Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.
|
|
- Richard Malý
- před 8 lety
- Počet zobrazení:
Transkript
1 Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška Varačí rozpětí R = ma m = 85-5 = bod Kvatly % % % = = 7 = 7 bod
2 Sturgesovo pravdlo, podle kterého by měl být počet skup k přblžě k = +, log v ašem případě k = +, log =,8.. terval do 57. terval 58. terval 7 bod. terval terval terval 78 a více Iterval / Σ / do 57 0,0 0, ,09 0, ,70 0, , 0, ,7 0, a více 0,0,000 Σ Polygo kumulatvích absolutích četostí body Za výšku budeme tedy brát střed tervalu. U krajích tervalů uvažujeme, jako by škála pokračovala.
3 Artmetcký průměr = k = = 7,7 Použjeme vážeý artmetcký průměr také zaokrouhleý a jedu desetu = 7,7 cm. Rozptyl, směrodatá odchylka S S S = k ( ). ( ) 55 7,7 + 5 (0 7,7) + 7 (5 7,7) + (70 7,7) = + 8 (75 7,7) + (80 7,7) + =,8 = 5,777 body Směrodatá odchylka ukazuje, jakou výpovědí hodotu má artmetcký průměr. Je-l směrodatá odchylka velká, výpovědí hodota artmetckého průměru je malá a opačě. Mometové parametry jsou emprcké parametry, které vypočítáme z hodot statstckého zaku v ašem výběrovém souboru. Rozlšujeme: obecé momety, cetrálí momety ormovaé momety.
4 Obecé momety Doplěá tabulka: O O O O = = = = = = = = =,5 9, ,7 = = =,5 body Obecý momet prvího řádu O =,5 je vlastě artmetcký průměr vyjádřeý v prvcích škály ( až ). Jedoduše tuto hodotu převedeme a cetmetry. Střed tervalu je 5cm a ještě zbývá 0,55 délky dalšího tervalu (délka tervalu je 5cm), takže 5 + 0,5. 5cm = 7,7 cm. Vdíme, že je to ve shodě s předešlým výpočtem artmetckého průměru, který ám vyšel také = 7,7cm. Obecý momet prvího řádu O je parametrem polohy. Obecé momety slouží k výpočtu cetrálích mometů.
5 Cetrálí momety ( ) C = = O O = 0 ( ) ( ) ( ) C = = O O =,5 C = = O OO + O = 0,0 C = = O OO + OO O =,8 body Cetrálí momety jsou tedy počítáy vzhledem k cetrálí hodotě (artmetckému průměru). C je tedy vždy = 0. Cetrálí momet druhého řádu C je rozptyl a je parametrem šířky, C je směrodatá odchylka. V ašem příkladě C =,55. Pro vyjádřeí v cetmetrech tuto hodotu vyásobíme délkou tervalu S =,55. 5cm = 5,777cm. Což je ve shodě s předchozím výpočtem, kdy ám S vyšlo 5,78cm. Cetrálí momety třetího a čtvrtého řádu použjeme k výpočtu dalších emprckých parametrů. Normovaé momety Parametr škmost je ejčastěj určová pomocí ormovaého mometu. řádu a ese pak ázev koefcet škmost. N C = = C C 0,5 Je-l koefcet škmost kladý, pak prvky škály ležící vlevo od artmetckého průměru mají vyšší četost (kladě zeškmeé rozděleí četostí větší kocetrace meších prvků škály, meších hodot statstckého zaku) a opačě. 5
6 V ašem příkladě se jedá o mírě kladě zeškmeé rozděleí, to zameá, že v ašem souboru je více že meších, ež je průměrá výška = 7,7cm. Což s můžeme ověřt v tabulce. Parametr špčatost je ejčastěj určová pomocí ormovaého mometu. řádu a ese pak ázev koefcet špčatost. N C = =,77 C Špčatějšímu rozděleí četostí př daém rozptylu odpovídá vyšší hodota koefcetu špčatost ež rozděleí ploššímu. Používá se rověž velča eces, defovaá vztahem E = N = 0,8 Prametr eces srovává špčatost emprckého rozděleí se špčatostí zámého ormovaého ormálího rozděleí (vz. apříklad publkace Bílková, D. Budský, P. Voháka, V.: Pravděpodobost a statstka. Aleš Čeěk, Plzeň, 009. Podrobě se s ím sezámíme v dalším tématu). Je-l eces kladý, je emprcké rozděleí špčatější ež toto rozděleí. V ašem příkladu má soubor meší koefcet ež ormovaé ormálí rozděleí. v tervalu S ; + S leží 8% všech hodot a v tervalu S ; + S leží 95% všech hodot body
