Z hlediska pružnosti a pevnosti si lze stav napjatosti

Podobné dokumenty
6.1 Shrnutí základních poznatků

Rovinná a prostorová napjatost

Obecný Hookeův zákon a rovinná napjatost

16. Matematický popis napjatosti

Pružnost a pevnost I

Ohyb nastává, jestliže v řezu jakožto vnitřní účinek působí ohybový moment, tj. dvojice sil ležící v rovině kolmé k rovině řezu.

ÚSTAV MECHANIKY A MATERIÁLŮ FD ČVUT. DOC. ING. MICHAL MICKA, CSc. PŘEDNÁŠKA 4

y Obrázek 1.26: Průměrová rovina válcové plochy

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

2.2 Mezní stav pružnosti Mezní stav deformační stability Mezní stav porušení Prvek tělesa a napětí v řezu... p03 3.

Přednáška 08. Obecná trojosá napjatost. Napětí statické rovnice Deformace geometrické rovnice Zobecněný Hookeův zákon Příklad zemní tlak v klidu

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Cvičení 1. Napjatost v bodě tělesa Hlavní napětí Mezní podmínky ve víceosé napjatosti

4. Napjatost v bodě tělesa

Analýza napjatosti PLASTICITA

Rovinná napjatost a Mohrova kružnice

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Přímková a rovinná soustava sil

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

7 Lineární elasticita

Zde je uveden abecední seznam důležitých pojmů interaktivního učebního textu

Statika 1. Vnitřní síly na prutech. Miroslav Vokáč 11. dubna ČVUT v Praze, Fakulta architektury. Statika 1. M.

Skořepinové konstrukce. tloušťka stěny h a, b, c

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Cvičení 7 (Matematická teorie pružnosti)

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

Moment síly výpočet

ÚVOD DO MODELOVÁNÍ V MECHANICE

Okruhy problémů k teoretické části zkoušky Téma 1: Základní pojmy Stavební statiky a soustavy sil

1.6 Singulární kvadriky

POŽADAVKY KE ZKOUŠCE Z PP I

7. CVIČENÍ. Sedmé cvičení bude vysvětlovat tuto problematiku:

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

Momenty setrvačnosti a deviační momenty

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Kap. 3 Makromechanika kompozitních materiálů

4. Statika základní pojmy a základy rovnováhy sil

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

Nejpoužívanější podmínky plasticity

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

( ) Podmínka plasticity: σ σ 0. Podmínky plasticity. Podmínky plasticity. Podmínky plasticity. = σ = σ. f σ σ σ

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

Kapitola 4. Tato kapitole se zabývá analýzou vnitřních sil na rovinných nosnících. Nejprve je provedena. Každý prut v rovině má 3 volnosti (kap.1).

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Průmyslová střední škola Letohrad. Ing. Soňa Chládková. Sbírka příkladů. ze stavební mechaniky

Předpoklady: konstrukce je idealizována jako soustava bodů a tuhých těles (v prostoru) nebo bodů a tuhých desek (v rovině) konstrukce je v rovnováze

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

Desky. Petr Kabele. Pružnost a pevnost 132PRPE Přednášky. Deska/stěna/skořepina, desky základní předpoklady, proměnné a rovnice

Kapitola 2. o a paprsek sil lze ztotožnit s osou x (obr.2.1). sil a velikost rovnou algebraickému součtu sil podle vztahu R = F i, (2.

