Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Podobné dokumenty
Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel

Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel

Uzly se dají vázat pouze v trojrozměrném prostoru. V méně než třech dimenzích nelze uzel zavázat, ve vícedimenzionálním prostoru se naopak každý uzel

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

Různostranný (obecný) žádné dvě strany nejsou stějně dlouhé. Rovnoramenný dvě strany (ramena) jsou stejně dlouhé, třetí strana je základna

Trojúhelník a čtyřúhelník výpočet jejich obsahu, konstrukční úlohy

Modelové úlohy přijímacího testu z matematiky

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Modelové úlohy přijímacího testu z matematiky

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Gymnázium Jiřího Ortena, Kutná Hora

5. P L A N I M E T R I E

Nejprve si připomeňme z geometrie pojem orientovaného úhlu a jeho velikosti.

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

Opakování k maturitě matematika 4. roč. TAD 2 <

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

PRIMA Přirozená čísla Celá čísla Desetinná čísla Číselná osa Pravidla pro násobení a dělení 10, 100, a 0,1, 0,01, 0,001.. Čísla navzájem opačná

Klíčová slova: Phytagorova věta, obsahy a obvody rovinných útvarů, úhlopříčky a jejich vlastnosti, úhly v rovinných útvarech, převody jednotek

ZŠ ÚnO, Bratří Čapků 1332

PLANIMETRIE. Mgr. Zora Hauptová TROJÚHELNÍK VY_32_INOVACE_MA_1_04

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

9. Planimetrie 1 bod

4. GONIOMETRICKÉ A CYKLOMETRICKÉ FUNKCE, ROVNICE A NEROVNICE 4.1. GONIOMETRICKÉ FUNKCE

Rozpis výstupů zima 2008 Geometrie

AXONOMETRIE. Rozměry ve směru os (souřadnice bodů) jsou násobkem příslušné jednotky.

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

10. Analytická geometrie kuželoseček 1 bod

GEODETICKÉ VÝPOČTY I.

6 Planimetrie. 6.1 Trojúhelník. body A, B, C vrcholy trojúhelníku. vnitřní úhly BAC = α, ABC = β, BCA = γ. konvexní (menší než 180º)

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

- shodnost trojúhelníků. Věta SSS: Věta SUS: Věta USU:

Geometrie. 1 Metrické vlastnosti. Odchylku boční hrany a podstavy. Odchylku boční stěny a podstavy

10)(- 5) 2 = 11) 5 12)3,42 2 = 13)380 2 = 14)4, = 15) = 16)0, = 17)48,69 2 = 18) 25, 23 10) 12) ) )

CVIČNÝ TEST 13. OBSAH I. Cvičný test 2. Mgr. Zdeňka Strnadová. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

PRACOVNÍ SEŠIT PLANIMETRIE. 6. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

Témata absolventského klání z matematiky :

1.1 Napište středovou rovnici kružnice, která má střed v počátku soustavy souřadnic a prochází bodem

Opakování ZŠ - Matematika - část geometrie - konstrukce

Shodná zobrazení. bodu B ležet na na zobrazené množině b. Proto otočíme kružnici b kolem

Syntetická geometrie II

matematika 5 stavební fakulta ČVUT 1. Poměr objemů pravidelného čtyřbokého hranolu a jemu vepsaného rotačního válce je

Maturitní témata z matematiky

Omezíme se jen na lomené čáry, jejichž nesousední strany nemají společný bod. Jestliže A 0 = A n (pro n 2), nazývá se lomená čára uzavřená.

CVIČNÝ TEST 40. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Maturitní otázky z předmětu MATEMATIKA

Trojúhelník - určují tři body které neleţí na jedné přímce. Trojúhelník je rovněţ moţno povaţovat za průnik tří polorovin nebo tří konvexních úhlů.

Syntetická geometrie I

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

2. Vyšetřete všechny možné případy vzájemné polohy tří různých přímek ležících v jedné rovině.

CVIČNÝ TEST 35. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

prostorová definice (viz obrázek vlevo nahoře): elipsa je průsečnou křivkou rovinného

February 05, Čtyřúhelníky lichoběžníky.notebook. 1. Vzdělávací oblast: Matematika a její aplikace

X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)

Maturitní nácvik 2008/09

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

Planimetrie 2. část, Funkce, Goniometrie. PC a dataprojektor, učebnice. Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky

TEMATICKÝ PLÁN. září říjen

Povrchy, objemy. Krychle = = = + =2 = 2 = 2 = 2 = 2 =( 2) + = ( 2) + = 2+ =3 = 3 = 3 = 3 = 3

( ) ( ) 6. Algebraické nerovnice s jednou neznámou ( ) ( ) ( ) ( 2. e) = ( )

} Vyzkoušej všechny povolené možnosti.