7 Nulová a alteratví hypotéza (vz především: Budský, P. et al. Základy ekoomcké statstky, Eupress, Praha 008, str.-, kde je také jý podobý příklad. Nulová hypotéza H 0 předpokládá, že ám studovaé emprcké rozděleí lze s praděpodobostí lepší ebo rovou ( - α ).00 % ahradt teoretckým rozděleím. Číslu α říkáme hlada výzamost. Alteratví hypotéza H a předpokládá, tuto áhradu elze provést. Neparametrcké testováí: Naše data podrobíme testu ormalty, tj. že aše výběrová data mohou být vybráa ze statstckého souboru odpovídajícího ormálímu (Gaussovu) rozděleí. Test provedeme a hladě výzamost α = 0,05. K tomuto testu použjeme tzv. umělé rozděleí (hodící se pouze pro testováí) (čt chí kvadrát). S ašm daty provedeme trasformac (substtuc) u =, S kde u je proměá ormovaého ormálího rozděleí s dstrbučí fukcí u Φ ( u) = e. π (Fukce Φ ( u) se ěkdy azývá Laplaceova fukce. V ěkterých tabulkách je ozačováa jako F ( u ).) Pomocí tabelovaých hodot Φ ( u) a použítím pravdla Φ( u) = - Φ ( u) vypočítáme pravděpodobost p odpovídající horím mezím tervalů ( ) ( ) p = Φ u Φ u Nyí můžeme vypočítat ep = ( p ) p ep epermetálí hodotu Teoretckou hodotu teor alezeme opět v jé tabulce a to v řádku v, v udává tzv. počet stupů volost v = k r, kde r je počet parametrů rozděleí, které testujeme (pro Gaussovo rozděleí r = ); tedy v =. Krtcký obor pro áš test je W v α ( ) ) = teor, ; +. 7
8 Pokud bude ep mmo krtcký obor, bude aše ulová hypotéza potvrzea a příslušé hladě výzamost. terval hor.mez u Φ ( u ) p p ( ) / p p Do 7-0,98 0, 0, 7,0 0, , 0,8 0,87,0, ,7 0,770 0,,8 0,58 7 a více 0,000 0,0 0,580 0,08 =,000 ep =, 807 α = 0,05 teor =,8 ep =,807,8; +. Epermetálí hodota statstckého krtera ep je mmo krtcký obor W, lze tedy přjmout ulovou hypotézu H 0 a tedy a hladě výzamost α = 0,05 lze aše data ahradt. body Parametrcké testováí se týká posuzováí vypočteých emprckých parametrů výběrových souborů. 8
Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.
Ilustratví příklad ke zkoušce z B_PS_A léto 0. Jsou dáa data výběrového souboru výšky že vz IS/ Učebí materály/ Témata 8, M. Kvaszová. č. výška č. výška 89 5 90 7 57 8 5 58 5 8 9 58 0 8 0 8 8 9 8 8 95
Mendelova univerzita v Brně Statistika projekt
Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4
Odhady parametrů základního. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt celou populac, provádíme
PRAVDĚPODOBNOST A STATISTIKA. Neparametrické testy hypotéz čast 2
SP3 Neparametrcké testy hypotéz PRAVDĚPODOBNOST A STATISTIKA Neparametrcké testy hypotéz čast Lbor Žák SP3 Neparametrcké testy hypotéz Lbor Žák Neparametrcké testy hypotéz - úvod Neparametrcké testy statstckých
Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.
