ZÁKLADY ALGEBRY 2008/09. stanovsk@karlin.mff.cuni.cz

Podobné dokumenty
Věta o dělení polynomů se zbytkem

)(x 2 + 3x + 4),

Matematická analýza 1

Polynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Lineární algebra Kapitola 1 - Základní matematické pojmy

pochopení celé kapitoly je myšlenka, že těleso S lze považovat za vektorový prostor

MATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]

4 Počítání modulo polynom

Pomocný text. Polynomy

Úvod do informatiky. Miroslav Kolařík

Definujte Gaussovský obor. Vysvětlete, co přesně rozumíme jednoznačností rozkladu.

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

OBORY POLYNOMŮ. KVADRATICKÁ ROZŠÍŘENÍ Z. 1. Podílová tělesa

Učební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

ALGEBRA. Téma 4: Grupy, okruhy a pole

Pojem binární relace patří mezi nejzákladnější matematické pojmy. Binární relace

Základy teorie množin

Těleso racionálních funkcí

PŘEDNÁŠKA 5 Konjuktivně disjunktivní termy, konečné distributivní svazy

Diskrétní matematika 1. týden

PŘEDNÁŠKA 2 POSLOUPNOSTI

Kongruence na množině celých čísel

Množiny, relace, zobrazení

Matematická analýza pro informatiky I. Limita posloupnosti (I)

[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.

1 Mnohočleny a algebraické rovnice

Charakteristika tělesa

Nechť M je množina. Zobrazení z M M do M se nazývá (binární) operace

1 Mnohočleny a algebraické rovnice

Okruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a

Základy aritmetiky a algebry I

Maticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:

PŘEDNÁŠKA 7 Kongruence svazů

Operace s maticemi. 19. února 2018

2. Test 07/08 zimní semestr

0.1 Úvod do lineární algebry

Lineární algebra : Lineární prostor

Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech

15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.

Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.

Polynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

Báze a dimenze vektorových prostorů

Odpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.

1 Linearní prostory nad komplexními čísly

Matematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic

0.1 Úvod do lineární algebry

Generující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30

Lineární algebra : Polynomy

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

6 Lineární geometrie. 6.1 Lineární variety

Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí

Zavedení a vlastnosti reálných čísel

Nechť je číselná posloupnost. Pro všechna položme. Posloupnost nazýváme posloupnost částečných součtů řady.

Algebra 2 KMI/ALG2. Zpracováno podle přednášek prof. Jiřího Rachůnka a podle přednášek prof. Ivana Chajdy. slidy k přednáškám

Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA I, zimní semestr 2000/2001 Michal Marvan. 2.

1 Báze a dimenze vektorového prostoru 1

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

Cyklické kódy. Definujeme-li na F [x] n sčítání a násobení jako. a + b = π n (a + b) a b = π n (a b)

Vektorové podprostory, lineární nezávislost, báze, dimenze a souřadnice

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

Teoretická informatika Tomáš Foltýnek Teorie čísel Nekonečno

3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům

z = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.

Svazy. Jan Paseka. Masarykova univerzita Brno. Svazy p.1/37

Matice. a m1 a m2... a mn

10. Vektorové podprostory

Vysoké učení technické v Brně Fakulta informačních technologií. Regulární pologrupy. Semestrální práce do předmětu Algebra, Kombinatorika, Grafy

Co je to univerzální algebra?

Teorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.

Matematika III. Miroslava Dubcová, Daniel Turzík, Drahoslava Janovská. Ústav matematiky

[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).

Úvod do informatiky. Miroslav Kolařík

grupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa

1 Základní pojmy. 1.1 Množiny

1 Lineární prostory a podprostory

Aplikovaná matematika I, NMAF071

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

množinu definujeme axiomaticky: nesnažíme se ji zkonstruovat (dokonce se ani nezabýváme otázkou,

Bakalářská matematika I

Součin matice A a čísla α definujeme jako matici αa = (d ij ) typu m n, kde d ij = αa ij pro libovolné indexy i, j.

1 Polynomiální interpolace

1 Řešení soustav lineárních rovnic

Základy aritmetiky a algebry II

O dělitelnosti čísel celých

Základy teorie množin

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Úlohy k procvičování textu o svazech

Jak funguje asymetrické šifrování?

ANALYTICKÁ GEOMETRIE V ROVINĚ

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35

VI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku

PŘÍKLADY Z ALGEBRY.

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

8 Kořeny cyklických kódů, BCH-kódy

Matematická analýza pro informatiky I. Limita funkce

Transkript:

ZÁKLADY ALGEBRY 2008/09 DAVID STANOVSKÝ stanovsk@karlin.mff.cuni.cz Toto jsou provizorní skripta k úvodnímu kurzu obecné algebry, a to jak pro studenty učitelství a finanční matematiky(skripta obsah přednášky přesahují), tak pro studenty informační bezpečnosti. Mohou sloužit jako pomůcka k zápiskům z přednášky, těžko však lze čekat, že student látku pochopí pouze četbou tohoto textu. Sekce označené* nejsou nezbytně nutné k pochopení základů algebry, ale vhodně dokreslují probíranou problematiku, zpravidla ve dvou směrech: buď ukazují aplikace dokázaných výsledků(např. Lineární diferenční rovnice, Burnsideova věta, Konstrukce pravítkem a kružítkem), nebo prohlubují probíranou teorii(např. Klasifikace konečných abelovských grup a konečných těles). Vzniku tohoto textu výrazně napomohli studenti Anna Bernáthová, Andrew Kozlík a Ivan Štubňa, kteří pomohli přepisovat zápisky z přednášek do elektronické formy, za což jim jsme všichni vděčni. Poděkování patří i studentům, kteří mě upozornili na řadu drobných chyb. Date: 11. února 2009. 1

