 67 3.3. Pythgorov vět Eukleidovy věty konstruke úseček... 678 3.4. Euklidovy věty, prvoúhlý trojúhelník... 683 3.5. Obvody obshy

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

4.4.3 Další trigonometrické věty

4.4.3 Další trigonometrické věty 443 Další trigonometriké věty Předpoklady: 440 Věty, které ojevíme v této hodině, mohou usnadnit některé výpočty, ale je možné se ez nih (na rozdíl od kosinové a sinové věty) oejít Pedagogiká poznámka:

Více

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27.

Základní příklady. 18) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. Zákldní příkld 1) Stín věže je dlouhý 55 m stín tče vsoké 1,5 m má v tutéž dou délku 150 cm. Vpočtěte výšku věže. ) Určete měřítko mp, jestliže odélníkové pole o rozměrech 600 m 450 m je n mpě zkresleno

Více

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. Trojúhelník Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů. C Body se nazývají vrcholy trojúhelníku Úsečky

Více

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU: 1/12 PLANIMETRIE Základní pojmy: Shodnost, podobnost trojúhelníků Středová souměrnost, osová souměrnost, posunutí, otočení shodná zobrazení Středový a obvodový úhel Obsahy a obvody rovinných obrazců 1.

Více

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku

Přírodovědecká fakulta Masarykovy univerzity. na trigonometrii pravoúhlého a obecného trojúhelníku Přírodovědecká fakulta Masarykovy univerzity Řešení složitějších úloh na trigonometrii pravoúhlého a obecného trojúhelníku Bakalářská práce BRNO. května 006 Barbora Kamencová Prohlašuji, že jsem svou bakalářskou

Více

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační

Svobodná chebská škola, základní škola a gymnázium s.r.o. Trojúhelník III. konstrukce trojúhelníku. Astaloš Dušan. frontální, fixační METODICKÝ LIST DA35 Název tématu: Autor: Předmět: Ročník: Metody výuky: Formy výuky: Cíl výuky: Získané dovednosti: Stručný obsah: Trojúhelník III. konstrukce trojúhelníku Astaloš Dušan Matematika šestý

Více

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace Registrační číslo projektu: Název projektu: Název a číslo globálního grantu: CZ.1.07/1.1.12/02.0010 Šumavská škola = evropská škola Zvyšování kvality ve vzdělání v Plzeňském kraji CZ.1.07/1.1.12 Název

Více

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º) 6 Planimetrie Planimetrie = část matematiky, která se zabývá geometrií (původně věda o měřené země) v rovině (obrazce, jejich vlastnosti, shodnost a podobnost, zobrazení). 6.1 Trojúhelník Každé tři body,

Více

Syntetická geometrie I

Syntetická geometrie I Podobnost Pedagogická fakulta 2017 www.karlin.mff.cuni.cz/~zamboj/ Úhel Zvolíme-li na přímce bod, rozdělí ji na dvě polopřímky. Definice (Úhel) Systém dvou polopřímek ÝÑ VA, ÝÑ VB se společným počátečním

Více

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy 5 Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy Trojúhelník: Trojúhelník je definován jako průnik tří polorovin. Pojmy: ABC - vrcholy trojúhelníku abc - strany trojúhelníku ( a+b>c,

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram

n =5, potom hledejte obecný vztah. 4.5 Mnohoúhelníky PŘÍKLAD 4.2. Kolik úhlopříček má n úhelník? Vyřešte nejprve pro Obrázek 28: Tangram 4.5 Mnohoúhelníky Obrázek 28: Tangram Mnohoúhelník můžeme charakterizovat jako část roviny ohraničenou uzavřenou lomenou čarou (tj. čarou, která se skládá z na sebe navazujících úseček). Již víme, že rozlišujeme

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Univerzita Karlova v Praze Pedagogická fakulta SEMINÁRNÍ PRÁCE Z METOD ŘEŠENÍ 1 PLANIMETRIE 000/001 Cifrik, M-ZT První příklad ze zadávacích listů 1 Zadání: Sestrojte trojúhelník ABC, pokud je dáno: ρ

Více

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině. ZS1BK_PGE1 Geometrie I: Vybrané úlohy z elementární geometrie 1. Které geometrické útvary mohou vzniknout a) jako průnik dvou polopřímek téže přímky, b) jako průnik dvou polorovin téže roviny? V případě

