Optická zobrazovací soustava

Rozměr: px
Začít zobrazení ze stránky:

Download "Optická zobrazovací soustava"

Transkript

1 Optická zobrzovcí soustv Mteriál je určen pouze jko pomocný mteriál pro studenty zpsné v předmětu: A0M38OSE, ČVUT- FEL, ktedr měření,

2 Měření rozměru měřítko objekt ) b) hledný rozměr 1 bod pozorování měřený objekt hledný rozměr měřítko 2

3 Osvětlení obrzového senzoru zářícím objektem v přípdě bez projekční soustvy diuzní povrch - Lmbertovský (kosinový) zářič zářící objekt snímč CCD Situce podobná jko při vyjmutí objektivu z kmery diskuse: rozměry objektu, jeho vzdálenost od senzoru, rozměry senzoru, umístění senzoru n desce (výhled bez clonění snímče), rozložení osvětlení senzoru stínění snímče smítko n senzoru promítnutí jeho obrzu Možnost využití pro snímání obrzu objektu 3

4 Měření rozměru nlogie s pozorování objektu z měřítkem 1 bod pozorování měřený objekt hledný rozměr měřítko senzor - jko měřítko porovnání rozměru objektu rozměru senzoru β 1 1 bodový zdroj záření snímný objekt 1 senzor E e x Stejné, jko promítání při snímání Roentgenovým přístrojem 4

5 Promítání telecentrickým svzkem Měření rozměru promítáním stínu objektu telecentrickým svzkem bodový zdroj záření snímný objekt senzor 1 lser. diod F kolimátor objekt CCD E e x 5

6 Měření rozměru promítáním stínu telecentrickým svzkem kolimátorem s objektivem desk s lser. diodou kolimční objektiv snímný objekt stínový obrz promítnutý n řádkový senzor CCD 6

7 Promítání kruhovým otvorem Promítání obrzu zářícího objektu mlým otvorem, viz cmer obscur zářící objekt clon snímč CCD S Z 7

8 Promítání kruhovým otvorem bodové zdroje záření v prostoru Promítání kruhovým otvorem plošný zářící objekt bodové zdroje záření v rovině rovnoběžné s rovinou senzoru y - vzdálenosti bodu v rovině zdroje záření od osy y - vzdálenosti obrzu bodu v rovině senzoru zářící rovinný objekt S Z clon S Z y β y senzor CCD senzor CCD 8

9 Ohyb záření kruhovým otvorem Z Z S Z D VP δ 1m O Z D 1m D 1S l S E e pro vzdálený bod rovnoběžný svzek pprsků, ohyb n kruhovém otvoru (výkld podstt ohybu dirkce n otvoru) D VP průměr kruhového otvoru δ 1m úhel odpovídjící místu prvního minim D 1m průměr ohybového kroužku prvního minim D 1S průměr světlé části ohybového kroužku prvního minim δ 1m λ 1,22 D λ D m 2,44 l 1 s D VP VP D 1S 1,22 λ l D s VP 9

10 Reltivní otvor, clonové číslo Reltivní otvor poměr průměru vstupní pertury D VP (průměr otvoru) vzdálenosti l s k VP - clonové číslo D VP l s k 1 VP D 1S průměr světlé části ohybového kroužku prvního minim závisí n clonovém čísle D 1 k 1S,22 λ VP pltí stejně i u objektivu!!! 10

11 Promítání kruhovým otvorem čočkou Spojná optická soustv čočk lom pprsků vycházejících z bodového zdroje záření do bodu O 2 výhod čočky: větší svzek pprsků větší zářivý tok nevýhod čočky: vytvoření obrzu ve ormě bodu pouze v jediné vzdálenosti v osttních polohách je obrzem bodu kroužek nutné zostření objektivu nstvení senzoru do vhodné polohy vzdálenosti ) Z 1 Z 2 Ω z clon clon S Z1 S Z2 b) clon Ω z O 2 O 1 senzor CCD O 2 11

12 Zvětšení projekční soustvy ω Z F S Z ω Z F O Z y y d s Z Z z z senzor CCD zvětšení β záporné β symbolizuje převrácení obrzu oproti předmětu β - 1 stejná velikost obrz y β y β < 1 obrz je menší než předmět, obvyklá situce ( kmer, otoprát) 12

13 Promítání obrzu mimoosového bodového zdroje záření spojnou optickou soustvou D VP S Z OZ z Z z Ω Z F F snímč 13

14 Promítání obrzu více mimoosových bodových zdrojů záření v různé vzdálenosti Z z1 1 F S Z 1 F A 1 OZ Z2 Z z2 2 2 A 2 OZ Z1 14

15 Zobrzení vzdáleného bodového zdroje záření Zobrzení velmi vzdáleného bodového zdroje záření telecentrický (rovnoběžný) svzek pprsků obrz v ohniskové rovině z z F F Obrzem bodu v nekonečnu je bodový obrz v ohniskové rovině objektivu!!! Obrzem bodu v nekonečnu n optické ose je bodový obrz v obrzovém ohnisku F!!! 15

16 Chod pprsků objektivem ve zvláštních přípdech Rovnoběžný telecentrický svzek vstupuje do objektivu F F α F F P y ) b) y tgα Obrz bodů z nekonečn se tvoří v obrzové ohniskové rovině objektivu Rovnoběžnému svzku pprsků vstupujícímu do objektivu odpovídá v obrzové ohniskové rovině jeden bod. 16

17 Chod pprsků objektivem ve zvláštních přípdech Bodový zdroj záření v projektoru F F y P F α F α rctg y ) b) Kždému zářícímu bodu obrzové ohniskové rovině odpovídá n výstupu jeden svzek rovnoběžných pprsků Kolimátor, kolimční objektiv přípd lserového ukzovátk Lup předmět v předmětové ohniskové rovině, pozorovteli se jeví v nekonečnu ( kždý je bod předmětu je zobrzen telecentrickým svzkem) 17

18 Relizce jednoduchého kolimátoru Stndrdní objektiv jko jednoduchý kolimátor 18

19 Zobrzovcí soustv význmné body P- mimoosový bod předmětu, O osový bod předmětu, O, P obrzy Zobrzovcí soustv jko tenká čočk F předmětové ohnisko, F obrzové ohnisko, H, H hlvní body optické soustvy ( pro tenkou čočku H, H totožné), ohnisková vzdálenost předmětová, obrzová (, shodný index lomu v předmětovém obrzovém prostoru obvyklá situce) pozor odlišnost tzv. imerzní mikroskopický objektiv předmět v kplině, pk odlišnost ), P y H F O O F H y z z P 19

20 Výpočty pro výběr objektivu Zobrzovcí rovnice Newtonov zobrzovcí rovnice z z 2 z z Gussov zobrzovcí rovnice Zvětšení objektivu - obecně pltí i pokud není splněn zobrzovcí rovnice neostrý obrz, le velikost podle vzthu pozn. znménková konvence vlevo dolu záporné, doprv nhoru kldné vzdálenosti pro zjednodušení- nedodržujeme znm. konvenci pouze záporné zvětšení převrácení. obrzu β y y 20

21 Výpočty pro výběr objektivu Zvětšení objektivu při splnění zobrzovcí rovnice pro soustvu ve vzduchu, β y y + + z z + z + z 2 náhrd z zvětšení objektivu β + z + z 2 z + z + z 2 z + z + z z pro výpočet volbu ohniskové vzdálenosti objektivu při dné vzdálenosti předmětu z objektivu volb předmětové vzdálenosti z při dné dné předmětové vzdálenosti z použitém objektivu s ohniskovou vzdáleností β z β z z β 21

22 Zvětšení zjednoduš. odv. pro předmět. poloprost. Zjednodušené odvození vzthu pro zvětšení objektivu pro zpmtování pro předmětový poloprostor, zjednodušení bez uvžování znmének, obě strny vzduch ( ) předmětový poloprostor, vzdálenosti y, z,, y, zvětšení jko přímá úměr P y y z β y y β z y H F O O F H y z z P 22

