Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.
|
|
- Vojtěch Kašpar
- před 6 lety
- Počet zobrazení:
Transkript
1 Jdi na stranu Celá obr./okno Zavřít 1 Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz, CSc.
2 Jdi na stranu Celá obr./okno Zavřít 2 Operace s macemi Podobne jako s c ıśly zava dıḿe i s maticemi poc etnı operace s pr ıślus ny mi pravidly. Rovnost mac: A = B Dve matice A = (a, ), B = (b, ) te hoz typu (m, n) jsou si rovny (pıś eme A = B), pra ve kdyz platı : a, = b,, i = 1, 2,, m ; j = 1, 2,, n, nebo-li a, = b, ; i, j. Symbol i, j c teme pro každé i, j. Z te to deinice a ze zna my ch vlastnostı rea lny ch c ıśel vyply vajı tyto vlastnosti ¹ rovnosti matic: 1. A = A relexivnost 2. A = B B = A symetrie 3. A = B B = C A = C tranzitivnost Kaz da rovnost mezi maticemi je struc ny m za pisem pra ve jedne soustavy rovnostı mezi pr ıślus ny mi prvky (c ıśly). Napr ıḱlad: x 1 + t x = 1 + t x = t x = t x 3 4t x = 3 4t ¹ Relace, ktera je relexivnı, symetricka a tranzitivnı, se nazy va ekvivalence.
3 Jdi na stranu Celá obr./okno Zavřít 3 Součin mace s číslem: k. A prvky jsou tıḿto c ıślem na sobeny. je matice stejne ho typu jako na sobena matice, jejıź vs echny Napr ıḱlad ( 2) = ( 2) 1 ( 2) ( 3) ( 2) 6 ( 2) 2 ( 2) 1 ( 2) 0 = Součet a rozdíl mac: A + B, A B. Součtem matic A = (a, ), B = (b, ) te hoz typu (m, n) rozumıḿe matici C = (c, ) stejne ho typu, jejıź prvky jsou: c, = a, + b,, i, j (pıś eme: C = A + B ). Analogicky rozdílem matic A a B te hoz typu rozumıḿe matici C = A B, pro kterou platı : c, = a, b,, i, j. Jinak r ec eno: rozdıĺ dvou matic urc ıḿe jako souc et te chto matic, z nichz druha je vyna sobena c ıślem 1. Napr ıḱlad =
4 Jdi na stranu Celá obr./okno Zavřít 4 Z uvedeny ch deinic a ze zna my ch vlastnostı rea lny ch c ıśel vyply vajı na sledujıćı vlastnosti ² pro libovolne matice A, B, C te hoz typu a libovolna c ıśla k, k, k : pro sc ı ta nı matic (kde 0 je nulova matice stejne ho typu jako matice A ) 1. A + B = B + A komutativnı za kon 2. A + (B + C) = (A + B) + C asociativnı za kon pro souc et matic 3. A + 0 = 0 + A = A 4. A ( A) A + ( A) = ( A) + A = 0 Vztah c.4 c teme: Ke kaz de ( ) matici A existuje ( ) matice, kterou nazy va me maticı opac nou k matici A a oznac ujeme A, pro kterou platı ( : ), z e jejich souc et je nulova matice ( 0 ). pro na sobenı matic c ıślem: 5. 1 A = A 6. k (k A) = (k k ) A asociativnı za kon pro na sobenı matice c ıślem 7. (k + k ) A = k A + k A distributivnı za kony pro 8. k(a + B) = k A + k B na sobenı matice c ıślem ² Struktura vyhovujıćı poz adavku m se nazy va komutativní grupa vzhledem ke sčítání. Struktura vyhovujıćı vs em poz adavku m se nazy va vektorový prostor.
5 Jdi na stranu Celá obr./okno Zavřít 5 R es me soustavu dvou linea rnıćh rovnic o dvou nezna my ch, kterou poz adujeme zapsat symbolicky, kde A je matice koeicientu, X je (sloupcova ) matice nezna my ch a B matice pravy ch stran. A X = B a a x a a y = b b a x + a y = b a x + a y = b Nynı deinujme na sobenı matic (matice koeicientu krát matice nezna my ch) tak, abychom obdrz eli leve strany rovnic zadane ho syste mu.
