Testování statistických hypotéz
|
|
- Ludvík Vávra
- před 8 lety
- Počet zobrazení:
Transkript
1 Tetováí tatitických hypotéz CHEMOMETRIE I, David MILDE Jedá e o jedu z ejpoužívaějších metod pro vyloveí závěrů o základím ouboru, který ezkoumáme celý, ale pomocí áhodého výběru. Př.: Je obah účié látky ve tabletách léku hodý? Je obah NO 3- v pité vodě meší ež 15 mg/l? Je kocetrace kyeliy vyráběá jedím potupem jiá ež druhým potupem? Je rozptyl výledků taoveí Fe aším přítrojem meší ež hodota,55 uvedeá v ormě? Budeme e zabývat tetováím hypotéz o parametrech rozděleí základího ouboru (, ). Nebudeme e zabývat tety týkajícími e tvaru rozděleí. 1
2 Statitická hypotéza - jakýkoli předpoklad o rozděleí pravděpodoboti áhodé veličiy; týká e parametrů rozděleí áhodé veličiy (hoda tředích hodot či rozptylů) v základím ouboru ebo e může vztahovat k rozděleí áhodé veličiy. Tet tatitické hypotézy je pravidlo, které a základě výledků zjištěých z aměřeých hodot předepiuje rozhodutí, má-li být tetovaá hypotéza zamítuta či ikoli. Hypotézu, kterou chceme tetovat (rozhodout o í) azýváme ulová hypotéza H 0. Dále e defiuje alterativí hypotéza H 1,kteráepřijímá v případě zamítutí H 0. 3 Př.: vyráběá kyelia má mít kocetraci 90 %; to ověřujeme pomocí aalýzy vybraých vzorků kyeliy. Pro oboutraou alterativu : H 0 :µ=90 H 1 :µ 90. Pro jedotraou alterativu : H 0 :µ=90 H 1 :µ<90 H 0 :µ 90 H 1 : µ < 90. Při tetováí e vymezuje kritická hodota (ejčatěji v tabulkách kritických hodot) pro tetováí ulové hypotézy. Je-li výledek zjištěý tatitickým tetem meší ež kritická hodota, přijímáme H 0. Je-li výledek větší, pak e H 0 zamítá přijímá e H 1. 4
3 Potup při tetováí hypotéz 1. Formulace H 0 ah 1.. Volba hladiy výzamoti. 3. Výpočet tetovací charakteritiky a základě áhodého výběru (pocházejícího z ormálího rozděleí). 4. Nalezeí kritické hodoty (v tabulkách). 5. Rozhodutí o přijmutí čí zamítutí hypotéz. 5 Chyby při tetováí hypotéz Při rozhodováí o přijetí či epřijetí H 0 e můžeme doputit jedé ze dvou chyb: 1. Zamíteme H 0,kdyžvekutečoti platí chyba 1. druhu.. Přijmeme H 0,kdyžvekutečoti eplatí (platí tedy H 1 ) chyba. druhu. Chyba 1. druhu má pravděpodobot a ta je rova hladiě výzamoti tetu (v praxi ejčatěji 5 %). Chyba. druhu má pravděpodobot a její velikot obvykle ezáme. Čílo 1- e azývá íla tetu. 6 3
4 Chyby při tetováí hypotéz Rozhodováí Skutečot Přijímáme H 0 Zamítáme H 0 (přijímáme H 1 ) Platí H 0 O.K. Chyba 1. druhu Neplatí H 0 Chyba. druhu (platí H 1 ) O.K. 7 Tetováí právoti (Jedovýběrový t-tet o tředí hodotě) 4
5 Tet právoti Slouží k rozhodutí, zda tředí hodota áhodého výběru (= aritmetický průměr) je ebo eí rova ějaké kokrétí číelé hodotě (azývaé prává hodota), či zda je průměr meší ebo větší ež ějaké kokrétí hodota. Tetováím rozdílu průměru a právé hodoty zjišťujeme, jak velký je mezi imi rozdíl. Je-li meší ež kritická hodota, je vyvětlitelý pouze áhodými chybami a výledek považujeme za právý. Předpokladem je, že základí oubor i áhodý výběr mají ormálí rozděleí. 9 Tet právoti H:μ =x;h:μx 0 1 Je zám rozptyl : x z Srováváme kritickou ormálího rozděleí z (1-/). hodotou ormovaého Neí zám rozptyl : x t Srováváme kritickou hodotou t-rozděleí -1 tupi voloti t (1-/; -1). 10 5