23 Zvětšení zjednoduš. odv. pro obr. poloprostor Zjednodušené odvození vzthu pro zvětšení obrzový poloprostor zjednodušení bez uvžování znmének, obě strny vzduch ( ) využití pro určení výthu objektivu, velikosti mezikroužků y z y úměr pk β z β lze též přípdně určit potřebný výth objektivu z y y z β P O y F y H H F O y z z P 23

24 Poznámk - imerzní objektiv Pokud by bylo různé (různá opt. prostředí n obou strnách opt. soustvy, npř. čelo čočky ve vodě, to všk není přípd. počítč. vidění) toto zjednodušení selhává). Reálný přípd imerzní mikroskopický objektiv. Snh o co největší zvětšení v mikroskopii.. Preprát je pokryt imerzní kplinou čelní čočk objektivu je ponořen do této kpliny ( + výkld). Pozor při výběru objektivů pro mikroskop imerzní objektiv největší zvětšení, le je nvržen pro použití s kplinou, (není určen pro použití n vzduchu). 24

25 Výpočet výthu objektivu velikosti mezikroužku Zvětšení objektivu, při splnění zobrzovcí rovnice z β 2 z z β z Výpočet potřebného výthu objektivu, příp. velikosti mezikroužku Pro zvětšení β - 1 je výth roven ohniskové vzdálenosti z z 2 Pro zvětšení β - 0,1 je výth roven desetině ohniskové vzdálenosti Velikost mezikroužku (příp. výthu objektivu) odpovídá ohniskové vzdálenosti objektivu násobené zvětšením z β 25

26 Soustv s jednotkovým zvětšením P y HH F O O F z z 2 2 sum 4 y P symetrické postvení předmětu jeho obrzu, nejmenší vzdálenost předmětu jeho obrzu 26

27 Chyby zobrzení sérická vd Relizce projekční soustvy - pouze čočky s dvěm kulovými lámvými plochmi optické vdy (berce). Sérická vd lámvost okrje čočky je větší než lámvost střední části obrzem bodu z nekonečn prxiální pprsky- (blízké ose) je bod O pprsky vzdálené od optické osy bod O α 1 D y V k r S O 1 O α 1 n 1 D n 2 n 1 n 2 F V k r 1 S 1 r 2 S 2 Zmenšit průměr svzku zclonění Rozdělit optickou mohutnost lámvou schopnost do více ploch vícečlenný objektiv Příp. použití sérických ploch poloměr křivosti v krjích je větší než ve středu objektiv s sérickými plochmi, náročná výrob 27

28 Význmné body optické soustvy Tenká čočk střed S, totožný s hlvními hody H, H uzlovými body U, U obecná soustv - tyto body nejsou totožné d n 1 n 2 b c F U U H H F c b d pprsek vstupuje do soustvy rovnoběžně s osou - pokrčuje do obrzového ohnisk F pprsek b procházející předmětovým ohniskem F pokrčuje rovnoběžně s osou v obrzovém prostoru pprsek d směřující do předmětového uzlového bodu U opouští obrzový uzlový bod U pod stejným úhlem 28

29 Objektiv, mechnické připojení Připojení typu C, závit průměr 1 (25,4mm) stoupání 32 závitů n plec Z V 17,52 mm ( C Mount ) Objektiv připojení CS, stejný závit, le vzdálenost Z V 12,5 mm. Objektivy závitem M 42 (oto - kinoilm) Z V 45,75 mm Ostření objektivu posun Dlší mechnická připojení, bjonet _Nikon, F Mount., Prvidlo: clon zdní dosedcí ploch objektivu F připojovcí závit objektivu Objektivy se stejným mechnickým připojením ostření H H Z V CCD snímč mjí stejnou vzdálenost Z v Tkto je možná záměn objektivů jedné řdy 29

30 Objektivy objektiv irmy Pentx 12 mm, připojení typu CS, redukční kroužek n C (prodloužení o 5 mm) 30

31 Mezikroužky Mezikroužky pro závit C ( CS) 31

32 Objektiv, hlvní roviny Objektiv z hledisk výše použitých odvození jko tenká čočk objektivy používné n cvičení OSE blízké modelu tenké čočky, H H totožné, vzdálenost předmětového ohnisk F obrzového ohnisk F je 2 npř. objektivy s připojení M42 o ohniskové vzdálenosti 50 mm, objektivy s připojením C o ohniskové vzdálenosti 25 mm, Širokoúhlé objektivy (o ohniskové vzdálenosti několik mm, jiné chování) Předmětové ohnisko uvnitř soustvy, nelze je určit jednoduchým experimentem (otočení objektivu promítání obrzu) problém při použití mezikroužků předmět velmi blízko čelní čočce objektivu clon zdní dosedcí ploch objektivu F připojovcí závit objektivu ostření H H Z V CCD snímč 32

33 Objektiv, výth objektivu, mezikroužky Objektiv ostření posun objektivu vzhledem ke snímči objektiv zostřen n nekonečno, snímč v obrzové ohniskové rovině z 0, objektiv zostřen n konečnou vzdálenost z > 0, > snímč je umístěn z obrzovým ohniskem F (neposouvá se snímč, le vysouvá se objektiv ve směru od snímče) výth objektivu potřebný výth objektivu je roven z pro objektiv F 25 mm zvětšení β - 0,2 by byl potřebný výth 5 mm (tkový výth všk objektiv nemá), použití mezikroužku L mzk 5 mm předmět bude ve vzdálenosti z 25/0,2 125 mm od předmětového ohnisk F při výthu vlstního. obj. mx. 1 mm by se z nbývlo hodnot 5 ž 6 mm zvětšení hodnot 0,2 ž 0,24, předmět by se mohl ncházet ve vzdálenosti z 125 ž 104 mm z z pozor pro velké zvětšení tké velká citlivost změny zvětšení n změnu z 2 z β z β 33

34 Změn zvětšení objektivu se změnou vzdálenosti Pro určení citlivosti n změnu předmět. vzdál., obecný vzth: vzth pltný obecně viz dírková komor (při shodném zostření konst) pro zjednodušení uvžovt jeho bsolutné hodnotu kldné derivce zvětšení β podle vzdálenosti dβ d 2 určení reltivní změny zvětšení β dβ 1 β β reltivní změn (bsolutní velikosti) zvětšení odpovídá rel. změně vel. vzdálenosti dβ d β dz 2 z d β 2 dβ β y β y d d pro předchozí příkld, z 125 mm ( 150), změn polohy o 1 mm způsobí reltivní změnu zvětšení 0,66 procent! (multipliktivní chyb měření) (důvod použití telecentrického objektivu) 34

35 Poznámk ke změn zvětšení objektivu Pro dosžení mlé reltivní změny vzdálenosti použití objektivu s velkou ohniskovou vzdáleností Anlogie kmer sportovní záběry dlouhoohniskovým objektivem (teleobj.) n velkou vzdálenost - běžec běžící směrem ke kmeře se jeví stále stejně velký, mlý úhel obrzového pole zdánlivá ztrát perspektivy snímku s teleobjektivem (zdánlivě plochý snímek ) Fotogrování objektů z mlé vzdálenosti zkreslení proporcí (osob ležící ve směru osy objektivu snímná ze vzdálenosti 1,5 m bude mít reltivně velké nohy (velká chodidl) oproti hlvě, problém perspektivy pro zchování proporcí nutno snímt z větší vzdálenosti. Opět pltí vzthy, zvětšení klesá hyperbolicky 1 β z 35

36 Změn zvětšení objektivu změnou zostření Změn zvětšení je nejen změnou vzdálenosti, le též změnou vzdálenosti. Pozor nstvení vysokého clonového čísl nstvení zostření má menší extrém. Opkovné zostření nemusí být zcel stejná velikost ( Výkld pozntky z irmy,.. expert zlepšovtel ) ( 1+ ) + z + β β je pro mlá zvětšení přibližně shodné s dβ β 1 1 d β d d reltivní změn zvětšení rovn reltivní změně vzdálenosti y β y β npř. 25 mm zvětšení výthu 0,1 mm to je 0,004 tedy β 1 1,004 β odpovídá přeostření z nekonečn n vzdálenost přibl. 6 metrů, nebo přeostření z 6 metrů n 3 metry, nebo dále n 2m, n 1,5m (Výpočet??) z 36