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

Normálová napětí v prutech namáhaných na ohyb

Napěťový vektor 3d. Díky Wikipedia za obrázek. n n n

STAVEBNÍ STATIKA. Ing. Petr Konečný, Ph.D. LPH 407/3. tel

Nejpoužívanější podmínky plasticity

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost R. Halama/L. Adámková/F. Fojtík/K. Frydrýšek/M. Šofer/J. Rojíček/M. Fusek

Analytická geometrie v E 3 - kvadriky

Kapitola 8. prutu: rovnice paraboly z = k x 2 [m], k = z a x 2 a. [m 1 ], (8.1) = z b x 2 b. rovnice sklonu střednice prutu (tečna ke střednici)

1.1 Shrnutí základních poznatků

4.2. Graf funkce více proměnných

BETONOVÉ KONSTRUKCE B03C +B03K. Betonové konstrukce - B03C +B03K

Elementární plochy-základní pojmy

Osové a deviační momenty setrvačnosti ploch (opakování ze 4. cvičení) Momenty setrvačnosti k otočeným osám Kroucení kruhových a mezikruhových průřezů

1. Úvod do pružnosti a pevnosti

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

PRUŽNOST A PLASTICITA I

14. přednáška. Přímka

trubku o délce l. Prut (nebo trubka) bude namáhán kroutícím momentem M K [Nm]. Obrázek 1: Prut namáhaný kroutícím momentem.

11. VEKTOROVÁ ALGEBRA A ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Pružnost a pevnost R. Halama, L. Adámková, F. Fojtík, K. Frydrýšek, M. Šofer, J. Rojíček, M. Fusek

Téma 3 Úvod ke staticky neurčitým prutovým konstrukcím

BETONOVÉ KONSTRUKCE B03C +B03K SKOŘEPINOVÉ KONSTRUKCE. Betonové konstrukce B03C +B03K. Betonové konstrukce - B03C +B03K

Přímková a rovinná soustava sil

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

Obsah. 2 Moment síly Dvojice sil Rozklad sil 4. 6 Rovnováha 5. 7 Kinetická energie tuhého tělesa 6. 8 Jednoduché stroje 8

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Analytická metoda aneb Využití vektorů v geometrii

3.4.2 Rovnováha Rovnováha u centrální rovinné silové soustavy nastává v případě, že výsledná síla nahrazující soustavu je rovna nule. Tedy. Obr.17.

Přednáška 08. Obecná trojosá napjatost

Popis jednotlivých kvadrik

MECHANIKA PODZEMNÍCH KONSTRUKCÍ PODMÍNKY PLASTICITY A PORUŠENÍ

a počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:

Vícerozměrné úlohy pružnosti

Metoda konečných prvků Základní veličiny, rovnice a vztahy (výuková prezentace pro 1. ročník navazujícího studijního oboru Geotechnika)

IB112 Základy matematiky

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

7.1.2 Kartézské soustavy souřadnic II

7. Základní formulace lineární PP

ARST - Architektura a statika SKOŘEPINOVÉ KONSTRUKCE. ARST - Architektura a statika. ARST - Architektura a statika

7.1.2 Kartézské soustavy souřadnic II

FAKULTA STAVEBNÍ NELINEÁRNÍ MECHANIKA. Telefon: WWW:

2.5 Rovnováha rovinné soustavy sil

1.1 Steinerovy věty. lineární momenty a momenty kvadratické. Zajímat nás budou nyní osové kvadratické. v ohybu. Jejich definice je

PRŮŘEZOVÉ CHARAKTERISTIKY

8. Parametrické vyjádření a. Repetitorium z matematiky

Obr. 9.1 Kontakt pohyblivé části s povrchem. Tomuto meznímu stavu za klidu odpovídá maximální síla, která se nezývá adhezní síla,. , = (9.

Transkript:

S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 1 7/4.1 T Y P Y N A P J A T O S T I A T R A N S F O R M A C E N A P J A T O S T I Pojmem napjatost roumíme stav určitého bodu tělesa, který je podroben působení silových účinků. Všechna tělesa se pak pohledu pružnosti a pevnosti řeší a předpokladu statické rovnováhy. Z hlediska pružnosti a pevnosti si le stav napjatosti představit pomocí šesti složek napětí, které působí na bod tělesa. Schematické náornění všech šesti složek napětí, které působí v daném bodě (náorněném elementární krychlí), je na obráku. Složky napětí