2 DAVID STANOVSKÝ Obrázek 1. Al-Chorezmí: Hisáb al-džabr wa-l-muqábala

ZÁKLADY ALGEBRY 2008/09 3 Úvod 1. Ekvivalence a uspořádané množiny Cíl. Připomeneme pojmy ekvivalence a uspořádání, které by měly být známy z úvodních matematických kurzů. Relací ρ na množině X rozumíme libovolnou podmnožinu kartézského součinu X X;tedyprvkyrelace ρjsouněkterédvojiceprvkůmnožiny X.Místo(a,b) ρ píšemečasto aρb,zejménapokudrelacioznačímesymbolemtypu, apod.na relace je užitečné nahlížet jako na orientované grafy. Definice. Relaci na množině X nazýváme ekvivalence, pokud je (1)reflexivní,tj. x xprovšechna x X, (2)tranzitivní,tj. x ya y zimplikuje x z, (3) asymetrická,tj. x yimplikuje y x. Blokem(nebo třídou) ekvivalence příslušnou prvku x X rozumíme množinu [x] = {y X: x y}. Prodaná x,yjsoupříslušnéblokybuďstejné(pokud x y),nebodisjunktní;tvoří tedy rozklad množiny X. Množinu všech bloků ekvivalence značíme X/, tj. X/ ={[x] : x X}. Naopak,každémudisjunktnímurozkladu X= B B Bpříslušíekvivalencedefinovanápředpisem x y x,yležívestejnémbloku. Příklad. Na množině přirozených čísel N zavedeme relaci definovanou předpisem a b a+bjesudéčíslo.jetoekvivalencesdvěmabloky:jedenblok je tvořen sudými čísly, druhý lichými. Na množině všech přímek v rovině zavedeme relaci definovanou předpisem p 1 p 2 přímky p 1 a p 2 jsourovnoběžné.blok[p] obsahujeprávě všechny přímky rovnoběžné s p. Na množině všech trojúhelníků v rovině zavedeme relaci definovanou předpisem T 1 T 2 trojúhelníky T 1 a T 2 jsoushodné.blok[t] obsahuje právě všechny trojúhelníky shodné s T. Na množině vrcholů daného grafu zavedeme relaci definovanou předpisem x y existujecestazxdo y.blokytétoekvivalencejsoukomponenty souvislosti daného grafu. Definice. Relaci na množině X nazýváme částečné uspořádání, pokud je (1)reflexivní,tj. x xprovšechna x X, (2)tranzitivní,tj. x ya y zimplikuje x z, (3) aantisymetrická,tj. x ya y ximplikuje x=y.

4 DAVID STANOVSKÝ Alternativně říkáme, že(x, ) je uspořádaná množina. Uspořádání se nazývá lineární,pokudnavícprokaždé x,ynastane x ynebo y x.intervalemrozumíme množinu [a,b]={x X: a x b}. Pokud x yax y,píšeme x < y. Příklad. Namnožiněpřirozenýchčíseluvažujmeobvykléuspořádání1 <2<3<...; uspořádaná množina(n, ) je lineární. Na množině přirozených čísel uvažujme uspořádání dělitelnosti, tj. a je menšínež bpokud a b ;uspořádanámnožina(n, )nenílineární:např. čísla 2, 3 jsou neporovnatelné. Na množině P(X) všech podmnožin dané množiny X uvažujme uspořádání inkluzí,tj. Ajemenšínež Bpokud A B ;je-li X >1,pakuspořádaná množina(p(x), ) není lineární: např. dvě různé jednoprvkové množiny jsou neporovnatelné. Konečné uspořádané množiny se často zadávají pomocí tzv. Hasseova diagramu. Jde o graf relace, přičemž nekreslíme smyčky(reflexivita), vynecháváme všechny hrany, jejichž existence je zaručena tranzitivitou, a místo šipek kreslíme neorientovanéhranytak,abyvětšíprvkybylyvýše.např. A= B= Definice. Řekneme,žeprvek a Xjev(X, ) Příklad. největší,pokudprokaždé b Xplatí b a; nejmenší,pokudprokaždé b Xplatí b a; maximální,pokudneexistuježádné b Xtakové,že b > a; minimální,pokudneexistuježádné b Xtakové,že b < a. Uspořádaná množina A má jeden největší prvek, jeden maximální(ten samý), žádný nejmenší a dva minimální prvky. Uspořádaná množina B má jeden největší(a zároveň maximální) a jeden nejmenší(a zároveň minimální) prvek. Je to lineární uspořádání. Uspořádaná množina(n, ) má nejmenší prvek 1, ale žádný maximální prvek. Uspořádaná množina(n, ) přirozených čísel s relací dělitelnosti má nejmenšíprvek1,aležádnýmaximálníprvek.uspořádanámnožina(n {1}, ) má za minimální prvky právě všechna prvočísla. Definice. Nechť Y X.Řekneme,žeprvek a Xjev(X, ) hornímezmnožiny Y,pokud a yprokaždýprvek y Y; supremum množiny Y,pokudtojenejmenšíhornímez Y;značíse a= sup Y. dolnímezmnožiny Y,pokud a yprokaždýprvek y Y; infimummnožiny Y,pokudtojenejvětšídolnímez Y;značíse a=inf Y.