37 Změn zvětšení objektivu, příkld Objektiv o ohniskové vzdálenosti 16 mm byl původně správně zostřen n objekt ve vzdálenosti z 80 cm. Při stejné poloze objektu byl pk přeostřen n vzdálenost odpovídjící z 60 cm. Jk se změnilo zvětšení? původní výth byl z 2 /800 mm 256/800 0,32 mm nový výth je z 2 /600 mm 256/600 0,4267 mm rozdíl výthu je 0,4267-0,32 0,1067 mm zvětšení se změní hodnotou 0, 1067 mm/ 16 mm 0,00666 Dojde tedy k nepřesnosti určení rozměru přibližně 0,67 % Závěr nutné ixovt nstvení zostření objektivu retce zostření nepřipustit zásh do nstveného systému poč. vidění (Pro odhd citlivosti - zjednodušený výpočet pro nstvení z 2 z 1 (stupnice obj.) d z -z z 2 z z 2 z 1 37

38 38

39 39

40 Clon objektivu, reltivní otvor, clonové číslo Clon v objektivu snížení množství světl procházející objektivem Clonové číslo k (geometrické clonové číslo), reltivní otvor D VP / čep -os otáčení lmely otočný prstenec lmel ) b) c) S VP D VP DVP 1 k k D VP Clonové číslo (geometric.) kolikrát je ohnisková vzdálenost větší než D VP Nižší propustnost objektivu jko by byl menší otvor s plochou S VP eektivní clonové číslo (udávné n objektivu) zohlednění propustnosti τ obj objektivu menší než 1 (typ. 0,8 0,9) S VP τobjsvp DVP τobj 1 k e k e 1 τobj k 40

41 Výpočet průměru svzku Jk velký bude průměr svzku pprsků vycházejícího z objektivu použitého v kolimátoru, pokud bude mít nstveno clonové číslo k 2 jeho ohnisková vzdálenost 50 mm? D VP DVP 1 k D VP k Z předpokldu geometrického clonového čísl k bude průměr 25 mm, v přípdě uvžování eektivního clonového čísl bude průměr ještě větší činitelem k e / k (1, 05 1,1), tedy přibližně mm k k e 1 τ obj 41

42 Působení clony objektivu Clon v objektivu snížení množství světl procházející objektivem primárně neovlivňuje rozložení osvětlení snímče (zcloněním objektivu se sníží působení jeho nedokonlosti vinětce) mlé clonové číslo k velké clonové číslo k ) b) mlé clonové číslo k velké clonové číslo k ) b) 42

43 Clonová čísl objektivu Clonová čísl objektivu ptří do geometrické řdy s kvocientem odmocniny ze 2 jsou to 1; 1,4; 2; 2,8; 4; 5,6; 8; 11; 16; 22. Jsou volen tk, by změn nstveného clonového čísl objektivu n následující vyšší číslo znmenl dopd polovičního optického výkonu n snímč. clonové číslo v nglosské litertuře F number (F-stop), numericl perture Nejnižší nstvitelné clonové číslo objektivu (při plně otevřené cloně) je tzv. zákldní clonové číslo objektivu udávné n objektivu IRIS ová clon lmely zkrývjí světlost objektivu, AUTOIRIS pojem objektiv s elektromechnicky utomticky řízeným nstvením clony. Není možné ruční nstvení. V režimu bez utomtiky plně otevřená clon. (diskuse hesl videodrive, DC drive objektivy pro CCTV, zbezpečovcí techniku, pro měření se obvykle nepoužívjí) 43

44 Úhel obrzového pole objektivu Objektiv zostřen n nekonečno, obrz je v obrzové ohniskové rovině (s ohniskem F ) ds 2wv 2rctg 2 objekt v nekonečnu F 2w v 2w v CCD snímč F d s úhel obrzového pole je při zostření n nekonečno je u dné soustvy největší d s rozměr snímče 44

45 Úhel obrzového pole objektivu Objektiv zostřen n konečnou vzdálenost - 2w v 2rctg do 2 obrz je (nprvo) z obrzovou ohniskovou rovinou (úhel obrzového pole se oproti zostření n nekonečno zmenšuje) ds 2w v 2rctg 2 CCD snímč 2w v 2w v 2w vn d O F F d s d O mximální rozměr snímného obrzového pole (snímného objektu) 45

46 Objektivy podle úhlu obrzového pole Objektivy normální, teleobjektivy, širokoúhlé obj. podle úhlu. obr. pole Objektiv je možno používt pouze pro zobrzení do mx. úhlu obrzového pole, pro které je nvržen, jink chyby, pokles, vinětce,.. Výkld, příkldy použití otogrických objektivů, objektivy pro dný ormát senzoru, objektivy pro ormát senzoru 1/2, 2/3, 1 Objektiv je možno použít pro menší ormát snímče, než pro který je nvržen, opčně to není možné ( přípdně možné využití pouze střední části obrzového pole). Reltivit pojmu, širokoúhlý objektiv, teleobjektiv 50 mm otogrický objektiv (otopráty n kinoilm) se pro CCD ormátu 1/3 chová jko teleobjektiv. Využije se pouze mlá část obrzového pole. 46

47 Přenos zářivého toku objektivem E eobr E epr - intenzit ozáření snímče - intenzit ozáření snímného objektu (mtný povrch- Lmbert. zářič) β - zvětšení, deinovno β < 0 (záporné) k c - clonové číslo ω - úhel v obrzovém poli ρ - odrzivost povrchu předmětu ρ pr snímný předmět objektiv S O, D VP, k, τ obj S z H epr E epr ω E obr L epr(ω) I epr(ω) S z CCD snímč S o (detilní odvození viz. skriptum) S z L e l ω ω Ω H e I e (ω) 47

48 Přenos zářivého toku objektivem E eobr - intenzit ozáření snímče E epr - intenzit ozáření předmětu (mtný povrch- Lmbertovský zářič) L epr (ω) zář předmětu v dném směru β - zvětšení, deinováno β < 0 (záporné) (1- β ) 2 >1 při větším zvětšení klesá E eobr k c - clonové číslo ω - úhel v obrzovém poli ρ pr - odrzivost povrchu předmětu úprv pro Lmbertovský kosinový zářič E eobr E eobr τ 4 obj 2 kc π cos 2 c 4 (1 β ) ω 2 4 cos ω 4k (1 β ) L 2 epr(ω) ρ pr E epr Zjednodušený vzth pro odhd intenzity ozáření středu snímče, pro mlé zvětšení β blízké 0 Pro k c 8 odrzivost 0,5 je E eobr /E epr 1/512 E eobr _ os 1 4k 2 c ρ pr E epr 48

49 Vinětce objektivu - geometrická Geometrická vinětce pokles intenzity ozáření do krjů obrzového pole Tbulk hodnot cos 4 ω ω 5 o 10 o 15 o 20 o 25 o 30 o 35 o 40 o 45 o cos 4 ω 0,98 0,94 0,87 0,78 0,67 0,56 0,45 0,34 0,25 Skutečný pokles u reálného objektivu ještě větší, vinětce objektivu roste s otevření clony objektivu n klesjícím clon. číslem k c E eobr _ os 1 4k 2 c ρ pr E epr E eobr 4 cos ω 4k (1 β ) 2 c 2 ρ pr E Zjednodušený vzth pro β blízké 0, v ose epr E eobr 1 ρ 4 cos ω 2 pr E Zjednodušený vzth pro β blízké 0, epr 4kc mimo osu 49

50 Chyby zobrzení objektivem Geometrické chyby, změn zvětšení objektivu s rostoucím úhlem v obrzovém poli Chyby zvětšení větší pro širokoúhlé objektivy, řádu jednotek % C kvlitních objektivů 25 mm (připojení C) chyby řádu 0,2 0,5 % y 1 β konst 1- zkreslení poduškovité 2- zkreslení soudkovité 2 y 50