část 7, díl 4, kapitola 1, str. 2 S T R O J N IC K Á P Ř ÍR U Č K A O Obráek náornûní sloïek napûtí: N or m á lov á napětí T e č ná napětí T ři těchto složek jsou normálová napětí, která působí ve směru normál k jednotlivým plochám elementu. O načují se, y a podle směrů os, s nimiž jsou rovnoběžné. D alší tři složky jsou smyková neboli tečná napětí, která působí ve směru tečen k jednotlivým plochám elementu. Značí se, y a podle směrů hran, ke kterým míří. Ponámky: 1) Povšimněte si eistence vždy dvojic smykových napětí, která směřují k téže hraně elementu. H ovoříme o tv. sdružených smykových napětích. 2) M atematicky le obecnou napjatost vyjádřit tenorem. J eho tvar je možné apsat pomocí symetrické matice 3 3: y T = y. y H lav ní napětí H lavní napětí (normálové) je kolmé k hlavní rovině. H lavní rovina je rovina, v níž neleží žádná složka smykového napětí. K aždá obecná napjatost má tři hlavní

S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 3 navájem kolmé roviny a tři hlavní napětí 1, 2 a 3, i když některá nich mohou být nulová. Velikosti hlavních napětí vypočítáme původního stavu napjatosti. N apjatost vtažená k novým osám, jištěná výpočtem, je definována trojicí hlavních napětí 1, 2 a 3 a tenor napětí má tvar: 1 0 T = 0 2 3 Podle počtu nenulových napětí v tenoru napětí rodělujeme napjatost na tři ákladní typy: jednoosou, dvojosou a trojosou. N ejjednodušším případem napjatosti je stav, kdy je poue jedno normálové napětí nenulové a všechna ostatní napětí jsou rovna nule. V tomto případě hovoříme o jednoosé napjatosti nebo někdy také o napjatosti přímkové, protože všechna napětí mají směr téže přímky. J ediné nenulové napětí je současně prvním hlavním napětím 1. O statní dvě hlavní napětí jsou rovna nule ( 2 = 3 = 0). T ento stav je přínačný pro jednoduché působy namáhání, jako jsou tah, resp. tlak, ohyb a případně jejich vájemné kombinace. Výsledný stav napjatosti je přímo vyjádřen jedinou hodnotou tahového, resp. tlakového napětí nebo ohybového napětí a v případě kombinace jejich součtem s ohledem na naménka. T e n or napětí T ypy napjatos ti J e d noos á napjatos t

část 7, díl 4, kapitola 1, str. 4 S T R O J N IC K Á P Ř ÍR U Č K A O Obráek pfiípad Û jed noosé napjatosti: y y y y D v ojos á napjatos t D alším možným případem je stav, kdy jsou nenulová dvě normálová napětí a případně ještě smykové napětí, jehož obě složky leží v téže rovině jako nenulová normálová napětí. V tomto případě hovoříme o dvojosé napjatosti nebo někdy také o napjatosti rovinné, protože všechny nenulové složky napětí leží v jedné rovině. Zvláštním stavem rovinné napjatosti může být případ, kdy je nenulová poue jedna dvojice sdružených smykových napětí a ostatní složky jsou nulové. Pak jde o stav čistého smyku a jeho rovinou je rovina, ve které leží obě složky sdružených smykových napětí. T ento stav je přínačný ejména při namáhání krutem, případně smykem (napjatost se naývá čistý smyk) a dále pro všechny kombinace těchto namáhání s jednoosou případně rovinnou napjatostí, jejichž rovina je shodná s rovinou sdružených smykových napětí. R ovinná napjatost je přínačná pro volné povrchy těles, kde je napětí ve směru vnější normály nulové.

