Matematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta

Podobné dokumenty
Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018

Matematika vzorce. Ing. Petr Šídlo. verze

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

1. Kombinatorika 1.1. Faktoriál výrazy a rovnice

Opakovací kurs středoškolské matematiky podzim

9. Je-li cos 2x = 0,5, x 0, π, pak tgx = a) 3. b) 1. c) neexistuje d) a) x ( 4, 4) b) x = 4 c) x R d) x < 4. e) 3 3 b

Modelové úlohy přijímacího testu z matematiky

Cvičné texty ke státní maturitě z matematiky

Mgr. Ladislav Zemánek Maturitní okruhy Matematika Obor reálných čísel

Gymnázium Jiřího Ortena, Kutná Hora

Maturitní okruhy z matematiky - školní rok 2007/2008

Správnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2018

Systematizace a prohloubení učiva matematiky. Učebna s dataprojektorem, PC, grafický program, tabulkový procesor. Gymnázium Jiřího Ortena, Kutná Hora

Komplexní čísla. Definice komplexních čísel

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY ÚNORA 2019

Učební plán 4. letého studia předmětu matematiky. Učební plán 6. letého studia předmětu matematiky

Maturitní témata z matematiky

Gymnázium Jiřího Ortena, Kutná Hora

Nezbytnou součástí ústní zkoušky je řešení matematických příkladů, které student obdrží při zadání otázky.

Cvičné texty ke státní maturitě z matematiky

MATEMATIKA STUDIJNÍ POŽADAVKY PRO JEDNOTLIVÉ ROČNÍKY STUDIA

II. Zakresli množinu bodů, ze kterých vidíme úsečku délky 3 cm v zorném úhlu větším než 30 0 a menším než 60 0.

Maturitní témata z matematiky

STRUČNÉ OPAKOVÁNÍ STŘEDOŠKOLSKÉ MATEMATIKY V PŘÍKLADECH

Obsah Matematická logika, důkazy vět, množiny a operace s nimi Mocninná funkce, výrazy s mocninami a odmocninami Iracionální rovnice a rovnice s absol

pro bakalářský studijní program Ekonomika a management

MATURITNÍ TÉMATA Z MATEMATIKY

Maturitní témata profilová část

Dodatek č. 3 ke školnímu vzdělávacímu programu. Strojírenství. (platné znění k )

1. Základní poznatky z matematiky

Modelové úlohy přijímacího testu z matematiky

Matematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2019

MATEMATIKA Maturitní témata společná část MZ vyšší úroveň (vychází z Katalogu požadavků MŠMT)

Maturitní témata od 2013

MATEMATIKA Tematické okruhy ke státní maturitní zkoušce Obor: mechanik elektronik

Základy matematiky kombinované studium /06

Gymnázium Jiřího Ortena, Kutná Hora. Průřezová témata Poznámky. Téma Školní výstupy Učivo (pojmy) volné rovnoběžné promítání průmětna

4 Goniometrické výrazy, rovnice a nerovnice Funkce, grafy funkcí, definiční obory... 14

Slovní úlohy 1. 2,42cm; 7cm; 11,58cm; 2. původní cena; dní; 4. 2,3*10 15 kg; 5. 2,8*10 14 ; ; 27325; 7. 3, 9, 27; -3, 9, -27;

MATEMATIKA Maturitní témata společná část MZ základní úroveň (vychází z Katalogu požadavků MŠMT)

2. ANALYTICKÁ GEOMETRIE V PROSTORU Vektory Úlohy k samostatnému řešení... 21

Odvození středové rovnice kružnice se středem S [m; n] a o poloměru r. Bod X ležící na kružnici má souřadnice [x; y].

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

Gymnázium Česká a Olympijských nadějí, České Budějovice, Česká 64, 37021

Požadavky na konkrétní dovednosti a znalosti z jednotlivých tematických celků

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro nástavbové studium. varianta B 6 celkových týd.

Opakování k maturitě matematika 4. roč. TAD 2 <

Tematický plán Obor: Informační technologie. Vyučující: Ing. Joanna Paździorová

Maturitní otázky z předmětu MATEMATIKA

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

TEMATICKÝ PLÁN VÝUKY

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (13 15 hodin týdně celkem)

Maturitní okruhy z matematiky ve školním roce 2010/2011

CZ 1.07/1.1.32/

MATEMATIKA 5. TŘÍDA. C) Tabulky, grafy, diagramy 1 - Tabulky, doplnění řady čísel podle závislosti 2 - Grafy, jízní řády 3 - Magické čtverce

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

O Jensenově nerovnosti

11. přednáška 16. prosince Úvod do komplexní analýzy.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

VZOROVÝ TEST PRO 2. ROČNÍK (2. A, 4. C)

WikiSkriptum Ing. Radek Fučík, Ph.D. verze: 1. října 2019

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

Maturitní zkouška z matematiky (v profilové části) Informace o zkoušce, hodnocení zkoušky, povolené pomůcky a požadavky