51 Telecentrický objektiv Pro zobrzení využívá pouze telecentrický svzek jdoucí rovnoběžně s optickou osou Odstrnění perspektivy zobrzení změny zvětšení se změnou vzdálenosti ( pouze v omezené oblsti, tzv. telecentrickém rozshu) Znedbtelný pokles (vinětce v krjích pole) Telecentrický rozsh (telecentric rnge) oblst, kde se má ncházet snímný předmět je konstntní zvětšení, blízko před objektivem (10 20 cm) Průměr vstupního optického členu objektivu větší, než měřený objekt!!! Zvětšení 1 menší, chyby zvětšení, menší než 0,1 %, (precizní drhé) Ideové uspořádání (velmi zjednodušeno) telecentrického objektivu n předmětové strně (object side telecentric lens) clon F 1 1 F 1 51

52 Telecentrický objektiv (oboustrnně telecentrický) Ideové uspořádání oboustrnně telecentrického objektivu telecentrický chod pprsků n obou strnách tké - bilterl telecentric lens irm Schneider Kreuznch předmětové i obrzové strně. clon F 1 F 1 F

53 Předsádková čočk - jko lup Pro snímání blízkých objektů, resp. při potřebě velkého zvětšení Předsádková čočk pro objektiv přirovnání jko použití lupy pro oko viz výkld chod pprsků čočkou ve zvláštních přípdech, lup její použití F F y P F α F ) b) Rovinný předmět je umístěn v předmětové ohniskové rovině předsádkové čočky, kždý bod předmětu je zobrzen promítnut - telecentrickým svzkem pprsků do nekonečn 53

54 Spojná čočk jko lup Pozorování mlých předmětů mlý obrzový úhel α obr. ) Přiblížení k oku zvětšení úhlu α 1, zvětšení obrzu předmětu v oku obr. b) Mlý předmět snh přiblížit co nejvíce k oku (zvětšení úhlu α) Přiblížení není možno neomezeně, mez komodce ok Stndrdní vzdálenost pro pozorování okem uvžován 25 cm, y ) α b) y α α 1 příblížení 1 zdánlivý y obrz v nekonečnu c) P F α 1 Umístění předmětu do ohnisk F spojné čočky lupy zdánlivý obrz v nekonečnu obr. c), oko komoduje n nekonečno Kždému bodu předmětu (v ohnisk. rovině v F) odpovídá telecenterický svzek pprsků jdoucí zdánlivě z nekonečn, (pokud se oko vzdluje od lupy- jeví se obrz stále stejně velký). 54

55 Spojná čočk jko lup Pozorování mlých předmětů mlý obrzový úhel α přiblížení zvětšení úhlu α 1, zvětšení obrzu předmětu v oku zdánlivý y obrz v nekonečnu P F α 1 y P F α 2 umístění předmětu do ohnisk F spojné čočky zdánlivý obrz v nekonečnu umístění předmětu mezi ohnisko F spojné čočky vlstní čočku zdánlivý obrz se vytvoří v konečné vzdálenosti, dlší růst úhlového zvětšení nutná komodce ok n konečnou vzdálenost 55

56 Předsádková čočk Předsádková čočk umístěn těsně před objektivem Typicky je předmět v ohnisku předsádkové čočky objektiv je zostřen n nekonečno. předsádková čočk objektiv O F 1 H 1 F H 2 2 O F 2 Předsádkové čočky udáván optická mohutnost v dioptriích, která odpovídá převrácené hodnotě ohniskové vzdálenosti 1/ Objektiv zostřen n nekonečno čočk o mohutnosti 4 dioptrie, 250 mm 56

57 Předsádková čočk Předsádková čočk umístěn těsně před objektivem Typicky je předmět v ohnisku předsádkové čočky objektiv je zostřen n nekonečno. Předsádková vytváří zdánlivý obrz v nekonečnu předsádková čočk objektiv O y P F 1 1 H 1 α 1 F 2 α H 2 2 P y O F 2 y tgα 1 2 y y y tgα ohnisk. vzdál. objektivu 1 ohnisk. vzdál. předsádkové čočky Objektiv zostřen n nekonečno předmět je v ohnisku předsád. čočky 57

58 Předsádková čočk obecné zásdy Předsádková čočk pro objektiv přirovnání jko použití lupy pro oko Předmětový bod P nemůže být dále vzdálen od předsádkové čočky, než je její předmětové ohnisko. P může být i posunut směrem k předsádkové čočce zdánlivý obrz P bude v konečné vzdálenosti P P P P F F F Určení polohy virtuálního obrzu, le z <, (při do dodržení znménkové konvence by výpočet dl vzdálenost z zápornou, tedy polohu P vlevo zdánlivý obrz). Příkld 12, z 4,8 (v obrázku), z 30, měřeno od polohy obrzového ohnisk F!!! (mělo by být z -30) 2 z z ,8 z z 30 z F z 58

59 Výpočet použití znménkové konvence Výpočet zobrzení s předsádkovou čočkou - s uvžováním znménkové konvence jsou výpočet úvhy jednodušší - z < 0 z > 0 pro situci, kdy je skutečný obrz v obrzovém prostoru , z (předmět je nprvo od předmětového ohnisk F, vzdálenost z je směrem doprv je tedy kldná). z z 12 ( + 12) + 4,8 z P z F P z F z 30 Výsledek z -30 jsně indikuje polohu zdánlivého obrz nlevo od čočky P y P F α 2 59

60 Skutečný zdánlivý obrz Skutečný obrz může se promítnout n mtnici Zdánlivý obrz není možno jej přímo promítnout, je možno je pozorovt pouze s pomocí dlší optické soustvy) Předsádková čočk nszen těsně n objektiv (bez mezery) Předmět umístěn v předmětovém ohnisku F předsádkové čočky, zdánlivý obrz je v nekonečnu, objektiv kmer je zostřen n nekonečno Předmět je umístěn mezi předmětovým ohniskem F vlstní předsád. čočkou, zdánlivý obrz je v konečné vzdálenosti, n tuto konečnou vzdálenost se musí zostřit objektiv. Pozor velmi mlé rozmezí polohy předmětu při použití předsádkové čočky. zdánlivý y obrz v nekonečnu P F α 1 y P F α 2 60

61 Předsádková čočk znčení vzdáleností Pro názornost je možno použít i výpočet se vzdálenostmi, předchozí přípd 12, z 4,8 7,2 P z F P z F , ,2-18 z Při použití předsádkové čočky se předmět umístí do ohnisk předsádkové čočky objektiv zostřen n nekonečno, přípdně i blíže objektivu, le pk zostření n konečnou vzdálenost, předmět nemůže být dále, než je poloh ohnisk předsádkové čočky Použití před. čočky kmery s mlým výthem objektivu, bez možnosti použití mezikroužku 61

62 Předsádková čočk zjednodušený výpočet Objektiv obj 25 mm s výthem v o 2 mm předsád. čočk 4 dioptrie ( mm) je těsně před objektivem. V jkém rozmezí vzdáleností se může předmět ncházet, by jej bylo možno objektivem zostřit. Nejdále bude předmět v předmět. ohnisku předsád. čočky,, z, zdánlivý obrz v nekonečnu. Nejblíže- zdánlivý obrz vytvořený předsádkovou čočkou bude ve vzdálenosti, n kterou je objektiv ještě schopen zostřit. z 2 obj 625 obj_ min obj_ mx 2 z obj_min 1min 1min 337,5 312,5 obj_ min zobj_ min + obj 312, ,5 podmínk zdánlivý obrz vytvořený předsádkovou čočkou ve vzdál. 1min musí být objektiv schopen zostřit ve vzdálenosti obj_min ( objektiv vidí ostře zdánlivý obrz vytvořený předsádkovou čočkou ) Pozor je nutno uvžovt jko záporné, obrz je n opčné strně čočky předsádkové čočky, než by byl při její stndrdní unkci jko projekční čočky. (Nedodržení znménkové konvence zde přináší komplikce výpočtu. Při dodržení znménkové konvence bezproblémový výpočet) 62