ZÁKLADY ALGEBRY 2008/09 5 Jinými slovy, supremum množiny Y je nejmenší prvek množiny X, který je větší nežvšechnyprvky Y.Podobně,infimummnožiny Y jenejvětšíprvekmnožiny X, kterýjemenšínežvšechnyprvky Y. Příklad. V uspořádané množině A podmnožina sestávající z obou minimálních prvků nemá supremum ani infimum. Infimum proto, že nemá ani žádnou dolní mez.hornímezesicetatopodmnožinamátři,avšakžádnáznichnení nejmenší. V uspořádané množině B má každá neprázdná podmnožina supremum i infimum. Obecně, v každé lineárně uspořádané množině má každá neprázdná konečnápodmnožinasupremumiinfimum,přičemžsupy=max Y,inf Y= min Y.Pozor,pronekonečnétoobecněnefunguje:např.v(N, )neexistuje sup N. Vuspořádanémnožině(P(X), )mákaždápodmnožinainfimumisupremum,přičemžinf Y jerovnoprůnikuvšechmnožinzy asupy jerovno sjednocenívšechmnožinzy. Vuspořádanémnožině(N, )mákaždákonečnápodmnožinainfimumi supremum.přitominf YjerovnoNSDvšechčíselzYasupYjerovnoNSN všech čísel z Y. Na druhou stranu, např. sup{p: p prvočíslo} neexistuje. Uvědomtesi,žesup jerovnonejmenšímuprvku,pokudtakovýv(x, )existuje; podobně, inf je rovno největšímu prvku, pokud takový existuje. Definice. Svazem nazýváme každou uspořádanou množinu, ve které existují suprema a infima všech dvouprvkových podmnožin(pak také zřejmě existují suprema a infima všech neprázdných konečných podmnožin). Úplným svazem nazýváme každou uspořádanou množinu, ve které existují suprema a infima všech podmnožin. Ve svazu obvykle značíme zkráceně a b=sup{a,b} symboly, čtemejakospojeníaprůsek. a a b=inf{a,b}, Tedyvúplnémsvazuexistujenejmenšíinejvětšíprvek(sup ainf ). Příklad. Uspořádaná množina A není svaz. Lineárněuspořádánámnožinajevždysvaz: a b=max(a,b), a b= min(a,b).tedy(n, )jesvaz,aleneníúplný:např.sup Nneexistuje. (N { }, )jeúplnýsvaz. (P(X), )jeúplnýsvaz: A B= A B, A B= A B. (N, )je(neúplný)svaz: a b=nsn(a,b), a b=nsd(a,b). Definici úplného svazu lze zjednodušit: stačí předpokládat existenci buď suprem, nebo infim. Tvrzení 1.1. Uspořádaná množina, ve které existují infima všech podmnožin, je úplný svaz. Důkaz. Označme danou uspořádanou množinu(x, ). Stačí si uvědomit, že supy=inf{a X: a yprokaždé y Y }, tedy že suprema lze definovat pomocí infim.

6 DAVID STANOVSKÝ (Analogicky lze předpokládat pouze existenci suprem.) Na závěr úvodní kapitoly zformulujeme jedno pozorování o konečných množinách, které nijak nesouvisí s uspořádánými množinami, avšak bude se nám v budoucnu párkrát hodit. Lemma1.2.Buď f: X Yzobrazenímezistejněvelkýmikonečnýmimnožinami. Je-li f prosté, pak je bijektivní. Důkaz.Nechť n= X = Y.Každémuznprvkůmnožiny Xpřiřadí f nějakou hodnotu, přičemž tyto hodnoty jsou navzájem různé; obor hodnot zobrazení f tedy musímít nprvků.takžetomusíbýtcelé Y.

ZÁKLADY ALGEBRY 2008/09 7 Dělitelnost v oborech integrity 2. Elementární teorie čísel Cíl. Nejprve stručně nastíníme, jak se formálně definují přirozenáčísla,ahnedpotésepustímedozákladníchpoznatkůodělitelnosti: existence a jednoznačnost rozkladu na prvočísla(základní věta aritmetiky); Eukleidův algoritmus a Bézoutova rovnost; Čínská věta o zbytcích; Eulerova funkce a Eulerova věta. Naučíme se pracovat s šikovným značením pomocí kongruencí (mod n). 2.1. Přirozená čísla. Přirozenýmičíslyintuitivněrozumímemnožinu N={1,2,3,4,...}.Formálně vzato však tento zápis nedává valný smysl: nekonečnou množinu přece nemůžeme definovat výčtem prvků! V tomto odstavci nastíníme, jak lze přirozená čísla zavést formálně. Protože však u čtenáře nepředpokládáme žádnou znalost matematické logiky, nebudeme se pouštět do detailů a některé pojmy z logiky budeme používat bez dalšího vysvětlení na intuitivní úrovni. Z jistých důvodů se v logice zavádějí přirozená čísla i s nulou, čehož se v tomto odstavci přidržíme. Jeden ze způsobů, jak přirozená čísla zavést, je zformulovat sadu axiomů, z nichž se budou všechna tvrzení o přirozených číslech dokazovat. Standardním přístupem je tzv. Peanova axiomatika. Přirozená čísla s nulou zavedeme jako teorii, v níž máme konstantu 0, unární funkční symbol s a následující axiomy: (1) prokaždé aexistujeprávějedno btakové,že s(a)=b; (2) prokaždé aje s(a) 0; (3) prokaždé a bplatí s(a) s(b); (4) je-li V vlastnost taková že (a) 0mávlastnost V; (b)prokaždé aplatínásledující:jestližemá avlastnost V,pak s(a)má takévlastnost V; pakmákaždé avlastnost V. Interpretacesymbolu sjetaková,že číslu přiřadí čísloojednavětší.první třiaxiomyříkají,že sjeprostáfunkce,vjejímžoboruhodnotnení0.poslednímu axiomu se říká matematická indukce. Na základě těchto axiomů můžeme induktivně definovat standardní operace: sčítánípředpisy a+0=aaa+s(b)=s(a+b)(tj.umíme-lispočítat a+b,definujeme najehozákladě a+s(b)),násobenípředpisy a 0=0aa s(b)=a b+a,atd. Uspořádánídefinujemepředpisem a b c a+c=bapodobnělzepostupovat pro další známé pojmy a vlastnosti. Z Peanových axiomů lze logicky odvodit všechna tvrzení o přirozených číslech, na která si vzpomenete i když zpravidla nejde vůbec o jednoduchou práci(zkuste např. dokázat, že sčítání je komutativní!). Přesto má tato metoda své limity: slavná