Úsečka spojující sousední vrcholy se nazývá strana, spojnice nesousedních vrcholů je úhlopříčka mnohoúhelníku.

Čtyřúhelník. O b s a h : Čtyřúhelník. 1. Jak definovat čtyřúhelník základní vlastnosti. 2. Názvy čtyřúhelníků Deltoid Tětivový čtyřúhelník

Teorie sférické trigonometrie

Základní geometrické tvary

Mgr. Ladislav Zemánek Maturitní okruhy Matematika Obor reálných čísel

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 4. ledna 2017

Cvičné texty ke státní maturitě z matematiky

SMART Notebook verze Aug

Analytická geometrie lineárních útvarů

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

Variace Goniometrie a trigonometrie pro studijní obory

c) nelze-li rovnici upravit na stejný základ, logaritmujeme obě strany rovnice

Pojmy: stěny, podstavy, vrcholy, podstavné hrany, boční hrany (celkem hran ),

2.1 Pokyny k otevřeným úlohám. Výsledky pište čitelně do vyznačených bílých polí. 2.2 Pokyny k uzavřeným úlohám

Téma 5: PLANIMETRIE (úhly, vlastnosti rovinných útvarů, obsahy a obvody rovinných útvarů) Úhly 1) Jaká je velikost úhlu? a) 60 b) 80 c) 40 d) 30

GONIOMETRIE A TRIGONOMETRIE

je-li dáno: a) a = 4,6 cm; α = 28 ; b) b = 8,4 cm; β = 64. Při výpočtu nepoužívejte Pythagorovu větu!

1. Přímka a její části

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

Maturitní témata z matematiky

CVIČNÝ TEST 49. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 5 III. Klíč 13 IV. Záznamový list 15

TROJÚHELNÍK 180. Definice. C neleží v přímce. Potom trojúhelníkem ABC nazveme průnik polorovin ABC, BCA, Nechť body. Viz příloha: obecny_trojuhelnik

CVIČNÝ TEST 2. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

M - Goniometrie a trigonometrie

PLANIMETRIE 2 mnohoúhelníky, kružnice a kruh

1. Základní poznatky z matematiky

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Zimní semestr akademického roku 2014/ prosince 2014

0 x 12. x 12. strana Mongeovo promítání - polohové úlohy.

Několik úloh z geometrie jednoduchých těles

Maturitní témata od 2013

1.1 Základní pojmy prostorové geometrie. Předmětem studia prostorové geometrie je prostor, jehož prvky jsou body. Další

Gymnázium Jiřího Ortena, Kutná Hora

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Transkript:

Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní a může někdy připomínat i magii. Kdo ovládne tyto schopnosti, nestává se ale bohužel automaticky moudrým a prozíravým. I kvůli tomu jsme svědky šíření nebezpečných technologií, rostoucí touhy lidí po kvantitě a snahy podřizovat vše pouze ekonomickému růstu. Čtenáře proto nabádáme, aby obsah této knihy používal s příslušnou obezřetností. Na druhou stranu, s pomocí matematiky můžeme nacházet souvislosti i ve zdánlivě velmi odlišných oblastech. Například světlo a elektřina, dříve dvě nezávislá témata, jsou nyní spojena teorií elektromagnetického pole. Skvělým příkladem dvousečné zbraně je pravděpodobně nejznámější rovnice na světě, Einsteinova E = mc 2, která bude navždy spojena jak s vynálezem jaderných zbraní, tak i s vědeckým objevem jednoty hmoty a energie. Ať vás úžas a potěšení z vědění nikdy neopustí! 1

V pravoúhlém trojúhelníku platí Pythagorova věta: obsah čtverce sestrojeného nad přeponou (stranou protilehlou pravému úhlu) je roven součtu obsahů čtverců nad dvěma kratšími stranami odvěsnami (naproti vlevo nahoře): a 2 + b 2 = c 2 nebo ekvivalentně c = a 2 + b 2. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Obvod o = a + b + c. Trojúhelníky a jejich různé středy Obsah S = 1 2 bv = 1 b 2ab sin γ (naproti vpravo nahoře). a Sinová věta: sin α = b sin β = c =2r, kde r je poloměr kružnice opsané. sin γ Těžnice spojuje vrchol se středem protilehlé strany. Všechny tři těžnice se protínají v jednom bodě, který se nazývá těžiště: t a = 1 2 2(b2 + c 2 ) a 2, t b = 1 2 2(c2 + a 2 ) b 2, 1 2(a 2 b 2 ) c 2 2 t c = 1 2 2(a2 + b 2 ) c 2. Výška je úsečka procházející vrcholem, která je kolmá na protilehlou stranu (nebo její prodloužení vně trojúhelníku): v a = 2S a v b = 2S b v c = 2S c. Všechny tři výšky se protínají v ortocentru. 2