63 Předsádková čočk zjednodušený výpočet - 1min 337,5 poloh zdánlivého obrzu vytvořeného předsád. čočkou 1 1min 1 + 1min min min ,5 0, , min 143,6 mm Předmět se může ncházet v rozmezí vzdáleností 250 mm ž 143,6 mm (rozsh polohy. přibl. 107 mm) od předsádkové čočkou nszené n objektivu Se změnou vzdálenosti předmětu od předsádkové čočky se bude součsně měnit i zvětšení (při přiblížení bude růst) Poznámk - jedná se o zjednodušený výpočet, který nezohledňuje skutečnou polohu hlvních rovin objektivu předsádkové čočky) 63

64 Hloubk ostrosti zobrzení Zostřený stv objektivu D VP vstupní pupil objektivu snímč O F HH F O z z ) 64

65 Hloubk ostrosti zobrzení Předmět se přiblížil oproti nstvenému zostření n vzdálenost z Obrz se vzdálil od objektivu Promítnutí bodu jko kroužku neostrosti o průměru u 1 O F D VP vstupní pupil objektivu HH F snímč O z z ) D VP u 1 u 1 O O 1 F F z O O 1 b) 65

66 Hloubk ostrosti zobrzení Předmět se vzdálil oproti nstvenému zostření do vzdálenosti p Obrz se přiblížil k objektivu Promítnutí bodu jko kroužku neostrosti o průměru u 2 D VP vstupní pupil objektivu snímč O F HH F O z z ) D VP O 2 u 2 F F O 2 u 2 p c) 66

67 Vliv clony n hloubku ostrosti zobrzení Zcloněním objektivu se zmenší průměr ( kuželového ) svzku tím i průměr promítnutého kroužku neostrosti u (odvození viz. skriptum) z ku ( ) 1+ 2 Pokud je objektiv zostřen n vzdálenost připustí se nedokonlé zobrzení s průměrem kroužku neostrosti u, může se při nstveném clonovém čísle k ncházet předmět v rozshu vzdáleností p ž z. Výkld znázornění hloubky ostrosti n otogr. objektivech, viz též cvičení Větší clonové číslo větší hloubk ostrosti zobrzení le - pozor růst působení ohybových jevů dirkce n kruhovém otvoru, dirkční limit zobrzení objektivem Zjednodušení - pomoc pro zpmtování čím je objektiv více zcloněn, tím se více jeho chování z hledisk uživtele blíží dírkové komoře, která nemá deinovnou polohu snímče má velkou hloubku ostrosti zobrzení. p ku ( )

68 Hloubk ostrosti zobrzení, důsledky Fotogrie obvykle poždvek velké hloubky ostrosti le ne vždy npř. poždvek ostrého obrzu snímného objektu, le nemjí být vidět detily pozdí Podobně - počítčové vidění rušivé detily v pozdí nejlépe, by nebyly zntelné hrny Použití mlého clonového čísl objektivu mlá hloubk ostrosti - vysoké rozlišení (kvlitního) objektivu menší působení ohybových jevů dirkční limit objektivu. Použití vysokého clonového čísl, velká hloubk ostrosti, větší působení ohybových jevů (všk u méně kvlitního objektivu zlepšení kresby využití pouze střední části objektivu, snížení působení sérické vdy, 68

69 Prostorový optický signál Promítání obrzu n snímč, prostorově proměnná int. ozáření senzoru E e prostorový optický signál, period signálu P s [m] prostorová rekvence s [m -1 ], čr (resp, liniových párů / m) sinusový průběh ( obdélníkový průběh černé bílé pruhy) E e0 střední hodnot, A- obsh střídvé složky - modulce s 1 1 [ ] m P s E e [W/m 2 ] P s E emx E ( x) E 0(1 Acos 2π x) e e + s E e0 0 A 1 E emin x[m] 69

70 Vzth kontrstu modulce Kontrst optického obrzového signálu K 0 porovnání se vzthem E e mx e min 0 0 K 0 1 Ee mx Ee min kontrst K 0 odpovídá velikosti (hloubce) modulce A K E + ( x) E 0(1 Acos 2π x) e e + s E K 0 E E E + E E E e mx e min e0 e0 e mx e min e0 (1 + A) E (1 + A) + E e0 (1 A) (1 A) A 70

71 Optická přenosová unkce objektivu - OTF OTF Opticl Trnser Function unkce přenosu kontrstu (přenos modulce) optickou soustvou OTF ( s ) OTF ( s) K K 0_vyst 0_ vstup Přenos kontrstu pro ( s 0) je 1, proto postčuje porovnávt kontrst obrzu K 0 n výstupu při dné prostorové s kontrst K 0 při s 0 OTF( s ) K K 0_vyst 0_ vstup ( ( s s ) 0) Rozlišení objektivů - udávné tké pomocí PSF (Point Spred Function) - obdob odezvy soustvy n Dircův impuls v prostorové oblsti - zobrzení zářícího bodového zdroje, přepočet PSF OTF (nlogicky viz předmět signály soustvy) 71

72 Dirkce n kruhovém otvoru Ohyb záření (dirkce) n kruhovém otvoru, postup záření i z kruhovým otvorem pod úhlem prvního mimim δ 1m δ 1m 1,22 λ D VP Obrzem bodu n snímči ve vzdálenosti l s je světlá kruhová stop se světlými mezikružími, D 1m průměr středu prvního tmv. kruhu mezi světlými částmi 72

73 Dirkční limit rozlišení objektivu Telecentrický svzek n vstupu geometricky zobrzí pouze světlý bod Ohyb záření (dirkce) n cloně objektivu δ 1m 1,22 λ D VP světlý bod ohyb pprsků obr. bodu 1 F d 1s světlá stop obr. bodu 2 73

74 Příkld dirkcí n hrně Příkld dirkce monochromtického záření n hrně (polorovin), snímné řádkovým senzorem CCD Sony, ILX bod 74

75 Dirkční limit rozlišení objektivu Telecentrický svzek n vstupu geometricky zobrzí pouze světlý bod Ohyb záření (dirkce) n cloně objektivu λ δ1m 1,22 D Odchylk o δ 1m zobrzení v ohniskové rovině l s, k c clonové číslo obj. λ λ D1 m 2 ls δ1m 2,44 ls 2,44 2,44 kc λ k c D D D VP VP VP VP světlý bod F ohyb pprsků světlá stop obr. bodu 1 obr. bodu 2 d 1s 75

76 Dirkční limit rozlišení objektivu Telecentrický svzek n vstupu geometricky zobrzí pouze světlý bod Ohyb záření (dirkce) n cloně objektivu λ δ1m 1,22 D Odchylk o δ 1m zobrzení v ohniskové rovině l s, k c clonové číslo obj. λ λ D1 m 2 ls δ1m 2,44 ls 2,44 2,44 kc λ k c DVP DVP DVP Rozlišení detilů světlých dvou bodů vzdálených n snímči o d 1s (mximum 2. bodu do minim 1. bodu) minimální úhlové rozlišení 1 δ1s 1,22 kc λ d s VP 1 1,22 kc λ limit rozlišení objektivu světlý bod F ohyb pprsků světlá stop obr. bodu 1 obr. bodu 2 d 1s 76

Optická zobrazovací soustava

Optická zobrazovací soustava Optická zobrzovcí soustv Mteriál je určen pouze jko pomocný mteriál pro studenty zpsné v předmětu: Videometrie bezdotykové měření, ČVUT- FEL, ktedr měření, přednášející Jn Fischer Jn Fischer, 2013 1 Měření

Více

Optická zobrazovací soustava

Optická zobrazovací soustava Optická zobrzovcí soustv v. 202 Mteriál je určen pouze jko pomocný mteriál pro studenty zpsné v předmětu: Videometrie bezdotykové měření, ČVUT- FEL, ktedr měření, přednášející Jn Fischer Jn Fischer, 202