8 DAVID STANOVSKÝ Gödelova věta o neúplnosti říká, že existují tvrzení, jež z těchto axiomů nelze dokázatanivyvrátit.aještěhůře:dokonceneexistuježádná hezká sadaaxiomů, která by tuto nepříjemnou vlastnost neměla. Naštěstí se ukazuje, že taková tvrzení jsou dosti obskurní, Gödelovou větou se tedy nemusíme příliš trápit. Druhým přístupem, který uvedeme, je vybudování modelu přirozených čísel(s nulou) v rámci nějaké dobře známé teorie, např. teorie množin. Standardním modelem v teorii množin jsou tzv. von Neumannova čísla, definovaná jako nejmenší množina ω splňující (1) ω; (2) jestliže A ω,pak A {A} ω. Tedy ω obsahuje postupně množiny, { }, {, { }}, {, { }, {, { }}},... Tímtozpůsobemmůžemedefinovatčíslovky0=,1={ },2={, { }}atd. Všimnětesi,ževtomtoznačeníje1={0},2={0,1},3={0,1,2},atd.Pokud iterpretujemesymbol sjako s(a)=a {A},provonNeumannovačíslabudou platit Peanovy axiomy. Na závěr stručně uvedeme, jak se formálně zavádějí ostatní číselné obory. Celá čísla lze definovat jako sjednocení čísel kladných, záporných a nuly, přičemž záporným číslem rozumíme formální zápis a, kde a je přirozené číslo; operace se definují zřejmým způsobem. Celá čísla s operacemi sčítání, odčítání a násobení tvoří strukturu, které se říká obor integrity. Racionální čísla se pak definují jako podílové těleso tohoto oboru(viz Tvrzení 8.1). Způsobů, jak formálně zavést čísla reálná je celá řada, jeden příklad za všechny: jde o tzv. zúplnění uspořádaného tělesa racionálních čísel doplníme suprema a infima všech omezených podmožin a pomocí limit na ně přeneseme operace(detaily konstrukce patří spíše do topologie). Na komplexní čísla pak lze nahlížet jako na algebraický uzávěr čísel reálných(viz Věta 26.4). 2.2. Základní věta aritmetiky. V tomto odstavci zopakujeme znalosti, které byste měli mít ze střední školy, přičemž doplníme některé důkazy. Tato fakta byla známa již starořeckým matematikům a v moderní podobě byly formulovány Carlem Friedrichem Gaussem v jeho slavné knize Disquisitiones Arithmeticae z roku 1801, která položila základ moderní teorie čísel. Čísly budeme nadále rozumět přirozená čísla. Jak známo, pro každou dvojici čísel a,bexistujeprávějednadvojicečísel q,r,kde r {0,...,b 1},splňujícívztah a=q b+r. Číslo qsenazýváceločíselnýpodíl čísel a,b,značíse adiv b,ačíslo rsenazývá zbytekpodělení,značíse amod b. Řekneme,žečíslo bdělí číslo a,píšeme b a,pokudexistuječíslo qsplňující a=b q(tj.pokudjezbytek r=0).prokaždé aplatí1 aaa a;titodělitelé se nazývají nevlastní. Číslo p 1, které má pouze nevlastní dělitele, se nazývá prvočíslo; ostatní čísla se nazývají složená. Zcela základním poznatkem teorie čísel je fakt, že každé číslo lze jednoznačně vyjádřit jako součin prvočísel. Věta 2.1 (Základní věta aritmetiky). Pro každé přirozené číslo a 1 existují různáprvočísla p 1,p 2,...,p n apřirozenáčísla k 1,k 2,...,k n splňující a=p k1 1 pk2 2... pkn n

ZÁKLADY ALGEBRY 2008/09 9 (tomuto vyjádření se říká prvočíselný rozklad). Tento zápis je jednoznačný až na pořadí činitelů. Přiznejmesivšaknatomtomístě:kdoznásumítakovou samozřejmost,jakou je existence a jednoznačnost prvočíselného rozkladu, dokázat? Tedy existenci rozkladu lze dokázat poměrně snadno indukcí: je-li a prvočíslo, rozklad zřejmě existuje; budeme tedy předpokládat, že a je složené a že rozklad existujeprovšechnamenšíčísla.napíšeme a=b cpronějaká1 < b,c < a.podle indukčního předpokladu existuje prvočíselný rozklad jak pro b, tak pro c. Jejich složením získáme rozklad čísla a. S jednoznačností je to však složitější. Největšíspolečnýdělitel čísel aabjenejvětšíčíslo csplňujícízároveň c aa c b.totočísloznačímensd(a,b);všimnětesi,žejdeoinfimummnožiny {a,b} vesvazu(n, ).Podobně,nejmenšíspolečnýnásobekčísel aabjenejmenšíčíslo c splňujícízároveň a cab c.totočísloznačímensn(a,b)ajdeosupremumv tomto svazu. Zřejmě a b NSN(a,b)= NSD(a,b). Na výpočet NSD používáme známý Eukleidův algoritmus, kterému se budeme blíže věnovat v sekci o Eukleidovských oborech(viz Sekce 6). Ten funguje následujícím způsobem: začneme s danými dvěma čísly a budujeme posloupnost tak, že vždy vezmeme zbytek po dělení předposledního čísla posledním. Odpovědí je poslední nenulová hodnota. Např. pro NSD(168, 396) dostáváme posloupnost 396, 168, 60,48,12,0,atedyNSD(168,396)=12.Správnostalgoritmuplyneznásledujícího pozorování: Lemma 2.2. Pro libovolná přirozená čísla a, b platí Důkaz. Zopakujme, že NSD(a,b)=NSD(amod b,b). a=b (adiv b)+(amod b). Tedydanéčíslo cdělíoběčísla a,bprávětehdy,když cdělíoběčísla amod b,b. Protože tyto dvě dvojice mají stejné společné dělitele, mají stejného i toho největšího. Pomocí Eukleidova algoritmu lze dokázat také následující větu: Věta 2.3(Bézoutova rovnost). Pro každou dvojici přirozených čísel a, b existují celá čísla u, v splňující NSD(a,b)=u a+v b. Formální důkaz této věty provedeme v obecnějším prostředí pro Eukleidovské obory, viz Věta 6.1. Princip je však snadný: zbytek po dělení lze vyjádřit jako lineárníkombinaceoboudělenýchčísel,neboť amod b=1 a (adiv b) b,atedy ve vznikající posloupnosti budou samé lineární kombinace původních čísel. Vše je dobře vidět z následujícího příkladu: Příklad.ProNSD(168,396)dostávámeposloupnost396=1 396+0 168,168= 0 396+1 168,60 = 396 2 168,48 = 168 2 60 = 2 396+5 168, 12=60 48=3 396 7 168.TedyNSD(168,396)=3 396 7 168.