3

Rovinné obrazce obvody a obsahy V této kapitole jsou uvedeny vzorce pro výpočet obvodu a obsahu různých rovinných obrazců. Kružnice, kruh: Poloměr = r, průměr d = 2r Obvod o = 2πr = πd Obsah S = πr 2, kde π = 3,14159265 Elipsa: S = πab b a a je po řadě hlavní a vedlejší poloosa. Body vyznačené na hlavní poloose jsou ohniska, platí, že l + m je konstantní pro libovolný bod na elipse. Obdélník: o = 2(a + b) S = ab Kosodélník: Lichoběžník: Pravidelný n-úhelník: Obecný čtyřúhelník (i): Obecný čtyřúhelník (ii): o = 2(a + b) S = bv = ab sinα o = a + b + v (cscα + cscβ) S = 1 2v(a + b) o = nb S = 1 4 nb2 cotg(1800 /n) Všechny strany a vnitřní úhly mají stejnou velikost. S = 1 2ab sin α S = 1 2 (v 1 + v 2 )b + 1 2 av 1 + 1 2 cv 2 4

5

Tělesa povrchy a objemy V této kapitole jsou uvedeny vzorce pro výpočet povrchu a objemu osmi těles. (Povrch je uveden včetně podstavy.) Koule: Povrch S =4pr 2 Objem V = 4 3 pr3 Kvádr: S = 2(ab + ac + bc) V = abc Válec: Kužel: Jehlan: Komolý kužel: Elipsoid: Torus: S =2prv +2pr 2 V = pr 2 v S = pr r 2 + v 2 + pr 2 V = 1 3 pr2 v Obsah podstavy = S p V = 1 3 S pv S = p(a + b)c + pa 2 + pb 2 V = 1 3 pv(a2 + ab + b 2 ) V = 4 3 pabc S = p 2 (b 2 a 2 ) V = 1 4 p2 (a + b)(b a) 2 6

7

Analytická geometrie osy, přímky, směrnice a průsečíky Dvojice os umístěných v rovině a svírajících pravý úhel nám umožňuje definovat bod pomocí dvojice reálných čísel (naproti). Osy se protínají v počátku, bodě [0;0]. Horizontální poloha je běžně označována jako souřadnice x, vertikální jako souřadnice y. Přímka v rovině má rovnici y = mx + c, kde m je směrnice přímky, která určuje její sklon. Přímka protíná osu y v bodě [0;c] a osu x v bodě [ c/m;0]. Vertikální přímka má ve všech bodech konstantní souřadnici x, její rovnice je tedy x = k. Přímka se směrnicí n procházející bodem [x 0 ;y 0 ] má rovnici y = nx + (y 0 nx 0 ). Přímka k ní kolmá má směrnici 1/n. Rovnice přímky procházející body [x 1 ;y 1 ] a [x 2 ;y 2 ] je y = y 2 y 1 x 2 x 1 (x x 2 )+y 2 pro x 1 x 2. Pro úhel θ, který svírají přímky se směrnicemi m a n, platí tg θ = m n 1+mn. Kružnice o poloměru r se středem v bodě [a;b] je dána rovnicí (x a) 2 + (y b) 2 = r 2. V trojrozměrném prostoru je přidána osa z a mnohé rovnice jsou analogické. Například koule o poloměru r se středem v bodě [a;b;c] je dána rovnicí (x a) 2 + (y b) 2 + (z c) 2 = r 2. Obecná rovnice roviny v trojrozměrném prostoru je ax + by + cz = d. 8

9

Trigonometrie v pravoúhlém trojúhelníku Pravoúhlý trojúhelník se stranami o délce a, b, c a úhlem θ protilehlým straně b je znázorněn na protější straně vlevo nahoře. Šest trigonometrických funkcí: sinus, kosinus, tangens, kosekans, sekans a kotangens je v něm definováno následovně: sin θ = b, c cos θ = a, tg θ = b, c a csc θ = c, b sec θ = c, a cotg θ = a. b Sinus a kosinus jsou délky odvěsen pravoúhlého trojúhelníku umístěného v jednotkové kružnici (dole a naproti): a = cosθ a b = sinθ. Podle Pythagorovy věty (strana 2) platí a 2 + b 2 = c 2, pro libovolný úhel θ tedy platí cos 2 θ + sin 2 θ = 1. Sinus, kosinus a tangens má zápornou či kladnou hodnotu podle polohy úhlu v různých kvadrantech jednotkové kružnice (vpravo dole). 10

11