Více

Optická zobrazovací soustava

Optická zobrazovací soustava Optická zobrazovací soustava Materiál je určen pouze jako pomocný materiál pro studenty zapsané v předmětu: Videometrie a bezdotykové měření, ČVUT- FEL, katedra měření, přednášející Jan Fischer Jan Fischer,

Více

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í

I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í OPTICKÉ ZOBRAZOVÁNÍ. Zrcdl prcují n principu odrzu světl druhy: rovinná kulová relexní plochy: ) rovinná zrcdl I N V E S T I C E D O R O Z V O J E V Z D Ě L Á V Á N Í obyčejné kovová vrstv npřená n sklo

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou

Obr. 1: Optická lavice s příslušenstvím při měření přímou metodou. 2. Určení ohniskové vzdálenosti spojky Besselovou metodou MĚŘENÍ PARAMETRŮ OPTICKÝCH SOUSTAV Zákldním prmetrem kždé zobrzovcí soustvy je především její ohnisková vzdálenost. Existuje několik metod k jejímu určení le téměř všechny jsou ztíženy určitou nepřesností

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Měření rozlišovací schopnosti optických soustav

Měření rozlišovací schopnosti optických soustav F Měření rozlišovcí schopnosti optických soustv Úkoly :. Měření rozlišovcí schopnosti fotogrfických objektivů v závislosti n clonovém čísle. Měření hloubky ostrosti fotogrfických objektivů v závislosti

Více

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav:

Laboratorní práce č.8 Úloha č. 7. Měření parametrů zobrazovacích soustav: Truhlář Michl 7.. 005 Lbortorní práce č.8 Úloh č. 7 Měření prmetrů zobrzovcích soustv: T = ϕ = p = 3, C 7% 99,5kP Úkol: - Změřte ohniskovou vzdálenost tenké spojky přímou Besselovou metodou. - Změřte ohniskovou

Více

Přednáška Omezení rozlišení objektivu difrakcí

Přednáška Omezení rozlišení objektivu difrakcí Před A3M38VBM, J. Ficher, kat. měření, ČVUT FL Praha Přednáška Omezení rozlišení objektivu difrakcí v. 2011 Materiál je určen pouze jako pomocný materiál pro tudenty zapané v předmětu: Videometrie a bezdotykové

Více

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje

Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Optické zobrazování Základní pojmy Zobrazení zrcadlem, Zobrazení čočkou Lidské oko, Optické přístroje Základní pojmy Optické zobrazování - pomocí paprskové (geometrické) optiky - využívá model světelného

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci.

GEOMETRICKÁ OPTIKA. Znáš pojmy A. 1. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Znáš pojmy A. Znázorni chod význačných paprsků pro spojku. Čočku popiš a uveď pro ni znaménkovou konvenci. Tenká spojka při zobrazování stačí k popisu zavést pouze ohniskovou vzdálenost a její střed. Znaménková

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}?

( a, { } Intervaly. Předpoklady: , , , Problém zapíšeme snadno i výčtem: { 2;3; 4;5}? 1.3.8 Intervly Předpokldy: 010210, 010301, 010302, 010303 Problém Množinu A = { x Z;2 x 5} zpíšeme sndno i výčtem: { 2;3; 4;5} Jk zpst množinu B = { x R;2 x 5}? A =. Jde o nekonečně mnoho čísel (2, 5 všechno

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

( a) Okolí bodu

( a) Okolí bodu 0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,

Více

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA

ZOBRAZOVACÍ ROVNICE OKY A KULOVÉHO ZRCADLA OBRAOVACÍ ROVNICE OKY A KULOVÉHO RCADLA vtšení optického zobrzení pedešlých kpitol již víme, že pi zobrzení okmi nebo kulovými zrcdly mohou vznikt zvtšené nebo zmenšené obrzy pedmt. Pro jejich mtemtický

Více

2.1 - ( ) ( ) (020201) [ ] [ ]

2.1 - ( ) ( ) (020201) [ ] [ ] - FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé

Více

Centrovaná optická soustava

Centrovaná optická soustava Centrovaná optická soustava Dvě lámavé kulové ploch: Pojem centrovaná optická soustava znamená, že splývají optické os dvou či více optických prvků. Základním příkladem takové optické soustav jsou dvě

Více

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)

a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E) . Když c + d + bc + bd = 68 c+ d = 4, je + b+ c+ d rovno: 9 7 34 64 4. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n + 3n + n je totožná s posloupností: n n =. n+ = 3, = n Povrch rotčního

Více

Rozdělení přístroje zobrazovací

Rozdělení přístroje zobrazovací Optické přístroje úvod Rozdělení přístroje zobrazovací obraz zdánlivý subjektivní přístroje lupa mikroskop dalekohled obraz skutečný objektivní přístroje fotoaparát projekční přístroje přístroje laboratorní

Více

9. Geometrická optika

9. Geometrická optika 9. Geometrická optika 1 Popis pomocí světelných paprsků těmi se šíří energie a informace, zanedbává vlnové vlastnosti světla světelný paprsek = křivka (často přímka), podél níž se šíří světlo, jeho energie

Více

Odraz na kulové ploše

Odraz na kulové ploše Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. tojúhelníků

Více

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově

Ing. Jakub Ulmann. Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami II Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1

Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Zavádění inovativních metod a výukových materiálů do přírodovědných předmětů na Gymnáziu v Krnově 07_10_Zobrazování optickými soustavami 1 Ing. Jakub Ulmann Zobrazování optickými soustavami 1. Optické

Více

M I K R O S K O P I E

M I K R O S K O P I E Inovace předmětu KBB/MIK SVĚTELNÁ A ELEKTRONOVÁ M I K R O S K O P I E Rozvoj a internacionalizace chemických a biologických studijních programů na Univerzitě Palackého v Olomouci CZ.1.07/2.2.00/28.0066

Více

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky

Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Zobrazení čočkami Čočky Čočky jsou skleněná (resp. plastová) tělesa ohraničená rovinnými nebo kulovými plochami. Pracují na principu lomu. 2 typy: spojky rozptylky Spojky schematická značka (ekvivalentní

Více

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů

Optické zobrazení - postup, kterým získáváme optické obrazy bodů a předmětů Optické soustav a optická zobrazení Přímé vidění - paprsek od zobrazovaného předmětu dopadne přímo do oka Optická soustava - soustava optických prostředí a jejich rozhraní, která mění chod paprsků Optické

Více

Optika pro mikroskopii materiálů I

Optika pro mikroskopii materiálů I Optika pro mikroskopii materiálů I Jan.Machacek@vscht.cz Ústav skla a keramiky VŠCHT Praha +42-0- 22044-4151 Osnova přednášky Základní pojmy optiky Odraz a lom světla Interference, ohyb a rozlišení optických

Více

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát

Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát. Fotografický aparát Michal Veselý, 00 Základní části fotografického aparátu tedy jsou: tělo přístroje objektiv Pochopení funkce běžných objektivů usnadní zjednodušená představa, že objektiv jako celek se chová stejně jako

Více

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN

ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN ZÁKLADY KRYSTALOGRAFIE KOVŮ A SLITIN pevné látky jsou chrkterizovány omezeným pohybem zákldních stvebních částic (tomů, iontů, molekul) kolem rovnovážných poloh PEVNÉ LÁTKY krystlické morfní KRYSTAL pevné

Více

Diferenciální počet. Spojitost funkce

Diferenciální počet. Spojitost funkce Dierenciální počet Spojitost unkce Co to znmená, že unkce je spojitá? Jký je mtemtický význm tvrzení, že gr unkce je spojitý? Jké jsou vlstnosti unkce v bodě? Jké jsou vlstnosti unkce v intervlu I? Vlstnosti

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z temtické nlýzy 2 22. - 26. květn 27 4. Greenov vět) Použijte Greenovu větu k nlezení práce síly F x, y) 2xy, 4x 2 y 2 ) vykonné n částici podél křivky, která je hrnicí oblsti ohrničené křivkmi