6 Jdi na stranu Celá obr./okno Zavřít 6 R es me soustavu dvou linea rnıćh rovnic o dvou nezna my ch, kterou poz adujeme zapsat symbolicky, kde A je matice koeicientu, X je (sloupcova ) matice nezna my ch a B matice pravy ch stran. A X = B a a x a a y = b b a x + a y = b a x + a y = b Nynı deinujme na sobenı matic (matice koeicientu krát matice nezna my ch) tak, abychom obdrz eli leve strany rovnic zadane ho syste mu.
7 Jdi na stranu Celá obr./okno Zavřít 7 R es me soustavu dvou linea rnıćh rovnic o dvou nezna my ch, kterou poz adujeme zapsat symbolicky, kde A je matice koeicientu, X je (sloupcova ) matice nezna my ch a B matice pravy ch stran. A X = B a a x a a y = b b a x + a y = b a x + a y = b Nynı deinujme na sobenı matic (matice koeicientu krát matice nezna my ch) tak, abychom obdrz eli leve strany rovnic zadane ho syste mu.
8 Jdi na stranu Celá obr./okno Zavřít 8 R es me soustavu dvou linea rnıćh rovnic o dvou nezna my ch, kterou poz adujeme zapsat symbolicky, kde A je matice koeicientu, X je (sloupcova ) matice nezna my ch a B matice pravy ch stran. A X = B a a x a a y = b a x + a y = b b a x + a y = b Nynı deinujme na sobenı matic (matice koeicientu krát matice nezna my ch) tak, abychom obdrz eli leve strany rovnic zadane ho syste mu. Násobení mac: A B. Souc inem matice A = (a, ) a matice B = (b, ) v daném pořadí je matice C = (c, ), pro jejıź prvky platı : c = i = 1, 2,, m, j = 1, 2,, p. a, b, pro kaz de Deinice r ıḱa, z e chceme-li urc it prvek souc inu dvou matic c,, musıḿe každý c len i. řádku první matice (vlevo levy index) vynásobit c lenem j. sloupce druhé matice (vpravo pravy index) se stejným pořadím ( prvnı prvnı + druhy druhy + + poslednı poslednı ) a tyto součiny sečíst. Pr ıḱlad na sobenı dvou matic: x y = x + 2y 4x + 5y Pomu z eme si napr ıḱlad takto zapsany m postupem: x y x + 2y 4x + 5y
9 Jdi na stranu Celá obr./okno Zavřít 9 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
10 Jdi na stranu Celá obr./okno Zavřít 10 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
11 Jdi na stranu Celá obr./okno Zavřít 11 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
12 Jdi na stranu Celá obr./okno Zavřít 12 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
13 Jdi na stranu Celá obr./okno Zavřít 13 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
14 Jdi na stranu Celá obr./okno Zavřít 14 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
15 Jdi na stranu Celá obr./okno Zavřít 15 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() ()
16 Jdi na stranu Celá obr./okno Zavřít 16 Jsou da ny matice A = a B = Urc ete A B a B A.. A B = = () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () () ()() ()() ()() () B A = = () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() () () ()() ()
17 Jdi na stranu Celá obr./okno Zavřít Jiz z uvedene ho pr ıḱladu vidıḿe, z e pro na sobenı matic obecne neplatı komutativnı za kon (o za me ne c initelu ). Matice A je typu (2, 4), matice B je typu (4, 2). Proto: prvnı vypoc ı tany souc in A B je typu (2, 4 )( 4, 2) = (2, 2), kdez to druhy vypoc ı tany souc in B A je typu (4, 2 )( 2, 4) = (4, 4). 2. Je-li napr ıḱlad A typu (2, 4) a matice B je typu (4, 5), pak souc in A B existuje a je to matice typu (2, 4 )( 4, 5) = (2, 5), kdez to souc in B A vu bec nenı deinova n (neexistuje). 3. Násobení matic tedy nemá naprosto stejné vlastnosti, jako násobení čísel. Dals ı odlis nosti si uka z eme ve cvic enı k te to kapitole. 4. Jsou-li matice A, 0 (nulova ) a E (jednotkova ) čtvercové matice stejného řádu, platı : A 0 = 0 A = 0 a A E = E A = A, jak snadno zjistıḿe vyna sobenıḿ.