Odhady parametrů základího souboru Ig. Mchal Dorda, Ph.D. Úvodí pozámky Základí soubor můžeme popsat jeho parametry, apř. středí hodota μ, rozptyl σ atd. Př praktckých úlohách ovšem zpravdla elze vyšetřt
Testování statistických hypotéz
Testováí statstckých hypotéz - Testováí hypotéz je postup, sloužící k ověřeí předpokladů o ZS (hypotéz a základě výběrových dat (tj. hodot z výběrového souboru. - ypotéza = určtý předpoklad o základím
Elementární zpracování statistického souboru
Elemetárí zpracováí statistického souboru Obsah kapitoly 4. Elemetárí statistické zpracováí - parametrizace vhodými empirickými parametry Studijí cíle Naučit se výsledky měřeí parametrizovat vhodými empirickými
PRAVDĚPODOBNOST A STATISTIKA
SP4 Přpomeutí pojmů PRAVDĚPODOBNOST A STATISTIKA SP4 Přpomeutí pojmů SP4 Přpomeutí pojmů Pravděpodobost Náhodý jev: - základí prostor - elemetárí áhodý jev A - áhodý jev, - emožý jev, jstý jev podjev opačý
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOT A TATITIKA Přpomeutí pojmů,, P m θ, R θ R - pravděpodobostí prostor - parametrcký prostor - parametrcká fukce,, T - áhodý vektor defovaý a pravděpodobostím prostoru,, P θ s hustotou f x,
12. N á h o d n ý v ý b ě r
12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých
Tento odhad má rozptyl ( ) σ 2 /, kde σ 2 je rozptyl souboru, ze kterého výběr pochází. Má-li každý prvek i. σ 2 ( i. ( i
: ometové míry polohy zahrují růzé druhy průměrů pomocí kterých můžeme charakterzovat cetrálí tedec dat ometové míry polohy jsou jedoduché číselé charakterstky které se vyčíslují ze všech prvků výběru
Deskriptivní statistika 1
Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky
Metody zkoumání závislosti numerických proměnných
Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy
a další charakteristikou je četnost výběrového souboru n.
Předáška č. 8 Testováí rozptylu, testy relatví četost, testy dobré shody, test ezávslost kvaltatvích zaků Testy rozptylu Testy se používají k ověřeí hypotézy o určté velkost rozptylu a k ověřeí vztahu
Test dobré shody se používá nejčastěji pro ověřování těchto hypotéz:
Ig. Marta Ltschmaová Statstka I., cvčeí 1 TESTOVÁNÍ NEPARAMETRICKÝCH HYPOTÉZ Dosud jsme se zabýval testováím parametrcký hypotéz, což jsou hypotézy o parametrech rozděleí (populace). Statstckým hypotézám
6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.
6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 4. KAPITOLA STATISTICKÉ CHARAKTERISTIKY 16.10.2017 23.10.2017 Přehled témat 1. Pravděpodobost (defiice, využití, výpočet pravděpodobostí
Přednáška č. 2 náhodné veličiny
Předáša č. áhodé velčy Pozámy záladím pojmům z počtu pravděpodobost Pozáma 1: Př výpočtu pravděpodobost áhodého jevu dle lascé defce je uté věovat pozorost způsobu formulace vybraého jevu. V ásledující
PRAVDĚPODOBNOST A STATISTIKA
Matematka IV PRAVDĚPODOBNOT A TATITIKA Lbor Žák Matematka IV Lbor Žák Regresí aalýza Regresí aalýza zkoumá závslost mez ezávslým proměým X ( X,, X k a závsle proměou Y. Tato závslost se vjadřuje ve tvaru
Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:
Odhady parametrů polohy a rozptýleí pro často se vyskytující rozděleí dat v laboratoři se vyčíslují podle ásledujících vztahů: a : Laplaceovo (oboustraé expoeciálí rozděleí se vyskytuje v případech, kdy
11. Popisná statistika
. Popsá statstka.. Pozámka: Př statstckém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákotost, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme statstcké jedotky. Př
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)
ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU) Základy teorie pravděpodobosti měřeí chyba měřeí Provádíme kvalifikovaý odhad áhodá systematická výsledek ejistota výsledku Základy teorie pravděpodobosti