Více

8. Elementární funkce

8. Elementární funkce Historie přírodních věd potvrzuje, že většinu reálně eistujících dějů lze reprezentovt mtemtickými model, které jsou popsán tzv. elementárními funkcemi. Elementární funkce je kždá funkce, která vznikne

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie

9 Axonometrie ÚM FSI VUT v Brně Studijní text. 9 Axonometrie 9 Axonometrie Mongeov projekce má řdu předností: jednoduchost, sndná měřitelnost délek úhlů. Je všk poměrně nenázorná. Podsttnou část technických výkresů proto tvoří kromě půdorysu, nárysu event. bokorysu

Více

5.1.5 Základní vztahy mezi body, přímkami a rovinami

5.1.5 Základní vztahy mezi body, přímkami a rovinami 5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin

Více

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika

ZOBRAZOVÁNÍ ČOČKAMI. Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika ZOBRAZOVÁNÍ ČOČKAMI Mgr. Jan Ptáčník - GJVJ - Fyzika - Septima - Optika Čočky Zobrazování čočkami je založeno na lomu světla Obvykle budeme předpokládat, že čočka je vyrobena ze skla o indexu lomu n 2

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

DERIVACE A INTEGRÁLY VE FYZICE

DERIVACE A INTEGRÁLY VE FYZICE DOPLŇKOVÉ TEXTY BB0 PAVEL SCHAUER INTERNÍ MATERIÁL FAST VUT V BRNĚ DERIVACE A INTEGRÁLY VE FYZICE Obsh Derivce... Definice derivce... Prciální derivce... Derivce vektorů... Výpočt derivcí... 3 Algebrická

Více

5.2.4 Kolmost přímek a rovin II

5.2.4 Kolmost přímek a rovin II 5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k

Více

5.1.5 Základní vztahy mezi body přímkami a rovinami

5.1.5 Základní vztahy mezi body přímkami a rovinami 5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH

SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH SBÍRKA ŘEŠENÝCH FYZIKÁLNÍCH ÚLOH MECHANIKA MOLEKULOVÁ FYZIKA A TERMIKA ELEKTŘINA A MAGNETISMUS KMITÁNÍ A VLNĚNÍ OPTIKA FYZIKA MIKROSVĚTA ODRAZ A LOM SVĚTLA 1) Index lomu vody je 1,33. Jakou rychlost má

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk

ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptylkách. PaedDr. Jozef Beňuška jbenuska@nextra.sk ČOČKY JAKO ZOBRAZOVACÍ SOUSTAVY aneb O spojkách a rozptlkách PaedDr. Jozef Beňuška jbenuska@nextra.sk Optická soustava - je soustava optických prostředí a jejich rozhraní, která mění směr chodu světelných

Více

Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a

Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a Problémové okruhy ke zkoušce A3M38VBM Videometrie a bezkontaktní měření ls 2014 Optické záření- základní vlastnosti optického záření a veličiny a vztahy sloužící pro jeho popis (např. svítivost, zářivost,

Více

6. Setrvačný kmitový člen 2. řádu

6. Setrvačný kmitový člen 2. řádu 6. Setrvčný kmitový člen. řádu Nejprve uvedeme dynmické vlstnosti kmitvého členu neboli setrvčného členu. řádu. Předstviteli těchto členů jsou obvody nebo technická zřízení, která obshují dvě energetické

Více

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x.

6. a 7. března Úloha 1.1. Vypočtěte obsah obrazce ohraničeného parabolou y = 1 x 2 a osou x. KMA/MAT Přednášk cvičení č. 4, Určitý integrál 6. 7. březn 17 1 Aplikce určitého integrálu 1.1 Počáteční úvhy o výpočtu obshu geometrických útvrů v rovině Úloh 1.1. Vypočtěte obsh obrzce ohrničeného prbolou

Více

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 -

Geometrická optika. předmětu. Obrazový prostor prostor za optickou soustavou (většinou vpravo), v němž může ležet obraz - - - 1 - Geometrická optika Optika je část fyziky, která zkoumá podstatu světla a zákonitosti světelných jevů, které vznikají při šíření světla a při vzájemném působení světla a látky. Světlo je elektromagnetické

Více

Spojitost funkce v bodě, spojitost funkce v intervalu

Spojitost funkce v bodě, spojitost funkce v intervalu 10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí

Více

Maticová optika. Lenka Přibylová. 24. října 2010

Maticová optika. Lenka Přibylová. 24. října 2010 Maticová optika Lenka Přibylová 24. října 2010 Maticová optika Při průchodu světla optickými přístroji dochází k transformaci světelného paprsku, vlnový vektor mění úhel, který svírá s optickou osou, paprsek

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

OPTIKA - NAUKA O SVĚTLE

OPTIKA - NAUKA O SVĚTLE OPTIKA OPTIKA - NAUKA O SVĚTLE - jeden z nejstarších oborů yziky - studium světla, zákonitostí jeho šíření a analýza dějů při vzájemném působení světla a látky SVĚTLO elektromagnetické vlnění λ = 380 790

Více

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem

Geometrická optika. Optické přístroje a soustavy. převážně jsou založeny na vzájemné interakci světelného pole s látkou nebo s jiným fyzikálním polem Optické přístroje a soustav Geometrická optika převážně jsou založen na vzájemné interakci světelného pole s látkou nebo s jiným fzikálním polem Důsledkem této t to interakce je: změna fzikáln lních vlastností

Více

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda

OPTIKA. Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda OPTIKA Mgr. Jan Ptáčník - GJVJ - Fyzika - Sekunda Základní poznatky Zdroje světla světlo vzniká různými procesy (Slunce, žárovka, svíčka, Měsíc) Bodový zdroj Plošný zdroj Základní poznatky Optická prostředí

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c

+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c ) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším

Více

25. Zobrazování optickými soustavami

25. Zobrazování optickými soustavami 25. Zobrazování optickými soustavami Zobrazování zrcadli a čočkami. Lidské oko. Optické přístroje. Při optickém zobrazování nemusíme uvažovat vlnové vlastnosti světla a stačí považovat světlo za svazek

Více

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501

( ) 1.5.2 Mechanická práce II. Předpoklady: 1501 1.5. Mechnická práce II Předpokldy: 1501 Př. 1: Těleso o hmotnosti 10 kg bylo vytženo pomocí provzu do výšky m ; poprvé rovnoměrným přímočrým pohybem, podruhé pohybem rovnoměrně zrychleným se zrychlením

Více

Orientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200

Orientační odhad zatížitelnosti mostů pozemních komunikací v návaznosti na ČSN a TP200 Orientční odhd ztížitelnoti motů pozemních komunikcí v návznoti n ČSN 73 6222 TP200 Úvod Ztížitelnot motů PK e muí tnovit jedním z náledujících potupů podle ČSN 73 6222, kpitol 6 : - podrobný ttický výpočet

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná

Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem

Více

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují

Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují . Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně

Více

URČITÝ INTEGRÁL FUNKCE

URČITÝ INTEGRÁL FUNKCE URČITÝ INTEGRÁL FUNKCE Formulce: Nším cílem je určit přibližnou hodnotu určitého integrálu I() = () d, kde předpokládáme, že unkce je n intervlu, b integrovtelná. Poznámk: Geometrický význm integrálu I()

Více

Ověření výpočtů geometrické optiky

Ověření výpočtů geometrické optiky Ověření výpočtů geometrické optiky V úloze se demonstrují základní výpočty související s volbou objektivu v kameře. Měřící pracoviště se skládá z řádkové kamery s CCD snímačem L133, opatřeného objektivem,

Více

Typy světelných mikroskopů

Typy světelných mikroskopů Typy světelných mikroskopů Johann a Zacharias Jansenové (16. stol.) Systém dvou čoček délka 1,2 m 17. stol. Typy světelných mikroskopů Jednočočkový mikroskop 17. stol. Typy světelných mikroskopů Italský