10 DAVID STANOVSKÝ Druhou možností jak počítat NSD je pomocí(jednoznačných) prvočíselných rozkladů:protože168=2 3 3 7a396=2 2 3 2 11,mámeNSD(168,396)=2 2 3=12. Problém je, že kdybychom neměli jednoznačnost rozkladů, kdyby se např. číslo 396 rozkládalo na součin úplně jiných prvočísel než 2, 3, 11, dostali bychom z jiného rozkladu jiný NSD, což je absurdní. Tím se dostáváme zpět k původní úloze, totiž k důkazu Základní věty aritmetiky. Jeho důsledkem je, že uvedená metoda výpočtu NSD funguje.(skutečným protipříkladem na tuto metodu je např. následující situacevoboru Z[ 5]:4=2 2=( 5 1)( 5+1).Zprvníhorozkladubychom vydedukovalinsd(2,4)=2,zdruhéhonsd(2,4)=1.detailyvizsekce7.) Pomocí Bézoutovy rovnosti dokážeme jedno pomocné tvrzeníčko.(opět, kdybychom měli v ruce jednoznačnost prvočíselných rozkladů, bylo by tvrzení očividné.) Lemma2.4. Buď pprvočísloaa,b N.Platí-li p a b,pak p anebo p b. Důkaz.Předpokládejme,že p a.paknsd(a,p)=1,protožeje pprvočíslo,atedy podlevěty2.3existujíčísla u,vsplňující au+pv=1.vynásobenímoboustran rovnostičíslem bdostaneme abu+pvb=b.jelikož pdělíobasčítancenalevéstraně, dělíib. Indukcí snadno odvodíme následující důsledek: Lemma2.5. Buď pprvočísloaa 1,...,a n N.Platí-li p a 1... a n,pak p a i pro alespoň jedno i. Nyní můžeme přistoupit k důkazu jednoznačnosti prvočíselných rozkladů. Buď a nejmenší číslo s nejednoznačným provčíselným rozkladem a uvažujme dva různé rozklady a=p k1 1... pkm m = q l1 1... qln n. Protože p 1 a=q l1 1... qln n,musíexistovat itakové,že p 1 q i.ovšem q i jeprvočíslo, tedy p 1 = q i.pakaleuvažujmečíslo b= a p 1 :tomátakédvarůznérozklady b=p k1 1 1 p k2 2... pkm m = q l1 1... qli 1 i... qn kn, alepřitom b < a,cožjesporsminimalitou a.věta2.1jedokázána. Důsledek 2.6. Existuje nekonečně mnoho prvočísel. Důkaz.Prosporpředpokládejme,žejichjejenkonečněmnohoaže p 1,...,p n je jejichseznam.uvažujmečíslo p 1 p 2... p n +1:tonenídělitelnéanijednímz prvočísel, přitom musí mít nějaký prvočíselný rozklad. Spor. 2.3. Kongruence. Zápis pomocí kongruencí, zavedený Gaussem ve zmiňované knize Disquisitiones Arithmeticae(1801), značně usnadňuje počítání modulo dané číslo. Definice. Pokud aabdávajístejnýzbytekpodělení m,tj.pokud m a b, budeme psát a b (mod m) (čteme ajekongruentnísbmodulo m). Uvědomtesi,žerelace býtikongruentnímodulo m jeekvivalence:jereflexivní, tj. a a(mod m),protože m a a;jesymetrická,protože m a b m b a;