Více

FUNKCE SINUS A KOSINUS

FUNKCE SINUS A KOSINUS 203 FUNKCE SINUS A KOSINUS opis způsou použití: teorie k smostudiu (i- lerning) pro 3. ročník střední škol tehnikého změření, teorie ke konzultím dálkového studi Vprovl: Ivn Klozová Dtum vprování: 2. prosine

Více

1.7.4 Výšky v trojúhelníku II

1.7.4 Výšky v trojúhelníku II 1.7.4 Výšky v trojúhelníku II Předpokldy: 010703 Opkování z minulé hodiny Výšk trojúhelníku: úsečk, která spojuje vrhol trojúhelníku s ptou kolmie n protější strnu. 0 0 v v 0 Př. 1: Nrýsuj trojúhelník

Více

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014

63. ročník matematické olympiády III. kolo kategorie A. Ostrava, března 2014 63. ročník mtemtické olympiády III. kolo ktegorie Ostrv, 23. 26. řezn 204 MO . Nechť n je celé kldné číslo. Oznčme všechny jeho kldné dělitele d, d 2,..., d k tk, y pltilo d < d 2

Více

2.4.7 Shodnosti trojúhelníků II

2.4.7 Shodnosti trojúhelníků II 2.4.7 Shodnosti trojúhelníků II Předpokldy: 020406 Př. 1: oplň tbulku. Zdání sss α < 180 c Zdání Náčrtek Podmínky sss sus usu b + b > c b + c > c + c > b b α < 180 c α + β < 180 c Pedgogická poznámk: Původní

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více

Teorie sférické trigonometrie

Teorie sférické trigonometrie Teorie sférické trigonometrie Trigonometrie (z řeckého trigónon = trojúhelník a metrein= měřit) je oblast goniometrie zabývající se praktickým užitím goniometrických funkcí při řešení úloh o trojúhelnících.

Více

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I

4.2.7 Zavedení funkcí sinus a cosinus pro orientovaný úhel I 4..7 Zvedení funkcí sinus cosinus pro orientovný úhel I Předpokldy: 40, 40, 404, 406 Prolém s definicí funkcí sin ( ) cos( ) : Definice pomocí prvoúhlého trojúhelníku je π možné použít pouze pro ( 0 ;90

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a.

TROJÚHELNÍK. JAN MALÝ UK v Praze a UJEP v Ústí n. L. sin α = b a. TROJÚHELNÍK JAN MALÝ UK v Prze UJEP v Ústí n. L. 1. Zn ení. Uvºujme trojúhelník ABC, jeho strny i jejih délky jsou,,, úhly α, β, γ. Osh trojúhelník zn íme P. Vý²k spu²t ná z odu C n strnu se zn í v její

Více

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená. MNOHOÚHELNÍKY Vlastnosti mnohoúhelníků Lomená čára C 0 C C C 3 C 4 protíná samu sebe. Lomená čára A 0 A A... A n- A n (n ) se skládá z úseček A 0 A, A A,..., A n- A n, z nichž každé dvě sousední mají společný

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné.

Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. 11 Stejnolehlost Patří mezi tzv. homotetie, tj. afinní zobrazení, která mají všechny směry samodružné. Definice 26. Budiž dán bod S a reálné číslo κ (různé od 0 a 1). Stejnolehlost H(S; κ) se středem S

Více

Návody k domácí části I. kola kategorie C

Návody k domácí části I. kola kategorie C Návody k domácí části I. kola kategorie C 1. Dokažte, že pro libovolné reálné číslo a platí nerovnost Určete, kdy nastane rovnost. a 2 + 1 a 2 a + 1 a + 1. 1. Dokažte, že pro libovolná reálná čísla x,

Více

7.3.7 Přímková smršť. Předpoklady: 7306

7.3.7 Přímková smršť. Předpoklady: 7306 737 Přímkoá smršť Předpokldy 7306 Pedgogiká poznámk Hodin znikl jko reke n prní průhod učenií Třeoni se třídou 42011 Ukázlo se, že studenti mjí prolémy s přiřzením spráného ektoru k různým druhům roni

Více

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla

DUM č. 11 v sadě. Ma-2 Příprava k maturitě a PZ geometrie, analytická geometrie, analýza, komlexní čísla projekt GML Brno Docens DUM č. v sdě M- Příprv k mturitě PZ geometrie, nltická geometrie, nlýz, komlení čísl 4. Autor: Mgd Krejčová Dtum: 3.8.3 Ročník: mturitní ročník Anotce DUMu: Anltická geometrie v