18 Jdi na stranu Celá obr./okno Zavřít 18 Vlastnos násobení mac Na sobenı matic da va pone kud odlis ne vy sledky, nez ktere dosta va me pr i na sobenı c ıśel, jak bylo naznac eno v pr edchozı pozna mce. Nechť A, B a C jsou matice a k c ıślo. Potom: 1. Obecně nepla komutavní zákon o za me ne c initelu. Tedy nelze předpokládat (viz prvnı a druhy bod pr edchozı pozna mky), z e vz dy platı A B = B A. Toto funguje pouze u c tvercovy ch matic. A navıć pouze u ne ktery ch. Tyto pak nazveme zaměnitelné. Spıś e platı : A B B A 2. Z rovnos A B = 0 nemu z eme usuzovat, z e A = 0 nebo B = 0. Pokud souc in dvou matic je roven nulove matici, nutne z toho neplyne, z e alespon jedna z nich je take nulova, jak je uka za no v pr ıḱladech 2. a) a Z rovnos A = A nemu z eme usuzovat, z e A = E nebo A = 0, jak je uka za no v pr ıḱladu 2. b) i kdyz r es enıḿ kvadraticke rovnice x = x je pra ve jednička a nula. 4. Při násobení mac nelze krát, jak je uka za no v pr ıḱladu (A B) C = A (B C) asociativnı za kon (o sdruz ova nı c initelu ). 6. k (A B) = (k A) B = A (k B) asociativnı za kon pro na sobenı souc inu matic c ıślem. 7. (A + B) C = A C + B C distributivnı za kon, kdy za vorka je vlevo. 8. A (B + C) = A B + A C distributivnı za kon, kdy za vorka je vpravo.
19 Jdi na stranu Celá obr./okno Zavřít 19 Cvičení 1. Jsou da ny matice A = , B = Vypoc te te 2 A B a A + 3 B. 2 A B = = = = A + 3 B = = = =
20 Jdi na stranu Celá obr./okno Zavřít Jsou da ny matice A = , B = Urc ete A B a B A. A B = = B A = = A B = B A Matice A a B jsou zame nitelne.
21 Jdi na stranu Celá obr./okno Zavřít Jsou da ny matice A = , B = Vypoc te te: a) A B b) A Řešení a) A B = = = 0 Z rovnosti A B = 0 nevyply va, z e by alespon jedna z matic A nebo B musela by t nulova. Nebo jinak: souc inem dvou nenulovy ch matic mu z e by t nulova matice. Řešení b) A = A A = = = A Z rovnosti A A = A ( A = A ) nevyply va, z e by matice A musela by t jednotkova nebo nulova.
22 Jdi na stranu Celá obr./okno Zavřít Jsou da ny matice A = , B = , C = Vypoc te te A B a A C. A B = = A C = = Z rovnosti A B = A C nelze c init za ve r, z e B = C. Při násobení matic proto nemůžeme krátit.
23 Jdi na stranu Celá obr./okno Zavřít Jsou da ny matice A = , B = Vypoc te te A B. A B = = = Jsou da ny matice C = , D = Vypoc te te C D. C D = =
24 Jdi na stranu Celá obr./okno Zavřít Je da na matice A = Vypoc te te A. A = A A A A A = (A A) {(A A) A} = = = = = Jsou da ny matice B = , C = Vypoc te te B C C B. B C C B = = = =
Operace s maticemi. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.
U stav matematiky a deskriptivnı geometrie Operace s maticemi Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz,
VíceHodnost matice. Studijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen.
U stav matematiky a deskriptivnı geometrie Hodnost matice Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2014 RNDr. Rudolf Schwarz, CSc.