ZÁKLADY ALGEBRY 2008/09 11 a je tranzitivní, protože a b (mod m) m a b b c (mod m) m b c } m (a b)+(b c)=a c. Tedy znaménko kongruence je možné používat podobně jako rovnítko. Ukážeme si to na krátkém výpočtu(řešení je očividné, ale pro ilustraci jej podrobně rozepíšeme). Úloha. Spočtěte77 333 +12 333 mod6. Řešení. Protože12 0,7 1a11 1(mod6),můžemepsát 77 333 +12 333 77 333 +0 333 =77 333 =7 333 11 333 1 333 ( 1) 333 = 1 (mod6). Výsledek je tedy 5. Při výpočtu jsme použili několik jednoduchých vlastností kongruencí, které nyní zformulujeme a dokážeme. Tvrzení2.7. Nechť a b(mod m)ac d(mod m).pakplatí a+c b+d (mod m), a c b d (mod m), a c b d (mod m) aprokaždépřirozené kplatí a k b k (mod m). Důkaz.Podlepředpokladu m a bam c d.tedy m (a b)+(c d)= (a+c) (b+d)apodobněprooperaci.dále m (a b) cam (c d) b, atedy m (a b) c+(c d) b=ac bd.poslednítvrzenísesnadnodokážez předchozíhovzorceindukcí: a 2 = a a b b=b 2 (mod m), a 3 = a 2 a b 2 b=b 3 (mod m) atd. V kongruenci smíme krátit číslem, které je nesoudělné s modulem m. Naopak, jsou-li všechna tři čísla v kongruenci soudělná, celý výraz můžeme zjednodušit tím, že společný faktor vykrátíme na obou stranách i v modulu. Formálně tyto vlastnosti vyjadřuje následující tvrzení. Tvrzení2.8. Prokaždá a,b,c,mplatí (1) a b(mod m) ca cb(mod cm); (2)jsou-li c,mnesoudělná,pak a b(mod m) ca cb(mod m). Důkaz.(1)Tvrzeníříká,že m a b cm ca cb=c(a b),cožjezřejmé. (2)Protože m ca cb=c(a b)ačísla c,mjsounesoudělná,musíplatit m a b.opačnáimplikaceplyneztvrzení2.7. Úloha. Najdětevšechna xsplňujícía)6x 9(mod21),b)10x 5(mod21). Řešení. a) Užitím Tvrzení 2.8(1) dostaneme ekvivalentní podmínku 2x 3(mod 7), kterámáočividněřešení x=5+7k, k Z. b) Užitím Tvrzení 2.8(2) dostaneme ekvivalentní podmínku 2x 1(mod 21), kterámáočividněřešení x=11+21k, k Z.

12 DAVID STANOVSKÝ 2.4. Eulerova věta. Pro motivaci připomeňme úlohu uvedenou za definicí kongruence: řešení bylo snadnépředevšímproto,že12 0a77 1,přičemžtatočíslasesnadnomocní. Zamyslete se nad následující úlohou. Úloha. Zjistěteposlednícifručísla77 333. Řešení. Jinýmislovy,spočtěte77 333 mod10.můžemepsát77 333 7 333 (mod10). Nemáme-li však k dispozici lepší teorii, nezbývá, než zkoušet mocnit sedmičku. Záhy sivšimneme,žeseposlednícifryopakujísperiodou4,aprotože333mod4=1, dostáváme7 333 7 1 =7(mod10). To, že zbytky modulo dané číslo vykazují periodu jako v předchozí úloze, není náhoda, nýbrž pravidlo, které se nazývá Eulerova věta. Délku periody udává tzv. Eulerova funkce. Definice.Eulerovafunkce ϕ(n)značípro n >1početčíselvintervalu1,...,n 1 nesoudělných s číslem n. Např. ϕ(10) = 4,neboťsdesítkounesoudělnájsouprávěčísla1,3,7,9.Pro libovolné prvočíslo p platí ϕ(p) = p 1, protože nesoudělná jsou s ním právě všechna menší čísla. Výpočet Eulerovy funkce pouze z definice by byl pro větší než malá čísla poněkud pracný. Naštěstí existuje vzorec, pomocí něhož je snadné spočítat hodnotu ϕ(n), pokud známe prvočíselný rozklad čísla n. Tvrzení2.9. Je-li n=p k1 1... pkm m prvočíselný rozklad čísla n > 1, pak ϕ(n)=p k1 1 1 (p 1 1)... pm km 1 (p m 1). Příklad. ϕ(4056)=ϕ(2 3 3 1 13 2 )=2 2 1 3 0 2 13 1 12=1248. Důkaz správnosti vzorce není úplně jednoduchý, necháme si jej na později. Teď se podíváme na samotnou Eulerovu větu. Věta 2.10(Eulerova věta). Jsou-li čísla a, m nesoudělná, pak a ϕ(m) 1 (mod m). K důkazu se nám bude hodit jedno pomocné lemma. Označme m = {k {1,...,m 1}:NSD(k,m)=1}. Eulerovufunkcipakmůžemezapsatjako ϕ(m)= m. Lemma2.11. Buď a,mnesoudělnáčíslaadefinujme Pakjezobrazení f a bijekce. f a : m m x axmod m. Důkaz.Předněvznikáotázka:jevůbec axmod mvždyprvek m?ovšemžeano: jsou-lioběčísla a, xnesoudělnásm,pakjesmnesoudělnéičíslo axatudížpodle Lemmatu2.2také axmod m. Dokážeme,žezobrazení f a jebijekce.protožejdeozobrazenínakonečnémnožině,stačídíkylemmatu1.2ověřitprostost.uvažujmetedy x,y m taková,že f a (x)=f a (y),tj. ax ay(mod m).podletvrzení2.8je x y(mod m),tedy xi ydávajístejnýzbytekpodělení m.ovšemoběčíslajsoumenšínež m,takžemusí být stejná.