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určté předpoklady (hypotézy) o základím souboru STATISTICKÁ HYPOTÉZA předpoklad (tvrzeí) o parametru G základího
Testy statistických hypotéz
Úvod Testy statstckých hypotéz Václav Adamec vadamec@medelu.cz Testováí: kvalfkovaá procedura vedoucí v zamítutí ebo ezamítutí ulové hypotézy v podmíkách ejstoty Testy jsou vázáy a rozděleí áhodých velč
Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu
Cvičeí 6: Výpočet středí hodoty a rozptylu, bodové a itervalové odhady středí hodoty a rozptylu Příklad 1: Postupě se zkouší spolehlivost čtyř přístrojů Další se zkouší je tehdy, když předchozí je spolehlivý
Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu
Cvičeí 6: Bodové a itervalové odhady středí hodoty, rozptylu a koeficietu korelace, test hypotézy o středí hodotě při zámém rozptylu Příklad : Bylo zkoumáo 9 vzorků půdy s růzým obsahem fosforu (veličia
Úvod do teorie měření
Uverzta Jaa Evagelsty Purkyě v Ústí ad Labem Přírodovědecká fakulta Úvod do teore měřeí Prof. Chlář emář 0 Průměr, rozptyl a směrodatá odchylka X = X = ( X X ) = = = Výpočty pomocí vzorců a pomocí statstckých
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 6. KAPITOLA CENTRÁLNÍ LIMITNÍ VĚTA 6.11.2017 Opakováí: Čebyševova erovost příklad Pravděpodobost vyrobeí zmetku je 0,5. Odhaděte pravděpodobost,
Nejistoty měření. Aritmetický průměr. Odhad směrodatné odchylky výběrového průměru = nejistota typu A
Nejstoty měřeí Pro každé přesé měřeí potřebujeme formac s jakou přesostí bylo měřeí provedeo. Nejstota měřeí vyjadřuje terval ve kterém se achází skutečá hodota měřeé velčy s určtou pravděpodobostí. Nejstota
Doc. Ing. Dagmar Blatná, CSc.
PRAVDĚPODOBNOST A STATISTIKA Doc. Ig. Dagmar Blatá, CSc. Statsta statstcé údaje o hromadých jevech čost, terá vede zísáí statstcých údajů a jejch zpracováí teore statsty - věda o stavu, vztazích a vývoj
Soustava momentů. k s. Je-li tedy ve vzorci obecného momentu s = 1, získáme vzorec aritmetického průměru.
Soutava mometů Momety (Obecé, cetrálí a ormovaé) Do ytému mometových charatert patří ty ejdůležtější artmetcý průměr (mometová míra úrově) a rozptyl (mometová úroveň varablty). Obecý momet -tého tupě:
Generování dvojrozměrných rozdělení pomocí copulí
Pravděpodobost a matematcká statstka eerováí dvojrozměrých rozděleí pomocí copulí umbelova copule PRAHA 005 Vpracoval: JAN ZÁRUBA OBSAH: CÍL PRÁCE TEORIE Metoda verzí trasformace O copulích Sklarova věta
Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.
ováí - Hru IV /6 ováí Hru IV Mila RůžR ůžička, Josef Jureka,, Zbyěk k Hrubý zbyek.hruby hruby@fs.cvut.cz ováí - Hru IV /6 ravděpodobostí úavové diagramy s uvažováím předpětí R - plocha ve čtyřrozměrém
PRAVDĚPODOBNOST A STATISTIKA. Bodové a intervalové odhady
SP Bodové a tervalové odhady PRAVDĚPODOBNOST A STATISTIKA Bodové a tervalové odhady Lbor Žák SP Bodové a tervalové odhady Lbor Žák Bodové a tervalové odhady Nechť je áhodá proměá, která má dstrbučí fukc
1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL
Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,
Odhady parametrů 1. Odhady parametrů
Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:
PRAVDĚPODOBNOST A STATISTIKA
SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje
Náhodný výběr 1. Náhodný výběr
Náhodý výběr 1 Náhodý výběr Matematická statistika poskytuje metody pro popis veliči áhodého charakteru pomocí jejich pozorovaých hodot, přesěji řečeo jde o určeí důležitých vlastostí rozděleí pravděpodobosti
- metody, kterými lze z napozorovaných hodnot NV získat co nejlepší odhady neznámých parametrů jejího rozdělení.