VíceGaussovou eliminac nı metodou
U stav matematiky a deskriptivnı geometrie R es enı soustav linea rnıćh algebraicky ch rovnic Gaussovou eliminac nı metodou Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo
VíceRaciona lnı lomena funkce, rozklad na parcia lnı zlomky
U stav matematiky a deskriptivnı geometrie Raciona lnı lomena funkce, rozklad na parcia lnı zlomky Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full
VíceStudijnı materia ly. Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. RNDr. Rudolf Schwarz, CSc.
First Prev Next Last Go Back Full Screen Close Quit Matematika 1 Lagrangeu v tvar interpolac nı ho mnohoc lenu Newtonu v tvar interpolac nı ho mnohoc lenu Studijnı materia ly Pro listova nı dokumentem
VíceMatematika 1 základy linea rnı algebry a funkcí
Matematika 1 základy linea rnı algebry a funkcí Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2013 RNDr. Rudolf Schwarz, CSc. Determinanty
Vícea m1 a m2 a mn zobrazení. Operaci násobení u matic budeme definovat jiným způsobem.
1 Matice Definice 1 Matice A typu (m, n) je zobrazení z kartézského součinu {1, 2,,m} {1, 2,,n} do množiny R Matici A obvykle zapisujeme takto: a 1n a 21 a 22 a 2n A =, a m1 a m2 a mn kde a ij R jsou její
VíceMnožinu všech matic typu m n nad tělesem T budeme označovat M m n (T ), množinu všech čtvercových matic stupně n nad T pak M n (T ).
Matice Definice 4.1 Necht (T ; +, je číselné těleso, m, n N a dále necht a ij T pro všechny indexy i = 1, 2,..., m a j = 1, 2,..., n. Potom schéma a 11 a 12... a 1n a 21 a 22... a 2n... = (a ij m n a m1
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
VíceLine rn oper tory v euklidovsk ch prostorech V t to sti pou ijeme obecn v sledky o line rn ch oper torech ve vektorov ch prostorech nad komplexn mi sl
Line rn oper tory v euklidovsk ch prostorech V t to sti pou ijeme obecn v sledky o line rn ch oper torech ve vektorov ch prostorech nad komplexn mi sly z p edchoz ch kapitol k podrobn j mu zkoum n line
VíceVĚTY Z LINEÁRNÍ ALGEBRY
VĚTY Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. věta Nechť M = {x 1, x 2,..., x k } je množina vektorů z vektorového prostoru
VíceLineární algebra. Matice, operace s maticemi
Lineární algebra Matice, operace s maticemi Operační program Vzdělávání pro konkurenceschopnost Název projektu: Inovace magisterského studijního programu Fakulty ekonomiky a managementu Registrační číslo
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
VíceTransformace Aplikace Trojný integrál. Objem, hmotnost, moment
Trojný integrál Dvojný a trojný integrál Objem, hmotnost, moment obecne ji I Nez zavedeme transformaci dvojne ho integra lu obecne, potr ebujeme ne kolik pojmu. Definice Necht je da no zobrazenı F : R2
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceCílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi
2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí
VíceMATEMATIKA I VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ ZÁKLADY LINEÁRNÍ ALGEBRY
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ JIŘÍ NOVOTNÝ MATEMATIKA I ZÁKLADY LINEÁRNÍ ALGEBRY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX 2ε, Podpořeno projektem
VíceMAT 1 Posloupnosti a jejich aplikace v bankovnictvı
MAT 1 Posloupnosti a jejich aplikace v bankovnictvı Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko mys i nebo zvolte moz nost Full Screen. Brno 2013 RNDr. Rudolf Schwarz, CSc. Obsah
VíceLineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
Více1 Báze a dimenze vektorového prostoru 1
1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
VíceŘešení: Dejme tomu, že pan Alois to vezme popořadě od jara do zimy. Pro výběr fotky z jara má Alois dvanáct možností. Tady není co počítat.
KOMBINATORIKA ŘEŠENÉ PŘÍKLADY Příklad 1 Pan Alois dostal od vedení NP Šumava za úkol vytvořit propagační poster se čtyřmi fotografiemi Šumavského národního parku, každou z jiného ročního období (viz obrázek).