6 Tet právoti Je-li vypočteá hodota t ebo z meší ež přílušá kritická hodota, přijímáme H 0. Je-li vypočteá hodota t ebo z větší ež kritická, zamítáme H 0 a přijímáme H 1. H0 H1 x x x x x x H 0 e zamítá, když: t > t krit (1-/; -1) t > t krit (1-; -1) t < t krit (; -1) 11 Tet právoti L 1, t x (1 /, 1) IS obahuje μ, ± odtraíme použitím abolutí hodoty. t x 1 6
7 Tet právoti v oftware základí přítupy: Použitím klaického tetu právoti, což je možé v případě plěí tatitických předpokladů (ZP: ormalita, homogeita). Aplikací itervalu polehlivoti: Pomocí EDA a ZP idetifikujeme vhodý itervalový odhad tředí hodoty (průměr, mediá, opraveý průměr po traformaci) a zjitíme zda prává hodota (μ) leží uvitř itervalu polehlivoti. 13 Tetováí hody tředích hodot (Dvouvýběrový t-tet rovoti tředích hodot dvou ouborů) 7
8 Tetováí hody tředích hodot Slouží k tetováí dvou průměrů vypočteých z 1 a taoveí. Využívá e apř.: Porováí výledků aalýzy vzorků pomocí jedé metody. Porováí výledků laboratoří (či metod) při opakovaé aalýze jedoho vzorku. Předpokládá e, že oba áhodé výběry jou a obě ezávilé a pocházejí z ormálího rozděleí! Předpoklad hody či ehody rozptylů je třeba ověřit pomocí F tetu hody rozptylů. 15 Tet hody tředích hodot pro 1 = t x x 1 1 ( 1 ) ( 1 1) 1 ( 1) 1 ( x1 x) t pro 1 = T 1 ( 1) ( 1) Vypočteé t rováváme t krit pro ( 1 + )tupňů voloti. 16 8
9 Tet hody tředích hodot pro 1 t ( x x ) T Vypočteé t e rovává t krit pro tupňů voloti. 1 ( ) ( / ) ( / ) Tet hodoti Je-li vypočteá hodota t meší ež přílušá kritická hodota pro přílušý počet tupňů voloti, přijímáme H 0. Je-li vypočteá hodota t větší ež kritická, zamítáme H 0 apřijímáme H 1. H H 0 1 x x x x 1 1 x x x x 1 1 x x x x 1 1 H 0 e zamítá, když: t > t krit (1-/) t > t krit (1-) t < t krit () 18 9
10 F-tet hody rozptylů Kromě tetů o hodotách parametrů 1rozděleí je v praxi čato potřeba porovávat ezámé hodoty parametrů mezi dvěma základími oubory. Dvouvýběrový Fiher-Sedecorův tet (zkráceě F- tet) louží k ověřeí hody rozptylů dvou základích ouborů. Ze základích ouborů N( 1, 1 ) a N(, ) provedeme áhodé výběry, o kterých předpokládáme, že jou ezávilé a počteme výběrové odhady rozptylů 1 a. F 1 19 F-tet hody rozptylů POZOR! F muí být vždy větší ež 1! Je-li vypočteá hodota F meší ež přílušá kritická hodota F-rozděleí, přijímáme H 0. Je-li vypočteá hodota F větší ež kritická, zamítáme H 0 apřijímáme H 1. H 0 H 1 H 0 e zamítá, když 1 = 1 F> F krit(1-1, -1) 1 1 > F> F krit( 1-1, -1) 1 1 < F< 1/F krit(-1, 1-1) 0 10
11 Tetováí hodoti v oftware Studetovy tety vycházejí z předpokladu ormálího rozděleí aalyzovaých ouborů. Pokud tato podmíka eí plěa, elze je použít. Obecý potup: 1. Ověřeí ormality obou výběrů (EDA, ZP).. Tetováí hody rozptylů. 3. Tetováí hody tředích hodot. 1 Tetováí hodoti v oftware TESTY SHODY ROZPTYLŮ H 0 : 1 = H 1 : 1 Klaický F-tet hody rozptylů oba výběry pocházejí z ormálího rozděleí. Robutí F-tet hody rozptylů propřípad, kdy jede ebo oba výběry ejou z ormálího rozděleí. Tety hody rozptylů e používají k rozhodováí, zda lze při tetováí hody tředích hodot vycházet z předpokladu rovoti rozptylů. 11