MATEMATICKÁ STATISTIKA - a základě výběrových dat uuzujeme a obecější kutečot, týkající e základího ouboru; provádíme zevšeobecňující (duktví) úudek - duktví uuzováí pomocí matematcko-tattckých metod je
TESTOVÁNÍ STATISTICKÝCH HYPOTÉZ
TESTOVÁNÍ STATISTICKÝC YPOTÉZ je postup, pomocí ěhož a základě áhodého výběru ověřujeme určité předpoklady (hypotézy) o základím souboru STATISTICKÁ YPOTÉZA předpoklad (tvrzeí) o parametru G základího
Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací
3. Náhodý výběr Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých realizací
Spolehlivost a diagnostika
Spolehlvost a dagostka Složté systémy a jejch spolehlvost: Co je spolehlvost? Vlv spolehlvost kompoetů systému Návrh systému z hledska spolehlvost Aplkace - žvotě důležté systémy - vojeské aplkace Teore
Odhady a testy hypotéz o regresních přímkách
Lekce 3 Odhad a tet hpotéz o regreích přímkách Ve druhé lekc jme kotruoval kofdečí terval a formuloval tet hpotéz o korelačím koefcetu Korelačí koefcet je metrckou charaktertkou tezt závlot, u které ezáleží
V. Normální rozdělení
V. Normálí rozděleí 1. Náhodá veličia X má ormovaé ormálí rozděleí N(0; 1). Určete: a) P (X < 1, 5); P (X > 0, 3); P ( 1, 135 < x ); P (X < 3X + ). c) číslo ε takové, že P ( X < ε) = 0,
[ jednotky ] Chyby měření
Chyby měřeí Provedeme-l určté měřeí za stejých podmíek vícekrát, jedotlvá měřeí se mohou odlšovat (z důvodu koečé rozlšovací schopost měř. přístrojů, áhodých vlvů apod.). Chyba měřeí: e = x x x...přesá
PRAVDĚPODOBNOST A STATISTIKA
SP esty dobré shody PRAVDĚPODOBNOS A SAISIKA Lbor Žá SP esty dobré shody Lbor Žá Přpomeutí - estováí hypotéz o rozděleí Ch-vadrát test Chí-vadrát testem terý e založe a tříděém statstcém souboru. SP esty
Pravděpodobnost a aplikovaná statistika
Pravděpodobost a aplikovaá statistika MGR. JANA SEKNIČKOVÁ, PH.D. 3. ÚKOL JB TEST 3. Úkol zadáí pro statistické testy U každého z ásledujících testů uveďte ázev (včetě autora), předpoklady použití, ulovou
4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností
4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.
Intervalové odhady parametrů některých rozdělení.
4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:
12. Neparametrické hypotézy
. Neparametrcké hypotézy V této část se budeme zabývat specálí částí teore statstckých hypotéz tzv. eparametrckým hypotézam ebo jak řečeo eparametrckým statstckým testy. Neparametrcké se azývají proto,
P2: Statistické zpracování dat
P: Statistické zpracováí dat Úvodem - Statistika: věda, zabývající se shromažďováím, tříděím a ásledým popisem velkých datových souborů. - Základem statistiky je teorie pravděpodobosti, založeá a popisu
Základy statistiky. Petr Kladivo
mm Základy statstky Petr Kladvo Uverzta Palackého v Olomouc Přírodovědecká fakulta Základy statstky Petr Kladvo Olomouc 03 Opoet: RNDr. Šárka Brychtová, Ph.D. RNDr. Mloš Fňukal, Ph.D. Mgr. Petr Zemáek,
odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.