Více

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková

Viková, M. : MIKROSKOPIE I Mikroskopie I M. Viková Mikroskopie I M. Viková LCAM DTM FT TU Liberec, martina.vikova@tul.cz MIKROSVĚT nano Poměry velikostí mikro 9 10 10 8 10 7 10 6 10 5 10 4 10 3 size m 2 9 7 5 3 4 8 1 micela virus světlo 6 písek molekula

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA

Zavedení a vlastnosti reálných čísel PŘIROZENÁ, CELÁ A RACIONÁLNÍ ČÍSLA Zvedení vlstnosti reálných čísel Reálná čísl jsou zákldním kmenem mtemtické nlýzy. Konstrukce reálných čísel sice není náplní mtemtické nlýzy, le množin reálných čísel R je pro mtemtickou nlýzu zákldním

Více

Odraz světla na rozhraní dvou optických prostředí

Odraz světla na rozhraní dvou optických prostředí Odraz světla na rozhraní dvou optických prostředí Může kulová nádoba naplněná vodou sloužit jako optická čočka? Exponát demonstruje zaostření světla procházejícího skrz vodní kulovou čočku. Pohyblivý světelný

Více

Ohýbaný nosník - napětí

Ohýbaný nosník - napětí Pružnost pevnost BD0 Ohýbný nosník - npětí Teorie Prostý ohb, rovinný ohb Při prostém ohbu je průřez nmáhán ohbovým momentem otáčejícím kolem jedné z hlvních os setrvčnosti průřezu, obvkle os. oment se

Více

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/

Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/ Projekt: Inovace oboru Mechatronik pro Zlínský kraj Registrační číslo: CZ.1.07/1.1.08/03.0009 Zrcadla Zobrazení zrcadlem Zrcadla jistě všichni znáte z každodenního života ráno se do něj v koupelně díváte,

Více

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová

Aplikovaná optika I: příklady k procvičení celku Geometrická optika. Jana Jurmanová Aplikovaná optika I: příklady k procvičení celku Geometrická optika Jana Jurmanová Geometrická optika Následující úlohy řešte graficky či výpočtem. 1. Předmět vysoký 1cm je umístěn 30cm od spojky, která

Více

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006

S t e j n o s měrné stroje Ing. Vítězslav Stýskala, Ph.D., únor 2006 8. ELEKTRICKÉ STROJE TOČIVÉ rčeno pro posluchče bklářských studijních progrmů FS S t e j n o s měrné stroje Ing. Vítězslv Stýskl, Ph.D., únor 6 Řešené příkldy Příkld 8. Mechnické chrkteristiky Stejnosměrný

Více

Defektoskopie a defektometrie

Defektoskopie a defektometrie Defektoskopie a defektometrie Aplikace počítačového vidění Karel Horák Skupina počítačového ového vidění Ústav automatizace a měřicí techniky Fakulta elektrotechniky a komunikačních technologií Vysoké

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla

S v ě telné jevy. Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla S v ě telné jevy Optika - nauka - o světle, jeho vlastnostech a účincích - o přístrojích, které jsou založeny na zákonech šíření světla Světelný zdroj - těleso v kterém světlo vzniká a vysílá je do okolí

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

Matematické metody v kartografii

Matematické metody v kartografii Mtemtické metody v krtogrfii. Přednášk Referenční elipsoid zákldní vzthy. Poloměry křivosti. Délky poledníkového rovnoběžkového oblouku. 1. Zákldní vzthy n rotčním elipoidu Rotční elipsoid dán následujícími

Více

8. cvičení z Matematiky 2

8. cvičení z Matematiky 2 8. cvičení z Mtemtiky 2 11.-1. dubn 2016 8.1 Njděte tři pozitivní čísl jejichž součin je mximální, jejichž součet je roven 100. Zdání příkldu lze interpretovt tké tk, že hledáme mximální objem kvádru,

Více

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211

5.2.12 Dalekohledy. y τ τ F 1 F 2. f 2. f 1. Předpoklady: 5211 5.2.12 Dalekohledy Předpoklady: 5211 Pedagogická poznámka: Pokud necháte studenty oba čočkové dalekohledy sestavit v lavicích nepodaří se Vám hodinu stihnout za 45 minut. Dalekohledy: už z názvu poznáme,

Více

Neurčité výrazy

Neurčité výrazy .. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu

Více

3.1.3 Vzájemná poloha přímek

3.1.3 Vzájemná poloha přímek 3.1.3 Vzájemná poloh přímek Předpokldy: 3102 Dvě různé přímky v rovině mximálně jeden společný od Jeden společný od průsečík různoěžné přímky (různoěžky) P Píšeme: P neo = { P} Žádný společný od rovnoěžné

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha

Vliv komy na přesnost měření optických přístrojů. Antonín Mikš Katedra fyziky, FSv ČVUT, Praha Vliv komy na přesnost měření optických přístrojů Antonín Mikš Katedra fyziky, FSv ČVUT, Praha V práci je vyšetřován vliv meridionální komy na přesnost měření optickými přístroji a to na základě difrakční

Více

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky

Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky Úloha 6 02PRA2 Fyzikální praktikum II Ohniskové vzdálenosti čoček a zvětšení optických přístrojů Abstrakt: Úloha seznamuje studenty se základními pojmy geometrické optiky a principy optických přístrojů.

Více

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání

METODICKÉ LISTY Z MATEMATIKY pro gymnázia a základní vzdělávání METODICKÉ LISTY Z MATEMATIKY pro gymnázi zákldní vzdělávání Jroslv Švrček kolektiv Rámcový vzdělávcí progrm pro zákldní vzdělávání Vzdělávcí oblst: Mtemtik její plikce Temtický okruh: Nestndrdní plikční

Více

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami.

Paprsková optika. Zobrazení zrcadly a čočkami. Rovinné zrcadlo. periskop 13.11.2014. zobrazování optickými soustavami. Paprsková optika Zobrazení zrcadl a čočkami zobrazování optickými soustavami tvořené zrcadl a čočkami obecné označení: objekt, který zobrazujeme, nazýváme předmět cílem je nalézt jeho obraz vzdálenost

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Hledání hyperbol

Hledání hyperbol 759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,

Více

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi

Základní pojmy a vztahy: Vlnová délka (λ): vzdálenost dvou nejbližších bodů vlnění kmitajících ve stejné fázi LRR/BUBCV CVIČENÍ Z BUNĚČNÉ BIOLOGIE 1. SVĚTELNÁ MIKROSKOPIE A PREPARÁTY V MIKROSKOPII TEORETICKÝ ÚVOD: Mikroskopie je základní metoda, která nám umožňuje pozorovat velmi malé biologické objekty. Díky

Více

Vzorová řešení čtvrté série úloh

Vzorová řešení čtvrté série úloh FYZIKÁLNÍ SEKCE Přírodovědecká fkult Msrykovy univerzity v Brně KORESPONDENČNÍ SEMINÁŘ Z FYZIKY 8. ročník 001/00 Vzorová řešení čtvrté série úloh (5 bodů) Vzorové řešení úlohy č. 1 (8 bodů) Volný pád Měsíce

Více

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman

2002 Katedra obecné elektrotechniky FEI VŠB-TU Ostrava Ing.Stanislav Kocman STEJNOSĚRNÉ STROJE 1. Princip činnosti stejnosměrného stroje 2. Rekce kotvy komutce stejnosměrných strojů 3. Rozdělení stejnosměrných strojů 4. Stejnosměrné generátory 5. Stejnosměrné motory 2002 Ktedr

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost plsticit II. ročník klářského studi doc. In. Mrtin Krejs, Ph.D. Ktedr stvení mechnik Řešení nosných stěn pomocí Airho funkce npětí inverzní metod Stěnová rovnice ΔΔ(, ) Stěnová rovnice, nzývná

Více

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

17. března 2000. Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický Úloha č. 6 Ohniskové vzdálenosti a vady čoček, zvětšení optických přístrojů Václav Štěpán, sk. 5 17. března 2000 Pomůcky: Optická lavice s jezdci a držáky čoček, světelný zdroj pro optickou lavici, mikroskopický

Více