11. přednáška 16. prosince Úvod do komplexní analýzy.
|
|
- Jaroslav Jelínek
- před 6 lety
- Počet zobrazení:
Transkript
1 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám dovoluje pouze zopakovat základí vlastosti komplexích čísel a probrat mocié řady. Přesější ázev by byl Mocié řady v komplexím oboru. Výsledky budeme uvádět většiou bez důkazů. Aplikace komplexích čísel v kombiatorice. Začeme jedou hezkou aplikací komplexích čísel. Možiu přirozeých čísel N = {1,,,...} můžeme takto rozložit a tři vzájemě disjuktí možiy: {1,,,...} = A 1 A A = {, 4, 6,...} {1, 5, 9,...} {, 7, 11,...}. Možia A 1 je tvořea sudými čísly tvaru +, možia A čísly tvaru a možia A čísly tvaru 4 +, přičemž = 0, 1,.... Každé přirozeé číslo leží právě v jedé z moži A i a každá je aritmetickou posloupostí, má tvar {a + d = 0, 1,...}, kde a, d N. Možia A 1 má difereci d = a možiy A a A mají tutéž difereci d = 4. Nedal by se udělat rozklad a aritmetické poslouposti s růzými diferecemi? Pomocí komplexích čísel ukážeme, že to eí možé. Tvrzeí. Nechť {1,,...} = k {a i + d i = 0, 1,...}, a i, d i N, i=1 je takový rozklad možiy N, že každé přirozeé číslo leží v jedié z k aritmetických posloupostí a k. Potom d i = d j pro ějaké dva idexy i j, takže se ěkteré dvě diferece rovají. Důkaz. Sporem: budeme předpokládat, že všech k diferecí d i je růzých, a odvodíme spor. Můžeme předpokládat, že 1 < d 1 < d <... < d k (případ d 1 = 1 emůže astat, eměli bychom rozklad N) a ozačíme si A i = {a i + d i = 0, 1,...}. To, že každé číslo N = {1,,...} leží v právě jedé z moži A i zameá, že pro každé z ( 1, 1) platí rovost mezi hodotami ásledujících fukcí daých mociými řadami (které jako geometrické řady zjevě kovergují a ( 1, 1)): z = z + z + + z, A 1 A A k to jest z N z = z a1 =0 =0 z d1 + z a =0 1 z d + + z a k z d k, =0
2 což podle vzorce pro součet geometrické řady pro každé z ( 1, 1) dává rovost z 1 z = za1 1 z zak + + d 1 z 1 z d. k d1 + za Tato rovost se sado přivede ke sporu, když pro z povolíme hodoty v oboru komplexích čísel C. Platí totiž, jak se sado dokáže, i pro každé z C se z < 1. Komplexí číslo je tzv. primitiví d k -tá odmocia z 1: α = cos(π/d k ) + i si(π/d k ) α d 1 pro každé d = 1,,..., d k 1, ale α d k = 1. Při dosazeí z = α (jež je ovšem epřípusté, eboť α leží mimo možiu z < 1) jsou všechy čley rovosti kromě posledího dobře defiovaé, ale posledí e a to vede ke sporu. Podroběji a přesěji, vezmeme libovolou posloupost komplexích čísel z 1, z,... s vlastostí, že z < 1 pro každé, ale z α pro (což lze udělat, protože α leží a hraici otevřeého kruhu z < 1). Pak pro máme z α 1 z 1 α a pro i = 1,,..., k 1 též z ai 1 z di αai 1 α di, ale z a k = za k = +, protože z a k α a k = 1, avšak 1 α d k = 0, čili 0 +. Rovost přepíšeme jako z a k = z 1 z za1 1 z zak 1 d 1 z 1 z d, k 1 d1 za položíme z = z, použijeme absolutí hodotu (zvaou v komplexím oboru modul) a trojúhelíkovou erovost. Pro každé = 1,,... tím dostaeme erovost z a k k 1 z 1 z + i=1 z ai 1 z di Na druhou strau ale víme, že pro její levá straa jde do + a pravá ke koečé hodotě α/(1 α) + k 1 i=1 αai /(1 α di ). Pro všecha dostatečě velká tak tato erovost eplatí, což je spor. Sestrojeí komplexích čísel z reálých čísel. Jeda možá kostrukce je tato. Jako možiu komplexích čísel vezmeme možiu dvojic reálých čísel. C = R R = {(a, b) a R, b R}