Více11 Soustavy rovnic a nerovnic, Determinanty a Matice
11 Soustavy rovnic a nerovnic, Determinanty a Matice (r zné typy soustav rovnic a nerovnic, matice druhy matic, operace s maticemi, hodnost matice, inverzní matice, Gaussova elimina ní metoda, determinanty
Více6. Matice. Algebraické vlastnosti
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan 6 Matice Algebraické vlastnosti 1 Algebraické operace s maticemi Definice Bud te A,
VíceMatematika B101MA1, B101MA2
Matematika B101MA1, B101MA2 Zařazení předmětu: povinný předmět 1.ročníku bc studia 2 semestry Rozsah předmětu: prezenční studium 2 + 2 kombinované studium 16 + 0 / semestr Zakončení předmětu: ZS zápočet
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VíceNumerické řešení nelineární rovnice
Matematika 1 Numerické řešení nelineární rovnice f(x) = e x 2 x 2 Metody: gra ická, bisekce, regula falsi, tečen (Newtonova), sečen Studijnı materia ly Pro listova nı dokumentem NEpouz ı vejte kolec ko
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceMatematický model kamery v afinním prostoru
CENTER FOR MACHINE PERCEPTION CZECH TECHNICAL UNIVERSITY Matematický model kamery v afinním prostoru (Verze 1.0.1) Jan Šochman, Tomáš Pajdla sochmj1@cmp.felk.cvut.cz, pajdla@cmp.felk.cvut.cz CTU CMP 2002
VíceKapitola 11: Vektory a matice:
Kapitola 11: Vektory a matice: Prostor R n R n = {(x 1,, x n ) x i R, i = 1,, n}, n N x = (x 1,, x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i = 1,, n : x i = y i
Více1 Řešení soustav lineárních rovnic
1 Řešení soustav lineárních rovnic 1.1 Lineární rovnice Lineární rovnicí o n neznámých x 1,x 2,..., x n s reálnými koeficienty rozumíme rovnici ve tvaru a 1 x 1 + a 2 x 2 +... + a n x n = b, (1) kde koeficienty
VíceAlgebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
VíceZákladní pojmy teorie množin Vektorové prostory
Základní pojmy teorie množin Přednáška MATEMATIKA č. 1 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz 7. 10. 2010 Základní pojmy teorie množin Základní pojmy
VíceAVDAT Vektory a matice
AVDAT Vektory a matice Josef Tvrdík Katedra informatiky Přírodovědecká fakulta Ostravská univerzita Vektory x = x 1 x 2. x p y = y 1 y 2. y p Řádkový vektor dostaneme transpozicí sloupcového vektoru x
VíceIB112 Základy matematiky
IB112 Základy matematiky Řešení soustavy lineárních rovnic, matice, vektory Jan Strejček IB112 Základy matematiky: Řešení soustavy lineárních rovnic, matice, vektory 2/53 Obsah Soustava lineárních rovnic
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
VíceM - Příprava na čtvrtletní písemnou práci
M - Příprava na čtvrtletní písemnou práci Určeno pro třídu 1ODK. VARIACE 1 Tento dokument byl kompletně vytvořen, sestaven a vytištěn v programu dosystem - EduBase. Více informací o programu naleznete
VíceV předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
VíceMENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
VíceMENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
Více1 Zobrazení 1 ZOBRAZENÍ 1. Zobrazení a algebraické struktury. (a) Ukažte, že zobrazení f : x
1 ZOBRAZENÍ 1 Zobrazení a algebraické struktury 1 Zobrazení Příklad 1.1. (a) Ukažte, že zobrazení f : x na otevřený interval ( 1, 1). x x +1 je bijekce množiny reálných čísel R (b) Necht a, b R, a < b.
VíceHisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
Více4 DVOJMATICOVÉ HRY. Strategie Stiskni páku Sed u koryta. Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0)
4 DVOJMATICOVÉ HRY Strategie Stiskni páku Sed u koryta Stiskni páku (8, 2) (5, 3) Sed u koryta (10, 2) (0, 0) 125 DVOJMATICOVÁ HRA Je-li speciálně množina hráčů Q = {1, 2} a prostory strategií S 1, S 2
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
VícePROSTORY SE SKALÁRNÍM SOUČINEM. Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti
PROSTORY SE SKALÁRNÍM SOUČINEM Definice Nechť L je lineární vektorový prostor nad R. Zobrazení L L R splňující vlastnosti 1. (x, x) 0 x L, (x, x) = 0 x = 0, 2. (x, y) = (y, x) x, y L, 3. (λx, y) = λ(x,
VíceMatice se v některých publikacích uvádějí v hranatých závorkách, v jiných v kulatých závorkách. My se budeme držet zápisu s kulatými závorkami.
Maticové operace Definice Skalár Představme si nějakou množinu, jejíž prvky lze sčítat a násobit. Pěkným vzorem jsou čísla, která už známe od mala. Prvky takové množiny nazýváme skaláry. Matice Matice
VíceDeterminanty. Obsah. Aplikovaná matematika I. Pierre Simon de Laplace. Definice determinantu. Laplaceův rozvoj Vlastnosti determinantu.
Determinanty Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Determinanty Definice determinantu Sarrusovo a křížové pravidlo Laplaceův rozvoj Vlastnosti determinantu Výpočet determinantů 2 Inverzní
VíceALGEBRA. Téma 5: Vektorové prostory
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 5: Vektorové prostory Základní pojmy Vektorový prostor nad polem P, reálný (komplexní)
VíceMatematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan. 14.
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan 14. Vlastní vektory Bud V vektorový prostor nad polem P. Lineární zobrazení f : V
VíceD 11 D D n1. D 12 D D n2. D 1n D 2n... D nn
Inversní matice 1 Definice Nechť je čtvercová matice řádu n Čtvercovou matici B řádu n nazveme inversní maticí k matici, jestliže platí B=E n =B, kdee n jeodpovídajícíjednotkovámatice 2 Tvrzení Inversní
VíceVariace. Mocniny a odmocniny
Variace 1 Mocniny a odmocniny Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Mocniny a odmocniny Obor přirozených
Více[1] Determinant. det A = 0 pro singulární matici, det A 0 pro regulární matici
[1] Determinant je číslo jistým způsobem charakterizující čtvercovou matici det A = 0 pro singulární matici, det A 0 pro regulární matici používá se při řešení lineárních soustav... a v mnoha dalších aplikacích
Vícep (1) k 0 k 1 je pravd podobnost p echodu ze stavu k i v l ; 1 kroku do stavu k j
Markovovsk n hodn procesy U Markovovsk ho n hodn ho proces nez vis dal v voj na zp sobu, jak se proces dostal do sou asn ho stavu. Plat 8 t
VíceBinární operace. Úvod. Pomocný text
Pomocný text Binární operace Úvod Milí e²itelé, binární operace je pom rn abstraktní téma, a tak bude ob as pot eba odprostit se od konkrétních p íklad a podívat se na v c s ur itým nadhledem. Nicmén e²ení
Více7. Důležité pojmy ve vektorových prostorech
7. Důležité pojmy ve vektorových prostorech Definice: Nechť Vje vektorový prostor a množina vektorů {v 1, v 2,, v n } je podmnožinou V. Pak součet skalárních násobků těchto vektorů, tj. a 1 v 1 + a 2 v
Vícepříkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.
Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl
VíceDarujme.cz. Podrobné statistiky 2015
Darujme.cz Podrobné statistiky Zahrnutá data a jejich úprava Z hlediska fundraisingu je významnější, kdy dárce dar zadal, než kdy byla obdrž ena platba na u č et. Ve statistika čh proto prima rne pračujeme
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
VíceV: Pro nulový prvek o lineárního prostoru L platí vlastnosti:
Zpracoval: hypspave@fel.cvut.cz. Základní vlastnosti abstraktních lineárních prostorů. Lineární závislost, nezávislost, báze, souřadnice vzhledem k bázi, matice lineárního zobrazení vzhledem k bázím.skalární
Více1 Vektorové prostory.