10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé
Statistika - vícerozměrné metody
Statstka - vícerozměré metody Mgr. Mart Sebera, Ph.D. Katedra kezologe Masarykova uverzta Fakulta sportovích studí Bro 0 Obsah Obsah... Sezam obrázků... 4 Sezam tabulek... 4 Úvod... 6 Pojmy... 7 Náhodé
2. Náhodná veličina. je konečná nebo spočetná množina;
. Náhodá veličia Většia áhodých pokusů koaých v přírodích ebo společeských vědách má iterpretaci pomocí reálé hodoty. Při takovýchto dějích přiřazujeme tedy reálá čísla áhodým jevům. Proto je důležité
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE
ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta dopraví Statistika Semestrálí práce Zdražováí pohoých hmot Jméa: Martia Jelíková, Jakub Štoudek Studijí skupia: 2 37 Rok: 2012/2013 Obsah Úvod... 2 Použité
Momenty a momentové charakteristiky
Lekce 3 Momety a mometové charaktertky Pokud jme e v předešlém výkladu zmňoval o ěkteré tattcké charaktertce, zpravdla jme rověž uváděl, zda j řadíme mez více ebo méě důležté. A byly to právě artmetcký
S1P Popisná statistika. Popisná statistika. Libor Žák
SP Popsá statstka Popsá statstka Lbor Žák SP Popsá statstka Lbor Žák Základí zdroje : skrpta Mateatka IV - doc. RNDr. Z. Karpíšek, CSc. ateatka o le - http://athole.fe.vutbr.cz/ Základ ateatcké statstk
Statistická rozdělení
Úvod Statstcá rozděleí Václav Adamec vadamec@medelu.cz Náhodá proměá: matematcá velča, jejíž hodot osclují. Produt áhodého procesu lze charaterzovat fucí Hodot proměé v oboru přípustých hodot Rozděleí
VY_52_INOVACE_J 05 01
Název a adresa školy: Středí škola průmyslová a umělecká, Opava, příspěvková orgazace, Praskova 399/8, Opava, 74601 Název operačího programu: OP Vzděláváí pro kokureceschopost, oblast podpory 1.5 Regstračí
Úvod do korelační a regresní analýzy
Úvod do korelačí a regresí aalýz Bude ás zajímat, jak těsě spolu souvsí dva sledovaé jev Příklad: vztah mez rchlostí auta a brzdou dráhou vztah mez věkem žáka a rchlostí v běhu a 60 m vztah mez spotřebou
14. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky
Téma 6.: Základí pojmy matematické statistiky Vlastosti důležitých statistik odvozeých z jedorozměrého áhodého výběru: Nechť X,..., X je áhodý výběr z rozložeí se středí hodotou μ, rozptylem σ a distribučí
PRAVDĚPODOBNOST A STATISTIKA
PRAVDĚPODOBNOST A STATISTIKA Bodové a itervalové odhady Nechť X je áhodá proměá, která má distribučí fukci F(x, ϑ). Předpokládejme, že záme tvar distribučí fukce (víme jaké má rozděleí) a ezáme parametr
jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých
9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie
SP2 Korelační analýza. Korelační analýza. Libor Žák
Korelačí aalýza Přpomeutí pojmů áhodá proměá áhodý vetor áhodý vetor Náhodý výběr: pro áhodou proměou : pro áhodý vetor : pro áhodý vetor : Přpomeutí pojmů - ovarace Kovarace áhodých proměých ovaračí oefcet
Pravděpodobnostní modely
Pravděpodobostí modely Meu: QCEpert Pravděpodobostí modely Modul hledá metodou maimálí věrohodosti (MLE Maimum Likelihood Estimate) statistický model (rozděleí) který ejlépe popisuje data. Je přitom k
1 Popis statistických dat. 1.1 Popis nominálních a ordinálních znaků
1 Pops statstcých dat 1.1 Pops omálích a ordálích zaů K zobrazeí rozděleí hodot omálích ebo ordálích zaů lze použít tabulu ebo graf rozděleí četostí. Tuto formu zobrazeí lze dooce použít pro číselé zay,
4. B o d o v é o d h a d y p a r a m e t r ů
4. B o d o v é o d h a d y p a r a m e t r ů Na základě hodot áhodého výběru z rozděleí určitého typu odhadujeme parametry tohoto rozděleí, tak aby co ejlépe odpovídaly hodotám výběru. Formulujme tudíž
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC
5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém
14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou
4. Testováí statistických hypotéz Úvod Při práci s daty se mohdy spokojujeme s itervalovým či bodovým odhadem parametrů populace. V mohých případech se však uchylujeme k jiému postupu, většiou jde o případy,
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE. Dvouvýběrové parametrické a neparametrické testy
MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA BAKALÁŘSKÁ PRÁCE Dvouvýběrové parametrcké a eparametrcké testy Bro 5/6 Zuzaa Berá Prohlášeí Prohlašuj, že jsem tuto bakalářskou prác vypracovala samostatě za
, jsou naměřené a vypočtené hodnoty závisle
Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,
Testování statistických hypotéz
Testováí statstckých hyotéz Př statstckých šetřeích se často setkáváme s roblémy tohoto druhu () Máme zjstt, zda dva daé vzorky ocházejí z téhož ZS. () Máme rozhodout, zda rozdíly hodot růměrů (res. roztylů)
Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.
Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový
NEPARAMETRICKÉ METODY
NEPARAMETRICKÉ METODY Jsou to metody, dy předmětem testu hypotézy eí tvrzeí o hodotě parametru ějaého orétího rozděleí, ale ulová hypotéza je formulováa obecěji, apř. jao shoda rozděleí ebo ezávislost
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesné výchovy
UNIVERZITA JANA EVANGELISTY PURKYNĚ V ÚSTÍ NAD LABEM PEDAGOGICKÁ FAKULTA Katedra tělesé výchovy VYBRANÉ NEPARAMETRICKÉ STATISTICKÉ POSTUPY V ANTROPOMOTORICE Zdeěk Havel Davd Chlář 0 VYBRANÉ NEPARAMETRICKÉ
České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika
České vysoké učeí techické v Praze Fakulta dopraví Semestrálí práce Statistika Čekáí vlaku ve staicích a trase Klado Ostrovec Praha Masarykovo ádraží Zouzalová Barbora 2 35 Michálek Tomáš 2 35 sk. 2 35
Katedra pravděpodobnosti a matematické statistiky. χ 2 test nezávislosti
Katedra pravděpodobosti a matematické statistiky Oborový semiář χ 2 test ezávislosti Petr Míchal 27 listopadu 2017 Situace 2 X {1,, I}, Y {1,, J} Jsou X a Y ezávislé? K dispozici máme áhodý vyběr (X 1,
STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson
STATISTIKA Statistika se těší pochybému vyzameáí tím, že je ejvíce epochopeým vědím oborem. H. Leviso Charakterizace statistického souboru Statistický soubor Prvek souboru Zak prvku kvatitativí teplota,
Číselné charakteristiky náhodných veličin
Číselé charakteristiky áhodých veliči Motivace Doposud jsme pozali fukcioálí charakteristiky áhodých veliči (apř. distribučí fukce, pravděpodobostí fukce, hustota pravděpodobosti), které plě popisují pravděpodobostí
Metody statistické analýzy. doc. Ing. Dagmar Blatná, CSc.