3 a defiujeme a í aritmetické operace sčítáí a ásobeí (a, b) + (c, d) = (a + c, b + d), (a, b) (c, d) = (a, b)(c, d) = (ac bd, ad + bc). Neí těžké dokázat, že to jsou asociativí a komutativí operace a že ásobeí je distributiví vzhledem ke sčítáí. Dvojice (0, 0) a (1, 0) jsou pro + a eutrálí prvky. Iverzí prvek k (a, b) je při sčítáí ( a, b) a při ásobeí (s výjimkou (0, 0), jež iverz emá) (a/(a + b ), b/(a + b )). Struktura C = (C, +, ) je tedy komutativí těleso, stejě jako R = (R, +, ), z ěhož jsme vyšli. Na rozdíl od R ale C emá přirozeě defiovaé uspořádáí a eí uspořádaé těleso. Zobrazeí f : R C, a (a, 0) je prosté a respektuje sčítáí a ásobeí: f(a+b) = f(a)+f(b), f(ab) = f(a)f(b) pro každé a, b R a i f(1) = (1, 0). Jeho obraz {(a, 0) a R} je tedy kopií R v C a R bereme jako podmožiu C, když to přesě formálě tak eí. Místo (a, 0) píšeme stručěji a. Dvojici (0, 1) ozačíme jako i a říkáme jí imagiárí jedotka. Máme (0, 1) = (0, 1) (0, 1) = ( 1, 0) = 1, takže v tělese C má a rozdíl od R číslo 1 druhou odmociu. Každé komplexí číslo z = (a, b) C, tedy a, b R, se dá jedozačě vyjádřit jako lieárí kombiace reálé a imagiárí jedotky (1, 0) a (0, 1) s reálými koeficiety: z = (a, b) = (a, 0)(1, 0) + (b, 0)(0, 1) = a 1 + b i = a + bi. To je obvyklý zápis komplexího čísla pomocí reálé části a a imagiárí části b, který odteď budeme používat. Ozačují se jako Re(z) = a a Im(z) = b. Ukažme, že každé eulové komplexí číslo má právě dvě druhé odmociy a ula jedu. Pro daé z = a + bi řešíme v C rovici u = z, u = x + yi: (x + yi) = a + bi x + xyi y = a + bi x y = a & xy = b. Pro a = b = 0 má tato soustava jedié řešeí x = y = 0. Nechť a 0 ebo b 0. Elimiací y vyjádřeím y = b/x a dosazeím dostáváme rovici 4x 4 4ax b = 0. Odtud a + a x = ± + b a y = b x = ± a + a + b sg(b). Doplěím a čtverec se lehce ukáže, že každá kvadratická rovice az +bz+c = 0 s komplexími koeficiety a, b, c C má v C řešeí. Na čtvrté předášce jsme si dokoce dokázali Základí větu algebry, že každá polyomiálí rovice a z + a 1 z a 1 z + a 0 = 0, a i C, 1, a 0
4 má v komplexích číslech řešeí z C. Proč C eí uspořádaé těleso? V uspořádaém tělese platí trichotomie (pro každé dva jeho prvky α, β platí právě jedo z α < β, α = β a α > β), ásobeí kladým prvkem zachovává erovosti a ásobeí záporým prvkem je obrací (pro každé α > 0 z β < γ plye αβ < αγ a pro každé α < 0 z β < γ plye αβ > αγ). Kdyby a C šlo zavést uspořádáí, aby bylo uspořádaé těleso, obě možosti i > 0 a i < 0 (zjevě i 0) vedou ke sporu 1 > 0: pokud i > 0, vyásobeím i máme, že 1 = i i > 0 i = 0, a pokud i < 0, vyásobeím i máme zase 1 = i i > 0 i = 0. Komplexí rovia. Zopakujeme geometrické pojetí komplexích čísel. Na C = R se díváme jako a euklidovskou roviu a komplexí číslo z = a + bi zobrazujeme v kartézských souřadicích jako bod s x-ovou souřadicí a a y-ovou souřadicí b. Vzdáleost dvou komplexích čísel z = a + bi a w = c + di pak je euklidovská vzdáleost dvou odpovídajících bodů, d(z, w) = (a c) + (b d). Vzdáleosti čísla/bodu z = a + bi od počátku 0 = 0 + 0i se říká modul čísla z a začí se z : z = a + b. Modul čísla z můžeme apsat pomocí čísla z = a bi, jež se azývá číslo komplexé sdružeé se z, jako Zřejmě z = z z. d(z, w) = z w. Pro d máme trojúhelíkovou erovost, kterou pomocí