Více

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost

EU PENÍZE ŠKOLÁM Operační program Vzdělávání pro konkurenceschopnost ZÁKLADNÍ ŠKOLA OLOMOUC příspěvková organizace MOZARTOVA 48, 779 00 OLOMOUC tel.: 585 427 142, 775 116 442; fax: 585 422 713 e-mail: kundrum@centrum.cz; www.zs-mozartova.cz Projekt: ŠKOLA RADOSTI, ŠKOLA

Více

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník Čtyřúhelník : 1. Jak definovat čtyřúhelník základní vlastnosti 2. Názvy čtyřúhelníků 2.1. Deltoid 2.2. Tětivový čtyřúhelník 2.3. Tečnový čtyřúhelník 2.4. Rovnoběžník 2.4.1. Základní vlastnosti 2.4.2. Výšky

Více

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( ) 6. Algebraické nerovnice s jednou neznámou Další dovednosti: -iracionální nerovnice -lineární nerovnice s parametrem -kvadratické nerovnice s parametrem Možné maturitní otázky: Lineární a kvadratické nerovnice

Více

Konstrukce na základě výpočtu II

Konstrukce na základě výpočtu II 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky

Více

Syntetická geometrie II

Syntetická geometrie II Mnohoúhelníky Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Čtyřúhelníky Definice (Čtyřúhelník) Jsou dány čtyři body A, B, C, D v rovině, z nichž žádné tři nejsou kolineární. Čtyřúhelník ABCD

Více

9.6. Odchylky přímek a rovin

9.6. Odchylky přímek a rovin 9 Stereometrie 96 Odchylky přímek rovin Odchylku dvou přímek, dvou rovin přímky od roviny převádíme n určení velikosti úhlu dvou různoběžek Odchylk dvou přímek Odchylk dvou přímek splývjících nebo rovnoběžných

Více

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online PRACOVNÍ SEŠIT 6. tematický okruh: PLANIMETRIE vytvořila: RNDr. Věra Effenberger expertka na online přípravu na SMZ

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I ..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,

Více

11 Analytická geometrie v rovině

11 Analytická geometrie v rovině Analytiá geometrie v rovině V této části se udeme zaývat pouze rovinou. Využijeme něterýh vlastností teré v prostoru neplatí.. Poznáma: Opaování u = (u u ) v = (v v ) u = (u + u ) u.v = u v + u v vetory

Více

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB.

Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. 8. Trojúhelník 6. ročník 8. Trojúhelník 8.1. Základní pojmy 8.1.1. Trojúhelník Máme tři různé body A, B, C. Trojúhelník ABC je průnik polorovin ABC, BCA a CAB. Trojúhelník popisujeme proti chodu hodinových

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech).

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech). .ročník 9. PL Čtyřúhlníky, mnohoúhlníky Čtyřúhlník = rovinný útvr, j tvořn čtyřmi úsčkmi, ktré s protínjí v čtyřh oh (vrholh). Pozn.: Njčstěji s používá znční,,, pro vrholy,,,, pro strny α, β, γ, δ pro

Více

Syntetická geometrie I

Syntetická geometrie I Afinita Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ Směr Dvě rovnoběžné přímky mají stejný (neorientovaný) směr. Definice (Samodružný směr) Když se při zobrazení f zobrazí přímka p na přímku

Více

Přípravný kurz - Matematika

Přípravný kurz - Matematika Přípravný kurz - Matematika Téma: Konstrukční úlohy Klíčová slova: rozbor, náčrt, popis, diskuse počtu řešení, kružnice opsaná a vepsaná Autor: trojúhelníku Mlynářová 12 19 9:02 Kontrukční úlohy Výsledkem

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

( ) Příklady na středovou souměrnost. Předpoklady: , bod A ; 2cm. Př. 1: Je dána kružnice k ( S ;3cm)

( ) Příklady na středovou souměrnost. Předpoklady: , bod A ; 2cm. Př. 1: Je dána kružnice k ( S ;3cm) 3.5.5 Příklady na středovou souměrnost Předpoklady: 3504 Př. : Je dána kružnice k ( S ;3cm), bod ; cm S = a přímka p; p = 4cm, která nemá s kružnicí k žádný společný bod. Najdi všechny úsečky KL; K k,

Více

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018,

Vlasta Moravcová. Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3. Letní škola geometrie 2018, KONSTRUKČNÍ ÚLOHY Katedra didaktiky matematiky Gymnázium Na Pražačce Matematicko-fyzikální fakulta & Nad Ohradou 23 Univerzita Karlova v Praze Praha 3 Letní škola geometrie 2018, 4. července 2018, Česká

