cvičící 7. cvičeí 4ST21-řešeí Obsah: Bodový odhad Itervalový odhad Testováí hypotéz Vysoká škola ekoomická 1 Úvod: bodový a itervalový odhad Statistický soubor lze popsat pomocípopisých charakteristik jako aritmetický průměr, rozptyl, relativíčetost. Vlastosti základího souboru(apř. obyvatel ČR), kterése edajízjistit přímo (těžko se dotázat všech 1 mil. obyvatel) odhadujeme pomocívýběrového souborua jeho výběrových charakteristik. Zatímco charakteristiky ZS jsou pevéhodoty, statistiky VS se měí od jedoho áhodého výběru ke druhému a mají charakter áhodých veliči, eboťjsou získáváy s hodot áhodého výběru. 2
Bodový odhad Odhadujeme parametr ZS pomocí jedoho čísla ezámou hodotu parametru Gzákladího souboru odhademe pomocí vypočítaé hodoty vhodé výběrové charakteristiky g Bodovým odhadem i 1 1. růměru ZS μ je výběrový průměr x i x 2 ( xi μ) 2. Rozptylu ZS 2 i 1 σ je výběrový rozptyl i 1 x i s,2 x ( xi x ) i 1 1 2 M 3. Relativí četosti ZS π je výběrová relativí četost m p 3 Itervalový odhad Chceme co ejužšíiterval takový, že se zvoleou spolehlivostíobsahuje odhadovaý parametr. Odhad charakteristiky ZS čiíme pomocí itervalu, v ěmž bude hledaá charakteristika ležet s určitou spolehlivostí. Spolehlivost odhadu 1-α(95%,99%) α riziko, že charakteristika ebude itervalem pokryta, volíme sami, ejčastěji 5%, 1% řesost itervalového odhadu roste s rozsahem souboru. řesost itervalového odhadu klesá s rostoucí spolehlivostí. Iterval je pro každý výběr jiý a je áhodý! Ve (1-α)*1% pokusů kostrukce itervalu, bude teto iterval zahrovat sledovaý parametr. Iterval samotý jede, sledovaý parametr zahruje ebo ezahruje! 4
říklady: Bodový a itervalový odhad říklad. 7.1.: V souboru data_cv7.sas7bdatje proměá body z testu. V souboru je uvedeo 6 výsledků z 1. průběžého testu. Budeme odhadovat dosažeé body za celou školu. Budeme předpokládat, že tito studeti byli áhodě vybrái ze všech. 1. a základětohoto výběru odhaděte středíhodotudosažeých bodůz testu, pokud z miulých výzkumůvíme, že rozptyl dosažeých bodůze statistiky je přibližěrove 2,91. (OZOR, rozlišovat, zda rozptyl záme či ezáme!!) 2. Sestrojte 95% iterval spolehlivosti pro středí hodotu získaých bodů. 3. omocí jedostraého itervalu spolehlivosti určete dolí mez pro středí hodotu dosažeých bodů takovou, aby pravděpodobost jejího překročeí byla,95. Úkoly řešte ručěi v SASu. 5 říklad 7.1. - Řešeí 1. Bodový odhad: 2. Itervalový odhad: 3. Itervalový odhad: μˆ x 16,45 x-u x-u 4,57 4,57 x-1.96 * < μ < x + 1.96 *.95 6 6.95 1-α/ 2.975 σ * < μ < x + u 4,57 * < μ < x + u 6 1-α/ 2.975 σ * 1 a 4,57 *.95 6 ( 16.45-1.96 *.59 < μ < 16.45 + 1.96 *.59) ( 15.29 < μ < 17.6). 95 (x-u (x-u 4,57 (16,45-1,645* < μ ).95 6.95 1-α.95 σ * < μ ) a ( 16,45 -,97 < μ) ( 15,48 < μ). 95 4,57 * < μ ).95 6 6
říklad 7.1. v SASu 1. Zjistíme bodový odhad a dalšícharakteristiky: průměr, směrodatou odchylku, směrodatou chybu odhadu a) Describe-Summary Statistics-Aalysis Variable b) Zadám proměou c) V listu Statistics Basic: Mea, Stadard deviatio, Stadard error. 2. Zjistíme itervaly spolehlivosti: a) Describe-Summary Statistics-Aalysis Variable rví způsob b) Zadám proměou c) V listu Statistics Additioal-Cofidece limits od the mea d) Zaškrtu 95% Druhý způsob i. Describe-Distibutio Aalysis-Task role-zadám proměou ii. V listu Distributios vyberu rozděleí-ormal iii. V listu Tables-Basic cofidece iterval iv. Zadám type: two-side, 95%. (pokud jedostraý: upper, lower) 7 říklady: Bodový a itervalový odhad říklad 7.2. : Byla zjišťováa spokojeost zákazíkůrestaurace po změějídelího lístku. Bylo áhoděosloveo celkem 32zákazíků, z ichž59bylo celkověs restauracíespokojeo. 1. a základětohoto výběrůodhaděte procetospokojeýchzákazíků. 2. Sestrojte 95% dvoustraý itervalspolehlivosti pro odhad proceta espokojeých zákazíků. 3. Jaký je ejmešípodíl espokojeých zákazíkůs ovou restauracíza výše daých podmíek? (ápověda: ejmešílevostraý iterval) 4. okud záme celkový početzákazíkůtéto restaurace a to 3 lidí, jaký je miimálípočet espokojeýchzákazíků? 8