ZÁKLADY ALGEBRY 2008/09 13 DůkazEulerovyvěty.Uvažujmenásledujícívýpočet,kde f a jezobrazenídefinované v předchozím lemmatu: b = f a (b) = abmod m ab = a ϕ(m) (mod m). b m b m b m b m b m b První rovnost platí díky tomu, že v obou případech násobíme přes všechny prvky množiny m,pouzevrůznémpořadí.označíme-li c= b m b, právě jsme dokázali, že c = a ϕ(m) c (mod m). Číslo cjenesoudělnésm(protožejesoučinemčíselnesoudělnýchsm),takžejím můžemepodletvrzení2.8krátitadostáváme1 a ϕ(m) (mod m). Leonhard Euler publikoval tuto větu v roce 1736. Speciální případ pro m prvočíslo bývá připisován Pierre de Fermatovi(objevuje se v jednom z jeho dopisů z roku 1640), a někdy se nazývá Malá Fermatova věta. Důsledek2.12(MaláFermatovavěta). Je-li pprvočísloap a,pak a p 1 1 (mod p). Úloha. Zjistěteposlednícifručísla77 333. Řešení. PoužijemeEulerovuvětu:protože ϕ(10)=4ansd(77,10)=1,platí 77 333 7 333 =7 4 83+1 (7 4 ) 83 7 1 1 83 7 = 7 (mod10). (Z didaktických důvodů jsme vše detailně rozepsali, v praxi samozřejmě provedete většinuúvahzpamětiabudetepsátrovnou7 333 7 1 =7.) Úloha. Spočtěte8 76 mod21. Řešení. OpětpoužijemeEulerovuvětu:protože ϕ(21)=12ansd(8,21)=1,stačí zjistitzbytekpodělení7 6 číslem12.tedyřešímeúlohu7 6 mod12aještějednou použijemeeulerovuvětu:protože ϕ(12)=4ansd(7,12)=1,stačízjistitzbytek poděleníexponentu6číslem4,cožje2.tedy7 6 7 2 =49 1(mod12)a 8 76 8 1 =8(mod21). Úloha. Řešte x 6 + x+xy 1(mod7) Řešení. Pokud7 x,pak7dělílevoustranu,atedy x 6 +x+xynedávázbytek1po dělení 7. Takže budeme předpokládat, že 7 nedělí x a použijeme malou Fermatovu větu,kteráříká,že x 6 1(mod7).Zadanárovnicejetakekvivalentnírovnici 1+x+xy 1(mod7),tj.7 x(y+1).protožepředpokládáme,že7 x,musí7 dělit y+1,tj. y 1(mod7).Řešenímjetedymnožina { (x,y):7 x, y 1 (mod7) }. Poznámka. Podle Lemmatu 2.11 pro každé a nesoudělné s m existuje právě jedno b {1,...,m 1}takové,že ab 1(mod m).toto blzepodleeulerovyvětyspočítatjako b=a ϕ(m) 1.Jiný,efektivnější,postupdáváEukleidůvalgoritmus:pokud zjistíme Bézoutovy koeficienty 1 = NSD(a, m) = ua+vm, odpovědí je očividně číslo

14 DAVID STANOVSKÝ u mod m. Toto pozorování nachází aplikaci např. při výpočtu inverzních prvků v tělese Z p,vizkapitolaotělesech. 2.5. Čínská věta o zbytcích. Čínská věta o zbytcích hovoří o řešeních soustav lineárních kongruencí. Byla známa již starověkým Číňanům(je uvedena v knize matematika Sun-c ze 4. století) aoněcomálopozdějiivestaréindii. Věta2.13(Čínskávětaozbytcích). Nechť m 1,...,m n jsoupodvounesoudělná přirozenáčísla,označme M= m 1... m n.pakprolibovolnáceláčísla u 1,...,u n existujeprávějedno x {0,...,M 1},kteréřešísoustavukongruencí x u 1 (mod m 1 ),..., x u n (mod m n ). Důkaz. Nejprve dokážeme jednoznačnost řešení. Předpokládejme, že soustava má dvěřešení x,y {0,...,M 1},tj.prokaždé iplatí Pakprokaždé i x y u i (mod m i ). m i x y aprotožejsoučísla m i navzájemnesoudělná,dostáváme M= m 1... m n x y. Ovšem x y < M(protože x,yvolímezintervalu0,...,m 1),takže x y=0, tj. x=y. Nyní dokážeme, že nějaké řešení vůbec existuje. Uvažujme zobrazení f: {0,...,M 1} {0,...,m 1 1} {0,...,m k 1} x (xmod m 1,...,xmod m k ). V předchozím odstavci jsme vlastně ukázali, že zobrazení f je prosté. Přitom definiční obor i obor hodnot této funkce mají stejnou velikost M(velikost kartézského součinu je součin velikostí činitelů), takže zobrazení f musí být podle Lemmatu 1.2ina.Tedykekaždé k-tici(u 1,...,u k )existujeprávějedno x,kterésenaněj zobrazuje; a to je hledané řešení soustavy. Důkaz věty bohužel vůbec nedává návod, jak řešení takové soustavy spočítat. Existují sice efektivní algoritmy, které řešení najdou, jsou ale poměrně složité a zde se jimi zabývat nebudeme. Zájemce odkazujeme na skripta z Počítačové algebry. Úloha. Najděte všechna řešení soustavy kongruencí x 1 (mod2), x 1 (mod3), x 2 (mod5). Řešení. Čínskávětaozbytcíchříká,žeexistujeprávějednořešení0 x<30.třetí kongruenci splňují čísla 2,7,12,17,22 a 27. Z první kongruence plyne, že hledané číslo jeliché,zbývajítedy7,17a27,znichžjedině17řešídruhoukongruenci.všechna řešenísoustavyjsoutedytvaru x=17+30k, k Z. Traduje se, že motivací Čínské věty o zbytcích věty byl způsob, jakým čínští generálové počítali své vojáky. Generál věděl, že před bitvou měl 1000 vojáků, a chtěl je spočítat po bitvě. Nechal je tedy řadit do trojstupů, čtyřstupů, atd., a zjišťoval, kolik mu jich zbyde mimo řady. Jinými slovy, zjistil, kolik je počet vojáků modulo3,modulo4,atd.zčínskévětyozbytcíchplyne,žepokudzvolildostatek