12 Tetováí hodoti v oftware TESTY SHODY STŘEDNÍCH HODNOT H 0 : µ 1 = µ H 1 : µ 1 µ T 1 Klaický Studetův t-tet pro hodé rozptyly ormálí rozděleí u obou výběrů. T Klaický Studetův t-tet pro růzé rozptyly ormálí rozděleí u obou výběrů. T 3 Modifikovaý Studetův t-tet pro odchylky od ormality v šikmoti. 3 Tetováí hodoti v oftware TESTY SHODY STŘEDNÍCH HODNOT T 4 Robutí tet pro homokedaticitu v čitateli jou uřezaé průměry a ve jmeovateli wiorizovaé oučty čtverců odchylek (obdoba rozptylu, ale bez poděleí počtem tupňů voloti) t x ( ) x 1 S w,1( ) S w ( ), ( ) 4 1
13 Tetováí hodoti v oftware TESTY SHODY STŘEDNÍCH HODNOT T 5 Robutí tet pro heterokedaticitu x t 1 ( ) x ( ) h w,1 1 h w, S ( ) i it( ), 100 w, i w, i a hi i pro i hi 1 Tety T 1 at jou použitelé pro výběry z ormálího rozděleí a jou i dotatečě robutívůči odchylkám od ormality ve špičatoti. Robutí tety T 4 at 5 jou výhodé pro aymetrická rozděleí a rozděleí výrazě vyšší špičatotí ež 3. V případě ormálího rozděleí však mají meší ílu ež tety T 1 at. 1,. 5 Párový tet (Párový t-tet rovoti tředích hodot dvou ouborů) 13
14 Párový tet Slouží k tetováí hody dvou tředích hodot pro závilé výběry tzv. párová data, apř.: Porováí metod pomocí aalýzy více ež vzorků. Srováí životích ákladů u těch amých oob v roce 005 a 006. Vliv léku a hladiu choleterolu před a po aplikaci u tejých (více ež ) pacietů. Statitické předpoklady: párové diferece (d i ) jou ezávilé ormálím rozděleím. 7 Párový tet Párový tet je v praxi obvykle formulová jako oboutraá alterativa : H:x=0; H:x 0 0 d 1 d t x d d kde x d je průměr a d je měrodatá odchylka párových diferecí. Vypočteé t rováváme kritickou hodotou Studetova rozděleí pro -1 tupňů voloti t krit (1-/; -1). Je-li t<t krit, platí H 0. Je-li t>t krit, platí H
15 Tet vylučováí odlehlých hodot Dea-Dixoův tet Za odlehlé považujeme výledky, které jou v érii paralelích měřeí zatížey hrubou chybou. Zkrelily by ám tatitické zpracováí dat a proto je muíme před aalýzou vyloučit. Dea-Dixoův tet je vhodý pro oubory do = 30. Výledky e eřadí podle velikoti a počítá e rozpětí R. x x R 1 Q1 a Q x Q 1 aq áledě rováme kritickou hodotou Q krit (, ). Je-li Q 1 ebo Q <Q krit, daé hodoty ejou odlehlé. Je-li Q 1 ebo Q >Q krit, daé hodoty jou odlehlé. x R
16 Grubbův tet Grubbův tet je vhodý pro oubory do = 100. Parametrický tet. Používáme parametry ouboru: průměr a měrodatou odchylku. 31 Grubbův tet Variata A Variata B Variata C T x x x x1 T1 x x1 TB Vypočteé T i rováme kritickou hodotou pro tupňů voloti T krit (, ).Je-liT i >T krit, daá hodota/ty je/jou odlehlé. Mezi tety vylučováí OB patří i tet modifikovaých vitřích hradeb! 3 16
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojního inženýrství. Matematika IV. Semestrální práce