1. Bodový odhad: 2. Itervalový odhad: Řešeípříkladu 7.2. 32 59 πˆ p,816 32,184-1.96 * (,142 < π <,226). 95 ( 1-p) p* ( 1-p) p* p-u1-α/ 2* < π < p + u1-α/ 2 *,184*,816 32 < π <,184 + 1.96 * 1 a,184*,816.95 32 3. Itervalový odhad: 4. očet zákazíků!: p-u 1-α * p*,184-1,645 * ( 1-p) (,148 < π). 95 ( 3*,148 < * π) ( 444 < * π). 95 < π 1 a,184*,816 32.95 < π.95 9 Testováí hypotéz Chceme ověřit, jestli platíějakétvrzeí(testovaáhypotéza). V případěparametrických testůje tato hypotéza formulováa jako tvrzeío parametrech rozděleí áhodé veličiy. Testovaou hypotézu přijímáme ebo vyvracíme a základě vypočítaé hodoty testového kritéria. Tím je vhodáfukce hodot áhodého výběru, která má při platosti testovaé hypotézy zámé rozděleí. a základězalosti rozděleítestového kritéria rozdělíme obor jeho hodot a obor přijetía kritický obortak, aby pravděpodobost, že hodota testového kritéria bude v kritickém oboru byla rova α. Tuto pravděpodobost azýváme hladia výzamosti. ravděpodobost, že hodota testového kritéria spade do kritického oboru a my tak chybězamíteme pravdivou hypotézu, by měla být malá. Čím je však αmeší, tím většíje pravděpodobost, že aopak přijmeme chybou hypotézu. 1
řehled testů 1. Test hypotézy o středí hodotě a) okud záme rozptyl b) okud ezáme rozptyl 2. Test hypotézy o relativí četosti 3. Test hypotézy o shodě dvou středích hodot a) okud záme hodotu rozptylů b) okud ezámehodotu rozptylů, ale domíváme se, že se rovají c) okud ezámehodotu rozptylůa domíváme se, že se erovají! odívat se do vzorců, Vždy se zamyslet, ajít co testuji, zvolit správý test!!!!odívat se do Aplikací, jak vypadají výstupy ke všem těmto testům!!! 11 říklady: testováí hypotéz říklad 7.3.: Vyučujícítvrdí, že výsledek studetůz testu ze statistiky je v průměru15 bodů. a základězjištěých 6 údajůz příkladu 7.1. se pokuste a hladiěvýzamosti 5% prokázat, že to tak eí. 12
Řešeípříkladu 7.3. 1. Hypotézy: H1: μ 15 2. Testové kritérium: 3. Kritický obor: H : μ 15 W W,5,5 x μ σ 16,45 15 U 2, 458 4,57 U 4. Výsledek: U>1,96. Testovaékritérium spadádo kritického oboru. a 5% hladiěvýzamosti se ám podařilo zamítout hypotézu, že průměrý výsledek studetů je 15 bodů. { U u1 α/ 2} { U 1,96} 6 13 říklad. 7.4.: říklady testováí hypotéz Vraťme se k zadáí příkladu 7.2.: Byla zjišťováa spokojeost zákazíkůrestaurace po změějídelího lístku. Bylo áhoděosloveo celkem 32zákazíků, z ichž59bylo celkověs restauracíespokojeo. okud měla restaurace při starém lístku v průměru 2% espokojeých zákazíků, ověřte předpoklad, zda se teto podíl po změějídelího lístku změil. (hladia výzamosti je 5%). (SAS umí, podívejte se do Aplikací!)! orovejte doma iterval spolehlivosti pro podíl espokojeých zákazíků a testovaou hypotézu! 14
Řešeípříkladu 7.3. 1. Hypotézy: H1: π,2 2. Testové kritérium: 3. Kritický obor: H : π,2 W W U,5,5 π p π U, 74 ( 1 π ) 4. Výsledek: U>1,96. Testovaékritérium espadádo kritického oboru. a 5% hladiěvýzamosti se ám epodařilo zamítout testovaou hypotézu. Změou jídelího lístku se počet espokojeých zákazíkůezměil. * { U u1 α/ 2} { U 1,96},184,2,2*,8 32 15 Děkuji za pozorost! okud budete mít jakékoliv dotazy či připomíky, pište mi a mail jaa.feclova@vse.cz ebo přijďte do kozultačích hodi každý pátek 9:-11: JM317. 16