S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 5 Obráek pfiípad Û d v ojosé napjatosti: O y y y y y y y J de o nejobecnější stav napjatosti v bodě tělesa, kdy mohou být nenulové všechny složky napětí působících na element nebo kdy nenulové složky neleží v jedné rovině. V takovém případě hovoříme o trojosé napjatosti nebo někdy také o napjatosti prostorové. T ato napjatost je naprosto obecná a nastává ve většině případů obecně namáhaných těles. Pro ískání hlavních napětí je třeba napjatost transformovat. Obráek trojosé napjatosti: T r ojos á napjatos t O J de prakticky o výpočet hlavních napětí adané napjatosti. T r ans for m ac e napjatos ti

část 7, díl 4, kapitola 1, str. 6 S T R O J N IC K Á P Ř ÍR U Č K A J e d noos á napjatos t D v ojos á napjatos t J ak již bylo řečeno dříve, jednoosou napjatost není třeba transformovat, protože výsledná složka je přímo použitelná pro pevnostní kontrolu: 1 =. T enor napětí má v tomto případě tvar: 1 T = 0 = 0. V případě dvojosé napjatosti definované poue dvojicí normálových napětí není transformace také třeba, protože tyto dvě složky jsou přímo hlavními napětími: 1 = a 2 = y. T enor napětí má v tomto případě tvar: 0 1 0 T = 0 y = 0 2. V případě dvojosé napjatosti definované smykovým napětím spolu se dvěma normálovými napětími ležícími v téže rovině (mohou mít i nulové hodnoty) je třeba pro ískání hlavních napětí provést transformaci takové napjatosti. T enor napětí má v tomto obecném případě rovinné napjatosti ležící v rovině -y tvar: 0 0 T =, y 0

S T R O J N IC K Á P Ř ÍR U Č K A část 7, díl 4, kapitola 1, str. 7 resp. pro rovinu y-: nebo pro rovinu -: 0 T = 0 y 0 0 y T = 0. y 0 T ransformaci složek napjatosti v rovině poprvé matematicky popsal M ohr, proto hovoříme o tv. M ohrově kružnici. Základní vtahy, které rovnice M ohrovy kružnice vyplývají, jsou pro výpočet hlavních napětí v rovině -y (je-li dáno, y a ): + y y 1,2 = ± 2 + 2, 2 2 resp. v rovině y- (je-li dáno y, a ): y + y 1,2 = ± 2 2 2 + 2 nebo v rovině - (je-li dáno, a y ): + 1,2 = ± 2 2 2 + y2. Pokud bude trojosá napjatost dána poue třemi nenulovými složkami normálových napětí (všechna smyková napětí jsou nulová), půjde přímo o trojici hlavních napětí: 1 =, 2 = y a 3 =. M oh r ov a kr u žnic e T r ojos á napjatos t

část 7, díl 4, kapitola 1, str. 8 S T R O J N IC K Á P Ř ÍR U Č K A T enor napětí má v tomto případě tvar: 0 1 0 T = 0 y = 0 2. 3 V případě obecné trojosé (prostorové) napjatosti je třeba k výpočtu hlavních napětí provést transformaci (pootočení) souřadnicového systému použitím vtahů odpovídajících transformaci tenoru napětí, který le apsat ve tvaru: y T = y. y I nv ar ianty te n or u napětí Vlastní výpočtový vtah má tvar kubické rovnice: 3 I 1 2 + I 2 I 3 = 0, kde členy I 1, I 2 a I 3 představují tv. invarianty tenoru napětí (při pootočení souřadnicového systému se nemění, jsou invariantní) a le je vyjádřit ve tvaru: I 1 = + y +, y y I2 = + + = y + + y 2 y2 2, y y y I 3 = y = y + 2 y 2 y y2 2. y T akto definovaná kubická rovnice má vždy tři reálné kořeny (některý může být násobný anebo některý nulový), které jsou třemi hlavními napětími 1, 2 a 3. Ponámka: T yto vtahy le použít i v případě dvojosé napjatosti, ale výpočet je bytečně dlouhavý.