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta troího ižeýrtví Matematika IV Semetrálí práce Zpracoval: Čílo zadáí: 7 Studií kupia: Datum: 8.4. 0 . Při kotrole akoti výrobků byla ledováa odchylka X [mm] eich rozměru
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDĚLENÍ PRAVDĚPODOBNOSTI Ča ke tudiu kapitoly: 60 miut Cíl: Po protudováí tohoto odtavce budete umět: charakterizovat další typy pojitých rozděleí: χ, Studetovo, Ficher- Sedocorovo -
Kapitola 3.: Úlohy o jednom náhodném výběru z normálního rozložení
Kapitola 3.: Úlohy o jedom áhodém výběru z ormálího rozložeí Cíl kapitoly Po protudováí této kapitoly budete - zát vlatoti pivotových tatitik odvozeých z áhodého výběru z ormálího rozložeí a budete je
BIOSTATISTIKY A ANALÝZ
Tety hypotéz - úvod Statitika v průzkumém tudiu Prováděí odhadů Tety hypotéz Cílová populace Závěr? Reprezetativot? Vzorek Závěr? Iterpretace POPIS Ověřeí Výledek OTÁZKY Elemetárí prvky tatitických tetů
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
Interval spolehlivosti pro podíl
Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této
,6 32, ,6 29,7 29,2 35,9 32,6 34,7 35,3
Př 7: S 95% polehlivotí odhaděte variabilitu (protředictvím odhadu měrodaté odchylky) a tředí hodotu obahu vitamíu C u rajčat. Záte-li výledky rozboru 0-ti vzorků rajčat: 3 4 5 6 7 8 9 0 9,6 3,4 30 3,6
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
stavební obzor 1 2/2014 11
tavebí obzor /04 Exploratorí aalýza výběrového ouboru dat pevoti drátobetou v tlau Ig. Daiel PIESZKA Ig. Iva KOLOŠ, Ph.D. doc. Ig. Karel KUBEČKA, Ph.D. VŠB-TU Otrava Faulta tavebí Věrohodé vyhodoceí experimetálích
Směrnice 1/2011 Statistické vyhodnocování dat, verze 3 Verze 3 je shodná s původní Směrnicí 1/2011 verze 2, za čl. 2.3 je vložen nový odstavec
Směrice /0 Statitické vyhodocováí dat, verze 3 Verze 3 e hodá ůvodí Směricí /0 verze, za čl..3 e vlože ový odtavec. Statitické metody ro zkoušeí zůobiloti Statitická aalýza oužívaá ro aalýzu výledků zkoušky
Odhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
Matematická statistika I přednášky
Statitika (004) - Kába, Svatošová Cvičeí ze tatitiky - Prášilová, Svatošová Matematická tatitika I předášky SAS (Statitical Aalyi Sytem) - tatitický oftware (v dalším emetru) Základí tatitické pojmy -
Statistické metody ve veřejné správě ŘEŠENÉ PŘÍKLADY
Statitické metody ve veřejé právě ŘEŠENÉ PŘÍKLADY Ig. Václav Friedrich, Ph.D. 2013 1 Kapitola 2 Popi tatitických dat 2.1 Tabulka obahuje rozděleí pracovíků podle platových tříd: TARIF PLAT POČET TARIF
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
Příklady z přednášek
Příklady z předášek. Normálí rozložeí a rozložeí z ěj odvozeá.7. Příklad: Výledky u přijímacích zkoušek a jitou VŠ jou ormálě rozložey parametry µ 550 bodů, σ 00 bodů. S jakou pravděpodobotí bude mít áhodě
Vztahy mezi základním souborem a výběry. Základní pojmy a symboly. K čemu to je dobré? Výběrové metody zkoumání
K čemu to je dobé? Obvyklým případem při zpacováí homadých jevů je, že máme poměě malý počet pozoováí ějaké veličiy a chceme učiit závěy o tom, co bychom obdželi, kdybychom měli pozoováí mohokát více.