Metody statstcké aalýzy doc. Ig. Dagmar Blatá, CSc. Bakoví sttut vysoká škola, a.s. Praha 0 METODY STATISTICKÉ ANALÝZY Autor: Recezet: Vydal: Tsk: Vydáí: doc. Ig. Dagmar Blatá, CSc. doc. Ig. Jří Trešl,
Národní informační středisko pro podporu jakosti
Národí iformačí středisko pro podpor jakosti Kozltačí středisko statistických metod při NIS-PJ Výpočet koeficietů reglačích diagramů pro obecé riziko Ig. Václav Chmelík, CSc Ústav strojíreské techologie,
BIVŠ. Pravděpodobnost a statistika
BIVŠ Pravděpodobost a statstka Úvod Skrpta Pravděpodobost a statstka jsou učebím tetem pro stejojmeý kurz magsterského studa Bakovího sttutu vysoké školy Kurzy Pravděpodobost a statstka a avazující kurz
Popisná statistika. Zdeněk Janák 9. prosince 2007
Popisá statistika Zdeěk Jaák jaak@physics.mui.cz 9. prosice 007 Výsledkem měřeí atmosférické extikce z pozorováí komet a observatoři Skalaté Pleso jsou tyto hodoty extikčích koeficietů ve vlové délce 46
Fakulta elektrotechniky a informatiky Statistika STATISTIKA
Fakulta elektrotechky a formatky TATITIKA. ZÁKLADNÍ OJMY. Náhodý pokus a áhodý jev NÁHODNÝ OKU proces realzace souboru podmíek kde výsledek emůžeme předem ovlvt. - výsledek áhodého pokusu. - jev, který
Obecné, centrální a normované momenty
Obecné, centrální a normované momenty Obsah kapitoly 4. Elementární statistické zpracování - parametrizace vhodnými empirickými parametry Studijní cíle Naučit se počítat centrální a normované momenty pomocí
Pravděpodobnost a statistika - absolutní minumum
Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky
8. Analýza rozptylu.
8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,
0,063 0,937 0,063 0, P 0,048 0,078 0,95. = funkce CONFIDENCE.NORM(2α; p(1 p)
. Příklad Při průzkumu trhu projevilo 63 z dotázaých zákazíků zájem o iovovaý výrobek, který má být uvede a trh se zákazíky. Odvoďte a odhaděte proceto a počet zájemců v populaci s 95% spolehlivostí. Následě
1.1 Rozdělení pravděpodobnosti dvousložkového náhodného vektoru
Lekce Normálí rozděleí v rově V této lekc se udeme věovat měřeí korelačí závslost dvojce áhodých velč (dvousložkového áhodého vektoru) Vcházet udeme z ormálího rozděleí pravděpodoost áhodého vektoru v
EKONOMETRIE 9. přednáška Zobecněný lineární regresní model
EKONOMETRIE 9. předáška Zobecěý lieárí regresí model Porušeí základích podmíek klasického modelu Metoda zobecěých emeších čtverců Jestliže sou porušey ěkteré podmíky klasického modelu. E(u),. E (uu`) σ
Statistika. Jednotlivé prvky této množiny se nazývají prvky statistického souboru (statistické jednotky).
Statstka. Základí pojmy Statstcký soubo - daá koečá, epázdá moža M předmětů pozoováí, majících jsté společé vlastost (událost, věc,.) Jedotlvé pvky této možy se azývají pvky statstckého soubou (statstcké
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT. Josef Tvrdík
UČEBNÍ TEXTY OSTRAVSKÉ UNIVERZITY Přírodovědecká fakulta ANALÝZA DAT (OPRAVENÁ VERZE 006) Josef Tvrdík OSTRAVSKÁ UNIVERZITA 00 Obsah: Úvod... 3 Programové prostředky pro statstcké výpočty... 4. Tabulkový
1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.
Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která
7 LIMITNÍ VĚTY. Čas ke studiu kapitoly: 70 minut. Cíl:
7 LIMITNÍ VĚTY Čas ke studu kaptoly: 70 mut Cíl: o prostudováí tohoto odstavce budete umět formulovat a používat lmtí věty aproxmovat já rozděleí rozděleím ormálím - 96 - Výklad: V této kaptole adefujeme
Intervalové odhady parametrů
Itervalové odhady parametrů Petr Pošík Části dokumetu jsou převzaty (i doslově) z Mirko Navara: Pravděpodobost a matematická statistika, https://cw.felk.cvut.cz/lib/ee/fetch.php/courses/a6m33ssl/pms_prit.pdf
VYSOCE PŘESNÉ METODY OBRÁBĚNÍ
VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,
8 NELINEÁRNÍ REGRESNÍ MODELY
8 NELINEÁRNÍ REGRESNÍ MODELY 8 Tvorba eleárího regresího modelu Postup tvorby eleárího regresího modelu se dá rozčlet do těchto kroků: Návrh regresího modelu Obvykle se jako eleárí regresí model používá
Iterační výpočty projekt č. 2
Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....