PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují se velkými písmeny. Pro pravděpodobnost A) náhodného jevu A platí : P ( A) Jaká je pravděpodobnost, že při hodu kostkou padne liché číslo? n...kostkou může padnout celkem čísel n m...číslo liché,, m m n n - počet možných výsledků činnosti m - počet příznivých výsledků činnosti A) 0. V osudí je deset koulí čtyři bílé a šest červených. Jaká je pravděpodobnost, že při náhodném vytažení koulí budou všechny červené? 0 n. C (0) m. C () A) 0 V dodávce 0 osvětlovacích těles je 9 vadných. a) Jaká je pravděpodobnost, že náhodně vybrané těleso je vadné? b) Jaká je pravděpodobnost že ve vybrané skupině těles se nenalézá žádné vadné? 9 a) n 0 A) 0, 0 0 0 m 9
! 0 9 8 7 b) n C (0)!!!! A) 0,707 0 0!! 0! 0 9 8 7!! m C () Pravděpodobnost má tyto vlastnosti: ) pro nemožný jev platí: m 0 A) 0 ) pro jistý jev platí: n m n A) n ) Pro každý náhodný jev platí : 0 < A) < Úlohy: ) Z karetní hry o kartách vybereme náhodně karty. Jaká je pravděpodobnost, že mezi nimi bude král? [ 0, ] ) V osudí je 8 koulí bílých a červených. Vybereme náhodně koule. Jaká je pravděpodobnost, že nemají všechny stejnou barvu? ) V zásilce 0 rozhlasových přijímačů je 0% vadných. Vypočtěte pravděpodobnost, že při prodeji přijímačů jsou dva bez závad? Doplňkový jev : Jev A je doplňkovým jevem jevu A, jestliže nastane právě tehdy, když nenastane jev A. Platí : A ) - A) V osudí je deset koulí čtyři bílé a šest červených. Jaká je pravděpodobnost, že při náhodném vytažení koulí alespoň jedna bílá? Řešíme pomocí doplňkového jevu A : při náhodném vytažení koulí není žádná bílá 0 n. C (0) m. C ()!!!!!! A ) 0,07 0 0! 0! 0 9 8 7!!! A)- 0,07 0,9
Bernoulliovo schéma Máme n nezávislých pokusů, z nichž každý skončí buď zdarem s pravděpodobností p nebo nezdarem s pravděpodobností q. Pak pravděpodobnost jevu A k, že právě k pokusů skončí zdarem bude: A k ) n p k k q n k V osudí je 0 bílých a 0 černých koulí. Táhneme krát po jedné kouli a kouli znovu do osudí vrátíme. Jaká je pravděpodobnost, že vytáhneme právě krát bílou kouli? Máme pokusů n. Chceme vytáhnout bílých koulí. k Za zdar považujeme vytažení bílé koule P (A) 0 - pravděpodobnost vytažení bílé koule. p 0 0 Za nezdar považujeme vytažení černé koule P (B) - pravděpodobnost vytažení černé koule q 0 A ) 0, Jaká je pravděpodobnost, že rodina se dětmi má tři chlapce? n k Za zdar považujeme narození chlapce, jeho pravděpodobnost je p Za nezdar považujeme narození dívky, jeho pravděpodobnost je q A ) Jaká je pravděpodobnost, že rodina se dětmi má alespoň chlapce? Využijeme k řešení doplňkový jev: rodina nemá ani jednoho chlapce. Za zdar považujeme narození chlapce, jeho pravděpodobnost je p Za nezdar považujeme narození dívky, jeho pravděpodobnost je q n k 0 A0 ) 0 0
Pravděpodobnost narození alespoň chlapce je -. Studentovi je předložen test, který má 0 otázek a u každé možné odpovědi, z nichž jen je správná.. Jaká je pravděpodobnost, že student odpoví správně alespoň na otázek, volí-li odpovědi náhodně? n 0 pravděpodobnost správné odpovědi na otázku je p pravděpodobnost nesprávné odpovědi na otázku je q. Má správně odpovědět alespoň na otázek ( tj. na nebo nebo 7 nebo 8 nebo 9 nebo 0 ).. k,, 7, 8, 9, 0... 0 ) ( A P 8 7 0 8 0 7 0 0 0 ) A 0,078 0 0 9 0 0 0 9 Pravděpodobnost sjednocení jevů: Pravděpodobnost sjednocení dvou vzájemně neslučitelných jevů je rovna součtu pravděpodobností jednotlivých jevů. A B) A) B) Pravděpodobnost dvou slučitelných jevů A a B vypočteme ze vztahu: A B) A) B) - A B) (neslučitelných jevů jsou to jevy, které nemohou nastat zároveň:) Jaká je pravděpodobnost, že při hodu kostkou padne číslo nebo? Jevy jsou neslučitelné, nemůžeme hodit zároveň a. jev A - padne, jev B - padne A) B) A B) A) B) (slučitelných jevů jsou to jevy, které mohou nastat zároveň:) Určete pravděpodobnost, že náhodně zvolené dvojciferné číslo je dělitelné 0 nebo. Jev A - číslo je dělitelné 0 : n V (0) - 0 00-0 m 9 ( jsou to čísla 0, 0, 0, 0,..)