14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
NEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá
Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická
Téma 4: Výběrová šetření
Výběrová šetřeí Téma : Výběrová šetřeí Předáška Výběrové charaktertky a jejch rozděleí Výzam a druhy výběrového šetřeí tattcké šetřeí úplé vyčerpávající eúplé výběrové výběrové šetřeí aha o to aby výběrový
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Přednáška VIII. Testování hypotéz o kvantitativních proměnných
Předáška VIII. Testováí hypotéz o kvatitativích proměých Úvodí pozámky Testy o parametrech rozděleí Testy o parametrech rozděleí Permutačí testy Opakováí hypotézy Co jsou to hypotézy a jak je staovujeme?
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
Testujeme hypotézu: proti alternativě. Jednoduché třídění:
Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Y,, Y je áhodý výběr z N(μ, σ ) Testujeme hypotézu: proti alterativě H : μ = μ = = μ H : e všechy středí hodoty μ,, μ jsou si rovy Jedoduché
Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním
Lekce Itervalový odhad Itervalový odhad je jedou ze stadardích statistických techik Cílem je sestrojit iterval (kofidečí iterval, iterval spolehlivosti, který s vysokou a avíc předem daou pravděpodobostí
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Odhad parametrů normálního rozdělení a testy hypotéz o těchto parametrech * Věty o výběru z normálního rozdělení
Odhad parametrů ormálího rozděleí a testy hypotéz o těchto parametrech * Věty o výběru z ormálího rozděleí Nechť, X, X je áhodý výběr z rozděleí N ( µ, ) X, Ozačme výběrový průměr a = X = i = X i i = (
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE KATED RA F YZIKY L A B O R A T O R N Í C V I Č E N Í Z F Y Z I K Y Jméo TUREČEK Daiel Datum měřeí 8.11.2006 Stud. rok 2006/2007 Ročík 2. Datum odevzdáí 15.11.2006 Stud.
8. Odhady parametrů rozdělení pravděpodobnosti
Pozámky k předmětu Aplikovaá statistika, 8 téma 8 Odhady parametrů rozděleí pravděpodobosti Zaměříme se a odhad středí hodoty a rozptylu a to dvěma způsoby Předpokládejme, že máme áhodý výběr X 1,, X z
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
Teorie chyb a vyrovnávací počet. Obsah:
Teorie chyb a vyrovávací počet Obsah: Testováí statistických hypotéz.... Ověřováí hypotézy o středí hodotě základího souboru s orálí rozděleí... 4. Ověřováí hypotézy o rozptylu v základí souboru s orálí
PRAVDĚPODOBNOST A STATISTIKA
SP Teováí hypoéz PRAVDĚPODOBNOST A STATISTIKA SP Teováí hypoéz Teováí hypoéz Nechť je áhodá proměá, kerá má diribučí fukci Fx, ϑ. Předpokládejme, že záme var diribučí fukce víme jaké má rozděleí a ezáme
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
1 Měření závislosti statistických znaků. 1.1 Dvourozměrný statistický soubor
1 Měřeí závlot tattckých zaků 1.1 Dvourozměrý tattcký oubor Př aalýze ekoomckých kutečotí á čato ezajímají jedotlvé velč jako takové, ale vztah mez m. Ptáme e, jak záví poptávka a ceě produktu, plat zamětaců
1. JEV JISTÝ a. je jev, který nikdy nenastane b. je jev, jehož pravděpodobnost = ½ c. je jev, jehož pravděpodobnost = 0 d.
ZÁPOČTOVÝ TEST. JEV JISTÝ a. je jev, který ikdy eastae b. je jev, jehož pravděpodobost ½ c. je jev, jehož pravděpodobost 0 d. je jev, jehož pravděpodobost e. je jev, který astae za jistých okolostí f.
veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou
1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Statistické charakteristiky (míry)
Stattcé charaterty (míry) - hrují formac, obažeou v datech (vyjadřují j v ocetrovaé formě); - charaterzují záladí ryy zoumaého ouboru dat; - umožňují porováváí více ouborů. upy tattcých charatert :. charaterty
Pravděpodobnostní model doby setrvání ministra školství ve funkci
Pravděpodobostí model doby setrváí miistra školství ve fukci Základí statistická iferece Data Zdro: http://www.msmt.cz/miisterstvo/miistri-skolstvi-od-roku-848. Ke statistickému zpracováí byla vzata pozorováí
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
Kapitola 6. : Neparametrické testy o mediánech
Kapitola 6 : Neparametrické testy o mediáech Cíl kapitoly Po prostudováí této kapitoly budete umět - provádět testy hypotéz o mediáu jedoho spojitého rozložeí - hodotit shodu dvou ezávislých áhodých výběrů
Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
a) Hypotézy o parametru jedné populace (o stední hodnot, mediánu, rozptylu, relativní
TESTOVÁNÍ HYPOTÉZ a ke tudu kaptoly: 8 mut Cíl Po protudováí tohoto odtavce budete: zát základí pojmy a prcpy tetováí hypotéz zát kocepc klackého tetu umt rozhodovat pomocí tého tetu výzamot umt pooudt
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Co je to statistika? Statistické hodnocení výsledků zkoušek. Úvod statistické myšlení. Úvod statistické myšlení. Popisná statistika
Co e to statistika? Statistické hodoceí výsledků zkoušek Petr Misák misak.p@fce.vutbr.cz Statistika e ako bikiy. Odhalí téměř vše, ale to edůležitěší ám zůstae skryto. (autor ezámý) Statistika uda e, má
vají statistické metody v biomedicíně
Statistika v biomedicísk ském m výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Proč se používaj vají statistické metody v biomedicíě Biomedicísk
vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví
Statistika v biomedicísk ském výzkumu a ve zdravotictví Prof. RNDr. Jaa Zvárov rová,, DrSc. EuroMISE Cetrum Ústav iformatiky AV ČR R v.v.i. Literatura Edice Biomedicísk ská statistika vydáva vaá a Uiverzitě
Směrnice 1/2011 Statistické vyhodnocování dat, verze 4 Verze 4 je shodná se Směrnicí 1/2011 verze 3, pouze byla rozšířena o robustní analýzu
Směrce /0 Stattcké vyhodocováí dat, verze 4 Verze 4 e hodá e Směrcí /0 verze 3, ouze byla rozšířea o robutí aalýzu. Stattcké metody ro zkoušeí zůoblot Cílem tattcké aalýzy výledků zkoušek ř zkouškách zůoblot
7 VYUŽITÍ METOD OPERAČNÍ ANALÝZY V TECHNOLOGII DOPRAVY
7 VYUŽITÍ METOD OERAČNÍ ANALÝZY V TECHNOLOGII DORAVY Operačí aalýza jao jeda z oblatí apliovaé matematiy achází vé široé uplatěí v průmylových a eoomicých apliacích. Jedím z oborů, ve teré hraje ezatupitelou
MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ
PŘÍSPĚVKY THE SCIENCE FOR POPULATION PROTECTION 0/008 MOŽNOSTI STATISTICKÉHO POSOUZENÍ KVANTITATIVNÍCH VÝSLEDKŮ POŽÁRNÍCH ZKOUŠEK PRO POTŘEBY CERTIFIKACE A POSUZOVÁNÍ SHODY VÝROBKŮ STATISTICAL ASSESSMENT
Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
Pevnost a životnost - Hru III 1. PEVNOST a ŽIVOTNOST. Hru III. Milan Růžička, Josef Jurenka, Zbyněk Hrubý.
evost a životost - Hr III EVNOT a ŽIVOTNOT Hr III Mila Růžička, Josef Jreka, Zbyěk Hrbý zbyek.hrby@fs.cvt.cz evost a životost - Hr III tatistické metody vyhodocováí dat evost a životost - Hr III 3 tatistické
PRAVDĚPODOBNOST A STATISTIKA
P NOV PRVDĚPODOBNOT TTTK Lbor Žák P NOV Lbor Žák Vícvýběrové tty - NOV NOV tty provádí pomocí aalýzy rozptylů NOV ouhré tty pro víc ěž dva výběry. NOV paramtrcká ttováí charaktrtk z zámých rozdělí pokud
Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).