ZÁKLADY ALGEBRY 2008/09 15 nesoudělných čísel(součin > 1000), může jednoznačně určit celkový počet svých vojáků. Na závěr pomocí Čínské věty o zbytcích dokážeme vzorec na výpočet Eulerovy funkce, tj. vztah ϕ(p k1 1... pkm m)=p k1 1 1 (p 1 1)... pm km 1 Důkaz Tvrzení 2.9. Dokážeme následující dvě vlastnosti: (p m 1). (1) prokaždéprvočíslo pplatí ϕ(p k )=p k 1 (p 1); (2) prokaždádvěnesoudělnáčísla a,bplatí ϕ(ab)=ϕ(a) ϕ(b). Uvedený vzorec snadno plyne z těchto dvou tvrzení: číslo n rozložíme na součin m podvounesoudělnýchmocnin p ki i a dostaneme ϕ(n) (2) = ϕ(p k1 1 )... ϕ(pkm m) (1) = p k1 1 1 (p 1 1)... pm km 1 (p m 1). (1) V tomto speciálním případě je snadné spočítat soudělná čísla: jsou to právě čísla p,2p,3p,...,p k 1 p.vidíme,žejichje p k 1.Všechnazbyláčíslajsounesoudělná,takže ϕ(p k )=p k p k 1 = p k 1 (p 1). (2) Uvažujme zobrazení f: {0,...,ab 1} {0,...,a 1} {0,...,b 1} x (xmod a,xmod b). PodleČínskévětyozbytcíchje f bijekce.dáleuvažujmepouzerestrikci f na množinu(ab).tojeprostézobrazení,jehoždefiničníoborjemnožina(ab) velikosti ϕ(ab).stačítedydokázat,žejehooboremhodnotjemnožina a b pak,díky prostosti,bude ϕ(ab)= (ab) = a b = a b =ϕ(a) ϕ(b),cožchceme dokázat. Potřebujeme tedy ověřit, že (a) f zobrazuje množinu (ab) domnožiny a b, tj. žensd(x,ab) = 1 implikujensd(xmod a,a)=nsd(xmod b,b)=1; (b) f zobrazujemnožinu(ab) natutomnožinu,tj.žepokudnsd(u,a) = NSD(v,b)=1,paktojediné x,kterésezobrazujenadvojici(u,v),splňuje NSD(x,ab)=1. Prodůkaz(a)sistačíuvědomit,žeNSD(xmod a,a)=nsd(x,a),akdybytato číslabylasoudělná,tímspíšebybylasoudělnáčísla x,ab.podobněpro b. Prodůkaz(b)uvažujme(tojediné) xzobrazujícísena(u,v),tj. u=xmod a a v = xmod b.dosazenímza u,v plynensd(x,a) = NSD(xmod a,a) = 1a NSD(x,b)=NSD(xmod b,b)=1.kdybybylačísla x,absoudělná,pakbyexistovaloprvočíslo p,kterédělízároveň xiab,tedypodlelemmatu2.4by pdělilo a nebo b,atudížby x,anebo x,bbylysoudělné,spor. 3. Obory integrity Cíl. Zavedeme pojem oboru integrity, který abstraktně vymezuje prostředí, ve kterém lze studovat dělitelnost. Jako hlavní příklady představíme obor celých čísel a jeho rozšíření, a dále obory polynomů a formálních mocninných řad.

16 DAVID STANOVSKÝ 3.1. Definice oboru integrity. Celá čísla sdílí z hlediska dělitelnosti řadu vlastností s dalšími obory. Jak známo, dělitelnost lze studovat pro polynomy, ale také třeba pro různá rozšíření celých čísel (např. Gaussovská celá čísla, komplexní čísla s celočíselnými koeficienty) a další struktury. V různých oborech pak platí různě silná tvrzení: např. analogie Základní věty aritmetiky platí pro celočíselné i racionální polynomy i pro Gaussovská celá čísla.polynomynadtělesemigaussovskáčíslalzedělitsezbytkemaplatíproně Bézoutova rovnost, to ale není pravda např. pro celočíselné polynomy nebo pro polynomy více proměnných. A pro některá rozšíření Z neplatí ani Základní věta aritmetiky. V následujícíh čtyřech sekcích se budeme snažit udělat v uvedených vlastnostech a příkladech pořádek. Abychom mohli studovat všechny zmíněné obory naráz, zavádí se obecná struktura nazývaná obor integrity, jejíž axiomy vystihují základní aritmetické vlastnosti. Jde o stejný princip, který vedl v lineární algebře k abstraktnímu pojmu tělesa a vektorového prostoru. Definice. Komutativním okruhem s jednotkou R rozumíme množinu R, na které jsoudefinoványoperace+,, akonstanty0 1splňujícíprokaždé a,b,c R následující podmínky: a+(b+c)=(a+b)+c, a+b=b+a, a+0=a, a+( a)=0, a (b c)=(a b) c, a b=b a, a 1=a, Platí-li navíc podmínka nazýváme R obor integrity. Platí-li navíc podmínka a (b+c)=(a b)+(a c). pokud a,b 0,pak a b 0, prokaždé a 0existuje bsplňující a b=1, nazývámertěleso.značíme b=a 1. V zápise zpravidla vynecháváme závorky, násobení má vyšší prioritu než sčítání. Místo a+( b)píšeme a b. V matematice obecně je zvykem uvádět množinu axiomů tak krátkou, jak je to jen možné; spousta užitečných vlastností se tak do ní nevejde. Následující tvrzení ukazuje několik aritmetických pravidel, které z definice snadno plynou a v dalším textu je budeme zcela automaticky používat. Tvrzení3.1. BuďRoborintegrity, a,b,c R.Pak (1)pokud a+c=b+c,pak a=b; (2) a 0=0; (3) ( a)=a, (a+b)= a b; (4) (a b)=( a) b=a ( b), ( a) ( b)=ab. (5)pokud a c=b cac 0,pak a=b; Důkaz.(1) Je-li a+c = b+c, pak také(a+c)+( c) =(b+c)+( c). Použitím axiomů dostaneme(a+c)+( c)=a+(c+( c))=a+0=aapodobně(b+c)+( c)=b, tedy a=b.