1 Vektorové prostory DefiniceMnožinu V, jejíž prvky budeme označovat a, b, c, z, budeme nazývat vektorovým prostorem právě tehdy, když budou splněny následující podmínky: 1 Je dáno zobrazení V V V, které
Více[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
VíceSkalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS )
LINEÁRNÍ ALGEBRA Úvod vektor Skalár- veličina určená jedním číselným údajem čas, hmotnost (porovnej životní úroveň, hospodaření firmy, naše poloha podle GPS ) Kartézský souřadnicový systém -je taková soustava
VíceDEFINICE Z LINEÁRNÍ ALGEBRY
DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které
VíceExponenciála matice a její užití. fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu
1 Tutoriál č. 3 Exponenciála matice a její užití řešení Cauchyovy úlohy pro lineární systémy užitím fundamentálních matic. Užití mocninných řad pro rovnice druhého řádu 0.1 Exponenciála matice a její užití
VícePříprava na 1. čtvrtletní písemku pro třídu 1EB
Variace 1 Příprava na 1. čtvrtletní písemku pro třídu 1EB Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Číselné
Více1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
Více2 Trochu teorie. Tab. 1: Tabulka pˇrepravních nákladů
Klíčová slova: Dopravní problém, Metody k nalezení výchozího ˇrešení, Optimální ˇrešení. Dopravní problém je jednou z podskupin distribuční úlohy (dále ještě problém přiřazovací a obecná distribuční úloha).
Více10. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo
0. Soustavy lineárních rovnic, determinanty, Cramerovo pravidlo (PEF PaA) Petr Gurka aktualizováno 9. prosince 202 Obsah Základní pojmy. Motivace.................................2 Aritmetický vektorový
VíceKongruence na množině celých čísel
121 Kapitola 4 Kongruence na množině celých čísel 4.1 Relace kongruence na množině celých čísel Vraťme se k úvahám o dělení se zbytkem. Na základní škole jsme se naučili, že když podělíme číslo 11 číslem
Více1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
VíceLineární algebra - I. část (vektory, matice a jejich využití)
Lineární algebra - I. část (vektory, matice a jejich využití) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 2. přednáška z ESMAT Michal Fusek (fusekmi@feec.vutbr.cz) 1 / 40 Obsah 1 Vektory
Více(Cramerovo pravidlo, determinanty, inverzní matice)
KMA/MAT1 Přednáška a cvičení, Lineární algebra 2 Řešení soustav lineárních rovnic se čtvercovou maticí soustavy (Cramerovo pravidlo, determinanty, inverzní matice) 16 a 21 října 2014 V dnešní přednášce
VíceKapitola 11: Vektory a matice 1/19
Kapitola 11: Vektory a matice 1/19 2/19 Prostor R n R n = {(x 1,..., x n ) x i R, i = 1,..., n}, n N x = (x 1,..., x n ) R n se nazývá vektor x i je i-tá souřadnice vektoru x rovnost vektorů: x = y i =
Více7. V Ї 4 odstavce 2 a 3 zneяjѕт:
5 VYHLAТ SЯ KA ze dne 21. prosince 2006, kterou se meяnѕт vyhlaтsяka cя. 482/2005 Sb., o stanovenѕт druhuъ, zpuъ sobuъ vyuzя itѕт a parametruъ biomasy prяi podporяe vyтroby elektrяiny z biomasy Ministerstvo
VíceVEKTOROVÝ PROSTOR. Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru.
VEKTOROVÝ PROSTOR Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání, odčítání vektorů a reálný násobek vektoru. Soubor n-složkových vektorů je libovolná skupina vektorů,
Více1. a) Přirozená čísla
jednotky desítky stovky tisíce desetitisíce statisíce miliony 1. a) Přirozená čísla Přirozená čísla jsou nejčastějšími čísly, se kterými se setkáváme v běžném životě. Jejich pomocí zapisujeme počet věcí
VíceUspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
VíceText m ºe být postupn upravován a dopl ován. Datum poslední úpravy najdete u odkazu na staºení souboru. Veronika Sobotíková
Tento text není samostatným studijním materiálem. Jde jen o prezentaci promítanou na p edná²kách, kde k ní p idávám slovní komentá. N které d leºité ásti látky pí²u pouze na tabuli a nejsou zde obsaºeny.