9 A) 0, Jev B - číslo je dělitelné : n m (, 0,, 0, 7, ) B) 0.07 Zde se jedná o navzájem slučitelné jevy, protože existuje číslo dělitelné 0 a zároveň Použijeme vzorec A B) A) B) - A B) Čísla dělitelná 0 a zároveň : 0,0, A B) 0 9 A B) A) B) - A B) Pravděpodobnost průniku dvou nezávislých jevů 0, Určete pravděpodobnost, že při hodech kostkou padne v prvním hodu a v druhém nepadne. jev A padne šestka v. hodu jev B nepadne šestka v. hodu Tyto jevy jsou nezávislé výsledek jednoho neovlivňuje druhý. A) B) Platí: A B) A) B) A B) Cvičení: ) V obchodě mají kusů nějakého zboží, z nichž kusy jsou vadné. Zákazník si vybere a koupí kusy.jaká je pravděpodobnost, že si vybral právě ty vadné? [ 0,00 ] ) Ve třídě je 0 chlapců a dívek. Losem jsou určeni mluvčí třídy. Jaká je pravděpodobnost, že obě pohlaví budou mít své zastoupení? [ ] ) Vsadíme jednu sázenku Sportky. Jaká je pravděpodobnost, že neuhádneme ani jedno číslo? [ 0, ] 7) Ve třídě je 8 dívek a chlapců. Pro dozor o přestávkách se losem určí žáci. Jaká je pravděpodobnost, že to budou dívky a chlapci? [ 0,79 ]
8) Ve třídě je 0 žáků, z nichž nemá vypracované domácí cvičení. V hodině budou vyvoláni žáci. Jaká je pravděpodobnost, že mezi nimi bude alespoň žák bez dom. cvičení? [ 0,8 ] 9) Ve třídě je žáků, z nichž 0 není připraveno. V hodině budou žáci zkoušeni. Jaká je pravděpodobnost, že alespoň z nich jsou připraveni? [ 0,77 ] 0) V tombole je 000 losů. Jakou pravděpodobnost hlavní výhry má účastník, který koupil losů? [ 0,00 ] ) Ve třídě je žáků: 0děvčat a chlapců. Vybereme namátkou pětici žáků. Jaká je pravděpodobnost, že vybereme jen děvčata? [ 0,078 ] ) Ve třídě je žáků: 0děvčat a chlapců. Vybereme namátkou pětici žáků. Jaká je pravděpodobnost, že vybereme děvčata a chlapce. [ 0,9 ] ) Ve třídě je žáků. Mají být zkoušeni žáci. Na zkoušku je připraveno žáků. Jaká je pravděpodobnost, že budou všichni nepřipraveni? [ 0,00 ] ) V osudí je kuliček černých a bílých. Jaká je pravděpodobnost, že pří náhodném výběru kuliček budou všechny černé? [ 0,000 ] ) V osudí je kuliček černých a bílých. Jaká je pravděpodobnost, že pří náhodném výběru kuliček budou bílé a černá? [ 0,9 ] ) Určete pravděpodobnost, že náhodně zvolené dvojciferné přirozené číslo je dělitelné čtyřmi nebo. 9 [ ] 7) Určete pravděpodobnost, že při dvou hodech kostkou padne v prvním hodu sudé číslo a v druhém liché. [ 0, ] 8) Určete pravděpodobnost, že při 0 hodech mincí padne desetkrát líc. [ 0 ]