modulu zapíšeme jako z + w z + w. Připomeeme geometrický výklad aritmetických operací s komplexími čísly. Čísla z 1 = a 1 + b 1 i a z = a + b i se sečtou jako vektory: šipku vektoru z posueme tak, že její počátečí vrchol leží v bodu z 1, pak její kocový bod udává součet z 1 + z. Zajímavější je ásobeí. Abychom vyásobili z 1 a z, uvážíme trojúhelík U s vrcholy 0, 1 a z 1. Pak vezmeme jedozačě určeý podobý trojúhelík T, jehož straa 0z odpovídá straě 01 trojúhelíka U. Třetí vrchol trojúhelíka T je souči z 1 z. Polárí souřadice. Komplexí čísla jako body v komplexí roviě vedle kartézských souřadic popisujeme i polárími souřadicemi. Každé eulové komplexí číslo z má kromě modulu také argumet, což je úhel ϕ svíraý úsečkami 0z a 01. Ozačujeme ho arg(z) = ϕ a ϕ [0, π). Nula emá argumet defiovaý. Je užitečé povolit ϕ R, potom je ϕ urče jedozačě až a celočíselý ásobek čísla π. Číslo z C tak jedozačě určíme uvedeím jeho reálé a imagiárí části ve dvojici (a, b) = (Re(z), Im(z)) (kartézské souřadice) ebo, když z 0, uvedeím jeho modulu a argumetu ve dvojici (r, ϕ) = ( z, arg(z)) 4
5 (polárí souřadice). Připomeeme, jak se mezi oběma druhy souřadic přechází. Číslo z = a + bi s kartézskými souřadicemi (a, b) má polárí souřadice (r, ϕ) daé vztahy r = a + b a ϕ R je takové číslo, že si(ϕ) = Im(z) z = b a cos(ϕ) = Re(z) a = a + b z a + b. Argumet ϕ je tímto urče jedozačě až a ásobek π. Číslo z C, z 0, s polárím souřadicemi (r, ϕ) = ( z, arg(z) má kartézské souřadice takže a = Re(z) = r cos(ϕ) a b = Im(z) = r si(ϕ), z = a + bi = r(cos(ϕ) + i si(ϕ)). Tomuto vyjádřeí z se říká goiometrický tvar komplexího čísla. Defiujme si zkratku cis(ϕ) := cos(ϕ) + i si(ϕ). Ze součtových vzorců pro goiometrické fukce plyou vztahy pro ásobeí, děleí a umocňováí pomocí goiometrického tvaru: echť z = rcis(ϕ), z 1 = r 1 cis(ϕ 1 ), z = r cis(ϕ ) a Z, pak z 1 z = r 1 r cis(ϕ 1 )cis(ϕ ) = r 1 r cis(ϕ 1 + ϕ ) z 1 /z = (r 1 /r )cis(ϕ 1 ϕ ) z = r cis(ϕ). Pro ilustraci pomocí goiometrického tvaru alezeme všechy třetí odmociy z jedé, což jsou řešeí z C rovice z = 1. Jistě z 0, píšeme z = r cis(ϕ). Číslo 1 má polárí souřadice 1 = 1cis(0). Z rovice z = 1, čili r cis(ϕ) = 1cis(0), dostáváme r = 1 a ϕ = 0 modulo π. Tedy r = 1 a ϕ abývá (modulo π) tří hodot ϕ 1 = 0 = 0, ϕ = π ad ϕ = 4π. Tím dostáváme hodoty všech tří třetích odmoci z 1, z 1 = cis(0) = 1, z = cis(π/) = 1 + i, z = cis(4π/) = 1 i. Čísla z 1, z a z leží a jedotkové kružici a tvoří vrcholy rovostraého trojúhelíku. Obecě jsou -té odmociy z 1 vrcholy pravidelého -úhelíka vepsaého jedotkové kružici v komplexí roviě, s vrcholem v čísle 1. 5
Komplexní čísla. Definice komplexních čísel
Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují
VíceAbstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat
Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí
Více1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE
1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;
VíceSprávnost vztahu plyne z věty o rovnosti úhlů s rameny na sebe kolmými (obr. 13).
37 Metrické vlastosti lieárích útvarů v E 3 Výklad Mějme v E 3 přímky p se směrovým vektorem u a q se směrovým vektorem v Zvolme libovolý bod M a veďme jím přímky p se směrovým vektorem u a q se směrovým
VíceObsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...
Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1
Více1. Číselné obory, dělitelnost, výrazy
1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá
Více1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V
Předáška 1: Vektorové prostory Vektorový prostor Pro abstraktí defiici vektorového prostoru jsou podstaté vlastosti dvou operací, sčítáí vektorů a ásobeí vektoru (reálým číslem) Tyto dvě operace musí být
VíceKapitola 4 Euklidovské prostory
Kapitola 4 Euklidovské prostory 4.1. Defiice euklidovského prostoru 4.1.1. DEFINICE Nechť E je vektorový prostor ad tělesem reálých čísel R,, : E 2 R. E se azývá euklidovský prostor, platí-li: (I) Pro
VíceP. Girg. 23. listopadu 2012
Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt
VíceKomplexní čísla, komplexně sdružená čísla, opačná komplexní čísla, absolutní hodnota (modul) komplexního čísla. z 2 z 1
Komplexí čísla, komplexě sdružeá čísla, opačá komplexí čísla, absolutí hodota (modul) komplexího čísla Defiice komplexího čísla Komplexí číslo je uspořádaá dvojice reálých čísel = (, ) (, ). je reálá,
VícePřednáška 7, 14. listopadu 2014
Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.
VíceMatematika I, část II
1. FUNKCE Průvodce studiem V deím životě, v přírodě, v techice a hlavě v matematice se eustále setkáváme s fukčími závislostmi jedé veličiy (apř. y) a druhé (apř. x). Tak apř. cea jízdeky druhé třídy osobího
Více6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
Více3. Lineární diferenciální rovnice úvod do teorie
3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se
Více3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE
ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f
Více1 Uzavřená Gaussova rovina a její topologie
1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho
Vícea logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.
Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o
Více1.2. NORMA A SKALÁRNÍ SOUČIN
2 NORMA A SKALÁRNÍ SOUČIN V této kapitole se dozvíte: axiomatickou defiici ormy vektoru; co je to ormováí vektoru a jak vypadá Euklidovská orma; axiomatickou defiici skalárího (také vitřího) součiu vektorů;
VíceDefinice obecné mocniny
Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma
VíceKapitola 5 - Matice (nad tělesem)
Kapitola 5 - Matice (ad tělesem) 5.. Defiice matice 5... DEFINICE Nechť T je těleso, m, N. Maticí typu m, ad tělesem T rozumíme zobrazeí možiy {, 2,, m} {, 2,, } do T. 5..2. OZNAČENÍ Možiu všech matic
Vícec) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),
a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte
Více2.4. INVERZNÍ MATICE
24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:
Vícen=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0
Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada
Více1 Nekonečné řady s nezápornými členy
Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete
VíceMatematika přehled vzorců pro maturanty (zpracoval T. Jánský) Úpravy výrazů. Binomická věta
Matematika přehled vzorců pro maturaty (zpracoval T. Jáský) Úpravy výrazů a r. a s = a r+s a r = ar s as a r s = a r.s a. b r = a r b r a b r = ar b r a. b a b = a b = a. b ( a) m = a m m a m. = a a k.
VíceMATEMATICKÁ INDUKCE. 1. Princip matematické indukce
MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost
Vícen=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1
[M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti
Vícemnožina všech reálných čísel
/6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,
Více8.2.1 Aritmetická posloupnost
8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž
Více1 Trochu o kritériích dělitelnosti
Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak
VíceMatematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
VíceO Jensenově nerovnosti
O Jeseově erovosti Petr Vodstrčil petr.vodstrcil@vsb.cz Katedra aplikovaé matematiky, Fakulta elektrotechiky a iformatiky, Vysoká škola báňská Techická uiverzita Ostrava Ostrava, 28.1. 2019 (ŠKOMAM 2019)
VíceDERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM
Difereciálí počet fukcí jedé reálé proměé - - DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ ÚVODNÍ POZNÁMKY I derivace podobě jako limity můžeme počítat ěkolikerým způsobem a to kokrétě pomocí: defiice vět o algebře
Více7. Analytická geometrie
7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp
Více1.3. POLYNOMY. V této kapitole se dozvíte:
1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí
VíceMatematická analýza I
1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická
Více8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
VíceMATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.
MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY BŘEZNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T BŘEZNA 08 :. břez 08 D : 0 P P P : 0 M. M. M. :,8 % S : 0 : 7,5 : -7,5 M. P : -,0 : 0,6 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí máte 90
VíceI. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =
Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův
VíceZnegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:
. cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.