STATISTIKA Statistické šetřeí Proveďte a vyhodoťte statistické šetřeí:. Zvolte si statistický soubor. 2. Zvolte si určitý zak (zaky), které budete vyhodocovat. 3. Určete absolutí a relativí četosti zaků,
17. Statistické hypotézy parametrické testy
7. Statistické hypotézy parametrické testy V této části se budeme zabývat statistickými hypotézami, pomocí vyšetřujeme jedotlivé parametry populace. K takovýmto šetřeím většiou využíváme ám již dobře zámé
Popisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
Zá k l a d y k v a n t i t a t i v n í g e n e t i k y
Virtuálí vět geetiky 1 Základy kvatitativí geetiky Zá k l a d y k v a t i t a t i v í g e e t i k y Doud byly základí geetické procey (přeo geetické iformace) ledováy a zacích a vlatotech dikrétími hodotami
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
Mendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
ZÁKLADY POPISNÉ STATISTIKY
ZÁKLADY POPISNÉ STATISTIKY Statitia věda o metodách běru, zpracováí a vyhodocováí tatiticých údaů. Statiticé údae ou apř. údae o přirozeém přírůtu či migraci obyvateltva, obemu výroby průmylových podiů,
12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
Přednášky část 7 Statistické metody vyhodnocování dat
DŽ ředášky část 7 tatistické metody vyhodocováí dat Mila Růžička mechaika.fs.cvt.cz mila.rzicka@fs.cvt.cz DŽ tatistické metody vyhodocováí dat Jak velké rozptyly lze očekávat mezi dosažeými pevostmi ebo
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
8 DALŠÍ SPOJITÁ ROZDLENÍ PRAVDPODOBNOSTI
8 DALŠÍ SPOJITÁ ROZDLENÍ PRAVDPODOBNOSTI a ke tudiu kapitoly: 30 iut Cíl: Po protudováí tohoto odtavce budete ut: charakterizovat další typy pojitých rozdleí:, Studetovo, Ficher- Sedocorovo - - Výklad:
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
6. Posloupnosti a jejich limity, řady
Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti
Předáška VI. Itervalové odhady Motivace Směrodatá odchylka a směrodatá chyba Cetrálí limití věta Itervaly spolehlivosti Opakováí estraé a MLE Jaký je pricip estraých odhadů? Jaký je pricip odhadů metodou
Zpracování a prezentace výsledků měření (KFY/ZPM)
Jihočká uivrzita Pdagogická fakulta katdra fyziky Zpracováí a prztac výldků měří (KFY/ZPM) tručý učbí tt Pavl Kříž Čké Budějovic 005 Úvod Přdmět Zpracováí a prztac výldků měří (ZPM) volě avazuj a přdmět
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
8.2.1 Aritmetická posloupnost I
8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu
Asynchronní motory Ing. Vítězslav Stýskala, Ph.D., únor 2006
8 ELEKTRCKÉ STROJE TOČVÉ říklad 8 Základí veličiy Určeo pro poluchače akalářkých tudijích programů FS Aychroí motory g Vítězlav Stýkala, hd, úor 006 Řešeé příklady 3 fázový aychroí motor kotvou akrátko
Dynamická pevnost a životnost Statistika
DŽ statistika Dyamická pevost a životost tatistika Mila Růžička, Josef Jreka, Zbyěk Hrbý mechaika.fs.cvt.cz zbyek.hrby@fs.cvt.cz DŽ statistika tatistické metody vyhodocováí dat DŽ statistika 3 tatistické
Aktivita 1 Seminář základů statistiky a workshop (Prof. Ing. Milan Palát, CSc., Ing. Kristina Somerlíková, Ph.D.)
Aktvta Semář základů tattky a workhop (Prof. Ig. Mla Palát, CSc., Ig. Krta Somerlíková, Ph.D.) Stattcké tříděí Základí metoda tattckého zpracováí. Sekupováí hodot proměé, které jou z hledka klafkačího
8. cvičení 4ST201-řešení
cvičící 8. cvičeí 4ST01-řešeí Obsah: Neparametricé testy Chí-vadrát test dobréshody Kotigečí tabuly Aalýza rozptylu (ANOVA) Vysoá šola eoomicá 1 VŠE urz 4ST01 Neparametricé testy Neparametricétesty využíváme,
Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika
Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f
Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem
Popisá statistika - zavedeí pojmů Popisá statistika - zavedeí pojmů Soubor idividuálích údajů o objektech azýváme základí soubor ebo také populace. Zkoumaé objekty jsou tzv. statistické jedotky a sledujeme