Více

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti,

Konstrukční úlohy. Růžena Blažková, Irena Budínová. Milé studentky, milí studenti, Konstrukční úlohy Růžena Blažková, Irena Budínová Milé studentky, milí studenti, zadání konstrukčních úloh si vylosujete v semináři nebo na přednášce, u každé konstrukční úlohy proveďte: - rozbor obsahuje

Více

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 PLANIMETRIE Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04 OPVK 1.5 EU peníze středním školám CZ.1.07/1.500/34.0116 Modernizace výuky na učilišti Název školy Název šablony Předmět Tematický celek

Více

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1

SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 SYLABUS PŘEDNÁŠKY 7 Z GEODÉZIE 1 (Souřdnicové výpočty) 1 ročník bklářského studi studijní progrm G studijní obor G doc Ing Jromír Procházk CSc listopd 2015 1 Geodézie 1 přednášk č7 VÝPOČET SOUŘADNIC JEDNOHO

Více

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti)

PODOBNÁ ZOBRAZENÍ V ROVINĚ (včetně stejnolehlosti) Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PODOBNÁ

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2016 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

Syntetická geometrie I

Syntetická geometrie I Kružnice Pedagogická fakulta 2018 www.karlin.mff.cuni.cz/~zamboj/ & přímka Vzájemná poloha přímky a kružnice p 1 vnější přímka p 2 tečna s bodem dotyku T p 3 sečna X 1 X 2 tětiva Y 1 Y 2 průměr Y 1 S poloměr

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

Variace Goniometrie a trigonometrie pro studijní obory

Variace Goniometrie a trigonometrie pro studijní obory Variace 1 Goniometrie a trigonometrie pro studijní obory 1. Goniometrie a trigonometrie 2. Orientovaný úhel 2 3 4 3. Stupňová a oblouková míra - procvičovací příklady 1. 1617 2. 1611 3. 1622 4. 1614 5.

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny.

4.3.9 Sinus ostrého úhlu I. α Předpoklady: Správně vyplněné hodnoty funkce a c. z minulé hodiny. 4.3.9 Sinus ostrého úhlu I Předpokldy: 040308 Správně vyplněné hodnoty funke z minulé hodiny. α 10 20 30 40 50 60 70 80 poměr 0,17 0,34 0,50 0,64 0,77 0,87 0,94 0,98 Funke poměr se nzývá sinus x (zkráeně

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2

Kreslení, rýsování. Zobrazení A B. Promítání E 3 E 2 Kreslení, rýsování Zobrazení A B Promítání E 3 E 2 1 Promítání lineární 1. Obrazem bodu je bod 2. Obrazem přímky je přímka (nebo bod) 3. Obrazem roviny je rovina (nebo přímka) Nelineární perspektivy: válcová...

Více

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 )

Rovinné obrazce. 1) Určete velikost úhlu α. (19 ) 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) Rovinné orze 1) Určete velikost úhlu α. (19 ) 32 103 2) Určete velikost úhlu δ, jestliže velikost úhlu α je 27. (99 ) x d y x y 3) Vypočítejte osh orze znázorněného ve čtverové síti. (2 500 m 2 ) C A B

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Sférická trigonometrie v matematické geografii a astronomii

Sférická trigonometrie v matematické geografii a astronomii Sférická trigonometrie v matematické geografii a astronomii Mgr. Hana Lakomá, Ph.D., Mgr. Veronika Douchová 00 Tento učební materiál vznikl v rámci grantu FRVŠ F1 066. 1 Základní pojmy sférické trigonometrie

Více

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011

Trojúhelník. MATEMATIKA pro 1. ročníky tříletých učebních oborů. Ing. Miroslav Čapek srpen 2011 MATEMATIKA pro 1. ročníky tříletých učebních oborů Trojúhelník Ing. Miroslav Čapek srpen 2011 Projekt Využití e-learningu k rozvoji klíčových kompetencí reg. č.: CZ.1.07/1.1.10/03.0021 je spolufinancován

Více

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A

S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N A S T E R E O M E T R I E ( P R O S T O R O V Á G E O M E T R I E ) Z Á K L A D N Í G E O M E T R I C K É Ú T VA R Y A J E J I C H O Z N AČENÍ bod (A, B, C, ), přímka (a, b, p, q, AB, ), rovina (α, β, ρ,

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více