Víceprocesy II Zuzana 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze
limití Náhodé limití Katedra pravděpodobosti a matematické statistiky Uiverzita Karlova v Praze email: praskova@karli.mff.cui.cz 9.4.-22.4. 200 limití Outlie limití limití efiice: Řekeme, že stacioárí
VíceAritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti
8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:
Více5. Posloupnosti a řady
Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru
VíceAnalýza a zpracování signálů. 4. Diskrétní systémy,výpočet impulsní odezvy, konvoluce, korelace
Aalýza a zpracováí sigálů 4. Diskrétí systémy,výpočet impulsí odezvy, kovoluce, korelace Diskrétí systémy Diskrétí sytém - zpracovává časově diskrétí vstupí sigál ] a produkuje časově diskrétí výstupí
VíceCvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?
1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí
VíceS polynomy jste se seznámili již v Matematice 1. Připomeňme definici polynomické
5 Itegrace racioálích fukcí 5 Itegrace racioálích fukcí Průvodce studiem V předcházejících kapitolách jsme se aučili počítat eurčité itegrály úpravou a základí itegrály, metodou per partes a substitučí
Víceje číselná posloupnost. Pro všechna n položme s n = ak. Posloupnost
Číselé řady Defiice (Posloupost částečých součtů číselé řady). Nechť (a ) =1 je číselá posloupost. Pro všecha položme s = ak. Posloupost ( s ) azýváme posloupost částečých součtů řady. Defiice (Součet
VíceI. Exponenciální funkce Definice: Pro komplexní hodnoty z definujeme exponenciální funkci předpisem. z k k!. ( ) e z = k=0
8. Elemetárí fukce I. Expoeciálí fukce Defiice: Pro komplexí hodoty z defiujeme expoeciálí fukci předpisem ) e z = z k k!. Vlastosti expoeciálí fukce: a) řada ) koverguje absolutě v C; b) pro z = x + jy
VícePřijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení
Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.
VíceNMAF063 Matematika pro fyziky III Zkoušková písemná práce 17. ledna 2019
Jméo: Příklad 2 3 Celkem bodů Bodů 0 8 2 30 Získáo 0 Uvažujte posloupost distribucí {f } + = D (R defiovaou jako f (x = ( δ x m, kde δ ( x m začí Diracovu distribuci v bodě m Najděte limitu f = lim + f
VíceGEOMETRIE I. Pavel Burda
GEOMETRIE I Pavel Burda Obsah Úvod... 4 1. Vektorové prostory... 5. Vektorové prostory se skalárím ásobeím... 9. Afií prostory... 19 4. Afií přímka ( A 1 )... 5 5. Afií rovia (A )... 6 6. Afií prostor
VíceFUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL
Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost
VíceDIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce
DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji
VíceMocninné řady - sbírka příkladů
UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.
VícePřijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika
Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo
Více12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Více5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
Vícen-rozměrné normální rozdělení pravděpodobnosti
-rozměré ormálí rozděleí pravděpodobosti. Ortogoálí a pozitivě defiití symetrické matice. Reálá čtvercová matice =Ha i j L řádu se azývá ortogoálí, je-li regulárí a iverzí matice - je rova traspoovaé matici
VíceNMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =
NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:
VíceMasarykova univerzita Přírodovědecká fakulta
Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě
VíceAnalytická geometrie
Alytická geometrie Vektory Prmetrické vyjádřeí přímky roviy Obecá rovice droviy Vektorový prostor Nechť jsou dáy ásledující mtemtické objekty: ) ) ) 4) Číselé těleso T. Neprázdá moži V. Zobrzeí Zobrzeí
Více5. Lineární diferenciální rovnice n-tého řádu
5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá
VíceZS 2018/19 Po 10:40 T5
Cvičeí - Matematická aalýza ZS 08/9 Po 0:40 T5 Cvičeí 008 Řešte erovice v R: 8, log 3 ( 3+3 0 Částečý součet geometrické řady: pro každé q C, q, a N platí 3 Důsledek: +q +q + +q = q+ q si+si+ +si = si
VíceBudeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)
Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a
VíceMatematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti
Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti
Více8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
VíceMocniny. Mocniny, odmocniny, logaritmy, exponenciála. Obecná mocnina. Mocniny. Odmocniny
Mociy Mociy, odmociy, logaritmy, expoeciála Zdeěk Halas KDM MFF UK 07 Počátky logaritmů Základí idea logaritmů Napierovy logaritmy Přirozeé logaritmy Kvadratura hyperboly Expoeciála Zavedeí expoeciály
Více1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7
Semiář z matematické aalýzy I Čížek Jiří-Kubr Mila 8 září 007 Obsah Základí matematické pojmy Logika Možiy a jejich zobrazeí 7 Reálá a komplexí čísla 6 Poslouposti 7 Základí vlastosti posloupostí 7 Limita
VícePřednáška 7: Soustavy lineárních rovnic
Předáška 7: Soustavy lieárích rovic 7.1. Příklad (geometrie v roviě) Rozhoděte o vzájemé poloze přímky p : x y 1 a přímky a) a : x y 3, b) b : 2x 2y 3, c) c :3x 3y 3. Jak víme ze středí školy, lze o vzájemé
VíceUžití binomické věty
9..9 Užití biomické věty Předpoklady: 98 Často ám z biomického rozvoje stačí pouze jede kokrétí čle. Př. : x Urči šestý čle biomického rozvoje xy + 4y. Získaý výraz uprav. Biomický rozvoj začíá: ( a +
Vícejako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
Více11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel
KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:
VíceFunkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,
VícePetr Šedivý Šedivá matematika
LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími
VíceMASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY. Bakalářská práce BRNO 2012 PAVLA STARÁ
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 202 PAVLA STARÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Rozklady celých
Více5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.
Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme
VíceUžitečné zdroje příkladů jsou: Materiály ke cvičením z Kalkulu 3 od Kristýny Kuncové:
Užitečé zdroje příkladů jsou: Materiály ke cvičeím z Kalkulu 3 od Kristýy Kucové: http://www.karli.mff.cui.cz/~kucova/historie8. php K posloupostem řad a fukcí Ilja Čerý: Iteligetí kalkulus. Olie zde:
Vícezákladním prvkem teorie křivek v počítačové grafice křivky polynomiální n
Petra Suryková Modelováí křivek základím prvkem teorie křivek v počítačové grafice křivky polyomiálí Q( t) a a t... a t polyomiálí křivky můžeme sado vyčíslit sado diferecovatelé lze z ich skládat křivky
VícePOLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde
POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti
Více10.3 GEOMERTICKÝ PRŮMĚR
Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo
VíceKombinatorika- 3. Základy diskrétní matematiky, BI-ZDM
Kombiatorika- 3 doc. RNDr. Josef Kolář, CSc. Katedra teoretické iformatiky FIT České vysoké učeí techické v Praze c Josef Kolar, 2011 Základy diskrétí matematiky, BI-ZDM ZS 2011/12, Lekce 8 Evropský sociálí
VíceSpojitost a limita funkcí jedné reálné proměnné
Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v
Víceodhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Více7.2.4 Násobení vektoru číslem
7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:
VíceZformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):
Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při
Více( + ) ( ) ( ) ( ) ( ) Derivace elementárních funkcí II. Předpoklady: Př. 1: Urči derivaci funkce y = x ; n N.
.. Derivace elemetárích fukcí II Předpoklady: Př. : Urči derivaci fukce y ; N. Budeme postupovat stejě jako předtím dosazeím do vzorce: f ( + ) f ( ) f f ( + ) + + + +... + (biomická věta) + + +... + f
VíceMatematika NÁRODNÍ SROVNÁVACÍ ZKOUŠKY DUBNA 2018
NÁRODNÍ SROVNÁVACÍ ZKOUŠKY Mtemtik T DUBNA 08 : 8. dub 08 D : 884 P P P S M. M. M. : 0 : 5,5 % : 0 : 7,8 : -7,5 M.. P : -6,0 : 9,7 Zopkujte si zákldí iformce ke zkoušce: Test obshuje 0 úloh jeho řešeí
VíceZimní semestr akademického roku 2015/ listopadu 2015
Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva
Více1. K o m b i n a t o r i k a
. K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že
VíceSTEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ
STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.
VícePři sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
Více1 Základní pojmy a vlastnosti
Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).
VíceMatematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice
Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké
VíceI. TAYLORŮV POLYNOM ( 1
I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky
VíceDISKRÉTNÍ MATEMATIKA PRO INFORMATIKY
DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST
Víceje konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n
8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí
VíceNáhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
Vícedefinované pro jednotlivé řády takto: ) řádu n nazýváme číslo A = det( A) a a a11 a12
Předáška 3: Determiaty Pojem determiatu se prosadil původě v souvislosti s potřebou řešit soustavy lieárích rovic v 8 století (C Maclauri, G Cramer) Teprve později se pojem osamostatil, zjedodušilo se
Více