Více7. Lineární vektorové prostory
7. Lineární vektorové prostory Tomáš Salač MÚ UK, MFF UK LS 2017/18 Tomáš Salač ( MÚ UK, MFF UK ) 7. Lineární vektorové prostory LS 2017/18 1 / 62 7.1 Definice a příklady Definice 7.1 Množina G s binární
Více1 Soustavy lineárních rovnic
1 Soustavy lineárních rovnic 1.1 Základní pojmy Budeme uvažovat soustavu m lineárních rovnic o n neznámých s koeficienty z tělesa T (potom hovoříme o soustavě m lineárních rovnic o n neznámých nad tělesem
VíceCo je to diferenciální rovnice Rovnice se separovanými proměnnými Aplikace. Diferenciální rovnice I
Co je to diferenciální rovnice Rovnice se separovanými proměnnými Diferenciální rovnice I Modelování aneb předpovídání budoucnosti ? Diferencia lnı rovnice je rovnice, v ktere roli nezna me hraje funkce
VíceSoustavy lineárních rovnic a determinanty
Soustavy lineárních rovnic a determinanty Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
VíceALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
VíceČíselné vektory, matice, determinanty
Číselné vektory, matice, determinanty Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
VíceLenka Zalabová. Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita. zima 2012
Algebra - třetí díl Lenka Zalabová Ústav matematiky a biomatematiky, Přírodovědecká fakulta, Jihočeská univerzita v Českých Budějovicích zima 2012 Obsah 1 Dělitelnost 2 Grupy zbytkových tříd 3 Jedna z
Více6. Vektorový počet Studijní text. 6. Vektorový počet
6. Vektorový počet Budeme se pohybovat v prostoru R n, což je kartézská mocnina množiny reálných čísel R; R n = R R. Obvykle nám bude stačit omezení na případy n = 1, 2, 3; nicméně teorie je platná obecně.
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
VíceVektorový prostor. d) Ke každému prvku u V n existuje tzv. opačný prvek u, pro který platí, že u + u = o (vektor u nazýváme opačný vektor k vektoru u)
Hodnost matice Vektorový prostor Vektorový prostor V n je množina všech n-složkových vektorů spolu s operacemi sčítání vektorů a reálný násobek vektoru, přičemž platí: a) V n je uzavřenou množinou vůči
VíceSkalární sou in. Úvod. Denice skalárního sou inu
Skalární sou in Jedním ze zp sob, jak m ºeme dva vektory kombinovat, je skalární sou in. Výsledkem skalárního sou inu dvou vektor, jak jiº název napovídá, je skalár. V tomto letáku se nau íte, jak vypo
VíceMatice. a m1 a m2... a mn
Matice Nechť (R, +, ) je okruh a nechť m, n jsou přirozená čísla Matice typu m/n nad okruhem (R, +, ) vznikne, když libovolných m n prvků z R naskládáme do obdélníkového schematu o m řádcích a n sloupcích
Vícegrupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
VíceUniverzitní licence MATLABu. Pište mail na: se žádostí o nejnovější licenci MATLABu.
Univerzitní licence MATLABu Pište mail na: operator@service.zcu.cz se žádostí o nejnovější licenci MATLABu. * násobení maticové K = L = 1 2 5 6 3 4 7 8 Příklad: M = K * L N = L * K (2,2) = (2,2) * (2,2)
Více1/10. Kapitola 12: Soustavy lineárních algebraických rovnic
1/10 Kapitola 12: Soustavy lineárních algebraických rovnic Soustavy lineárních algebraických rovnic 2/10 Definice: Soustavou m lineárních algebraických rovnic o n neznámých rozumíme soustavu rovnic a 11
VíceSlovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy
1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci a vzájemném
Více