VIDEOSBÍRKA DERIVACE

1. Číselné obory, dělitelnost, výrazy

MATURITNÍ OTÁZKY Z MATEMATIKY PRO ŠKOLNÍ ROK 2010/2011

MINISTERSTVO ŠKOLSTVÍ, MLÁDEŽE A TĚLOVÝCHOVY. Učební osnova předmětu MATEMATIKA. pro studijní obory SOŠ a SOU (8 10 hodin týdně celkem)

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Přijímací zkouška na MFF UK v Praze

Střední škola F. D. Roosevelta pro tělesně postižené, Brno, Křižíkova 11 příspěvková organizace sídlo: Brno, Křižíkova 11

17 Kuželosečky a přímky

Analytická geometrie lineárních útvarů

[ ] = [ ] ( ) ( ) [ ] ( ) = [ ] ( ) ( ) ( ) ( ) = ( ) ( ) ( ) 2 1 :: MOCNINY A ODMOCNINY

Matematika. ochrana životního prostředí analytická chemie chemická technologie Forma vzdělávání:

I. TAYLORŮV POLYNOM ( 1

Matematika PRŮŘEZOVÁ TÉMATA

právě jedna správná. Zakroužkujte ji! a) a b) a c) x b) 6 x c) 5) Rovnice y = je rovnicí a) elipsy b) paraboly c) přímky d) kružnice e) hyperboly

VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE V ROVINĚ

Gymnázium Jiřího Ortena, Kutná Hora. volné rovnoběžné promítání průmětna

Komplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1

n-rozměrné normální rozdělení pravděpodobnosti

Pravděpodobnost a aplikovaná statistika

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

STEREOMETRIE 9*. 10*. 11*. 12*. 13*

Změna týdenní hodinové dotace v 1. ročníku v předmětu matematika. původní dotace 3 hodiny týdně, nově 4 hodiny týdně

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

Diferenciální počet funkcí více proměnných

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a a N. n=1

VIDEOSBÍRKA DERIVACE

Informace k jednotlivým zkouškám na jednotlivých oborech:

právě jedna správná. Zakroužkujte ji! a) a b) a c)

VZOROVÉ PŘÍKLADY Z MATEMATIKY A DOPORUČENÁ LITERATURA pro přípravu k přijímací zkoušce studijnímu oboru Nanotechnologie na VŠB TU Ostrava

7. Analytická geometrie

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ. u. v = u v + u v. Umět ho aplikovat při

Transkript:

Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k. = a k A + B = A + AB + B A B = A AB + B A B = A + B A B A + B 3 = A 3 + 3A B + 3AB +B 3 A B 3 = A 3 3A B + 3AB B 3 A 3 + B 3 = A + B A AB + B A 3 B 3 = A B A + AB + B Biomická věta a + b = 0 a + a b + a b + + b

Kvadratická rovice ax + bx + c = 0 P: a 0 Diskrimiat: D = b 4ac D > 0 x = b± D a D = 0 x = b a D < 0 x = b± D i a Vietovy vzorce: platí pro NORMOVANÝ TVAR!!! kvadratické rovice: x + px + q = 0 x. x = q x + x = p Logaritmy log a + log b = log(a b) log a log b = log a b log a x = x. log a log a x = log b x log b a a log a r = r log a x = y a y = x l x = log e x

Goiometrie tg x = si x cos x cotg x = cos x = tg x si x x 0 π π/6 π/4 π/3 π/ π 3. π/ si x 0 / / 3/ 0 - cos x 3/ / / 0-0 si x + cos x = si x =. si x. cos x cos x = cos x si x Komplexí čísla z = a + bi algebraický tvar komplexího čísla z = z cos φ + i si φ goiometrický tvar komplexího čísla z = a + b cos φ = a z si φ = b z z. z = z. z z z = z z Operace s komplexími čísly v goiometrickém tvaru: z. z = z. z. cos φ + φ + i si φ + φ z z = z z. cos φ φ + i si φ φ = cos φ + i si φ cos φ + i si φ Moivreova věta: z. cos φ + i si φ = z. cos( φ) + i si( φ) Biomická rovice: x k = a x = a α + kπ α + kπ. cos + i si k = 0; ; ; ;

Obecý trojúhelík Siová věta: Kosiová věta: α + β + γ = 80 a si α = b si β = c si γ = r c = a + b ab cos γ = π 80 rad r poloměr kružice opsaé rad = 80 π = 57 7 45 S = a v a = ab si γ (CZ) Heroův vzorec: S = s s a s b (s c) s = a+b+c r = a b c 4S ρ = S s poloměr kružice opsaé poloměr kružice vepsaé Pravoúhlý trojúhelík Pythagorova věta: a + b = c Euklidova věta pro výšku: v c = c a c b Euklidova věta pro odvěsu: a = c c a Goiometrické vzorce: b = c c b si α = a c cos α = b a tg α = a b

Obvod, obsah, objem, povrch Trojúhelík: o = a + b + c Čtverec: S = a + v a o = 4 a S = a Kosočtverec: o = a + b + c + d S = a v a = a si α Obdélík: o = a + b S = a. b Krychle: V = a 3 S = 6 a Kvádr: V = a b c S = a b + a c + b c Hraol: V = S p v S = S p + S pl Jehla: V = S 3 p v S = S p + S pl Kosodélík: o = a + b + c + d Válec: V = πr v S = a. v a = a. b. si α Lichoběžík: o = a + b + c + d S = m středí příčka a + c v = m v Kužel: Koule: S = πr r + v V = 3 πr v S = πr r + s V = 4 3 πr3 Deltoid: o = a + b S = e f S = 4πr e,f úhlopříčky Kružice: o = πr S = πr

Aalytická geometrie Vektor: u = AB = b a ; b a ; b 3 a 3 Vzdáleost bodů: AB = b a + b a + b 3 a 3 Střed úsečky: S b +a ; b +a ; b 3+a 3 Skalárí souči: u. v = u v + u v + u 3 v 3 Vektorový souči: u v = w w = u v 3 v u 3 w = u v 3 v u 3 w 3 = u v v u Úhel dvou vektorů: cos φ = u v u v Obsah rovoběžíku: S = u v = w Obsah trojúhelíku: S = u v = w Objem rovoběžostěu: V = a b c Parametrické vyjádřeí přímky v roviě: x = a + t u y = a + t u Obecá rovice přímky v roviě: ax + by + c = 0 Směricový tvar přímky v roviě: y = kx + q rovoběžost dvou přímek: k = k kolmost dvou přímek: k. k = Úsekový tvar přímky v roviě: x p + y q = Vzdáleost bodu od přímky v roviě: v P; p = a.p +b.p +c a +b Parametrické vyjádřeí přímky v prostoru: x = a + t u y = a + t u z = a 3 + t u 3

Parametrické vyjádřeí roviy: x = a + t u + s v y = a + t u + s v z = a 3 + t u 3 + s v 3 Obecá rovice roviy: ax + by + cz + d = 0 Vzdáleost bodu od roviy: v P; ρ = a.p +b.p +cp 3 +d a +b +c Odchylka přímky od roviy: cos φ = u p ρ u p. ρ φ = 90 φ Odchylka dvou rovi: cos φ = ς ρ ς. ρ Kuželosečky Kružice: Středový tvar: x m + y = r Obecá rovice: x + y mx y + p = 0 Teča: x m. x 0 m + y. y 0 = r Elipsa e = a b Středový tvar: ) ) x m a + y b = x m b + y a = Teča: x m. x 0 m a + y. y 0 b =

Parabola p = v F; d V = S Fd Středový tvar: ) x m = p y ) x m = p y 3) y = p x m 4) y = p x m Tečy: ) x m x 0 m = ±p y ± p y 0 ) y y 0 = ±p x m ± p x 0 m Hyperbola e = a + b Rovice asymptot: y = ± b a x m Středový tvar: ) ) x m a y b = y a x m b = Tečy: ) ) x m. x 0 m a y. y 0 a y. y 0 b = x m. x 0 m b =

Kombiatorika Variace Bez opakováí:v k; =! k! S opakováím: V k; = k Permutace Bez opakováí: P =! S opakováím: P k ; k ; ; k = Kombiace k! k!k! k! Bez opakováí: C k; =! k!k! = k S opakováím: C k; = +k! k!! Kombiačí číslo: = = +k k = 0 = k = k k + k = + k + Pravděpodobost P A = m m. počet přízivých jevů počet všech jevů Průik dvou ezávislých jevů: P A B = P A P B Pravděpodobost, že astae alespoň jede z jevů: P A B = P A + P B P A B

Statistika Relativí četost: ν i = i počet všech prvků Aritmetický průměr: x = i= x i Geometrický průměr: x G = x. x x = x x 0 Harmoický průměr: x H = x + x + + x Modus: Mod x hodota s ejvyšší četostí Mediá: Med x = x + pro liché Med x = x Rozptyl: s x = + x + pro sudé i= x i x Směrodatá odchylka: s x = i= x i x Variačí koeficiet: v x = s x x Koeficiet korelace: r xy = i= x i x. y i y s x.s y r ;

Aritmetická posloupost Vzorec mezi a a a + : Vzorec pro -tý čle: a + = a + d a = a + d Vzorec mezi dvěma čley: a r = a s + r s d Součtový vzorec: s = a + a Geometrická posloupost Vzorec mezi a a a + : Vzorec pro -tý čle: a + = a q a = a q Vzorec mezi dvěma čley: a r = a s q r s Součtový vzorec: s = a q q Limita poslouposti lim a = a lim a ± b = lim a ± lim b lim a. b = lim a. lim b lim a lim a = b lim b lim c a = c lim a lim = 0 lim lim k = 0 + = e Nekoečá geometrická řada = a Podmíka kovergece: q < Součtový vzorec: s = a q