Polynomy. Vlasnosti reálných čísel: Polynom v matematice můžeme chápat dvojím způsobem. 5. (komutativitaoperace )provšechnačísla a, b Rplatí
|
|
- Libuše Svobodová
- před 6 lety
- Počet zobrazení:
Transkript
1 Polynomy Vlasnosti reálných čísel: 1 (komutativitaoperace+)provšechnačísla a, b Rplatí, a+b=b+a 2 (asociativitaoperace+)provšechnačísla a, b, c Rplatí a+(b+c)=(a+b)+c, 3 (existencenulovéhoprvku)provšechnačísla a Rplatí a+0=0+a=a 4 (existenceopačnéhoprvku)kekaždémučíslu a Rexistuječíslo( a) Rtakové,že a+( a)=( a)+a=0 5 (komutativitaoperace )provšechnačísla a, b Rplatí a b=b a 6 (asociativitaoperace )provšechnačísla a, b, c Rplatí a (b c)=(a b) c 7 (existence jednotkového prvku) pro všechna čísla a R platí a 1=1 a=a 8 (existenceinversníhoprvku)kekaždémučíslu a R \ {0}existuječíslo a 1 R \ {0}takové,že a a 1 = a 1 a=1 9 (distributivitanásobenívzhledemkesčítání)provšechnačísla a, b, c Rplatí a (b+c)=(a b)+(a c) (a+b) c=(a c)+(b c) Množina reálných čísel s těmito dvěma operacemi tvoří komutativní těleso Polynom v matematice můžeme chápat dvojím způsobem - funkce-polynomiální forma Polynomjereálnáfunkce freálnéproměnnétaková,žeexistujíreálnáčísla a 0,, a n taková,žeprovšechna x Rplatí f(x)=a n x n + a n 1 x n 1 + +a 1 x+a 0 Rovnostsepakzavádíjakorovnostfunkcí,součet jakosoučetfunkcí,součinjakosoučinfunkcí, - algebraický výraz 1DefiniceNechť a 0, a 1,, a n 1, a n jsoureálnáčíslaalgebraickývýraz a n x n + a n 1 x n 1 + +a 1 x+a 0, cožstručnězapisujeme a i x i, nazveme(reálný) polynom(vproměnné x),čísla a 0, a 1,, a n nazývámekoeficienty polynomu, hodnota polynomuvbodě x 0 Rjereálnéčíslo,kterédostaneme,kdyžzaproměnnou xdosadímečíslo x 0 Nulový polynom O(x) je polynom, jehož všechny koeficienty jsou rovny nule
2 2PoznámkaKoeficientymohoubýtinulové,tyvětšinounezapisujemeMísto x 3 +0x 2 +2x 1píšeme x 3 +2x 1 3 DefiniceNechť P(x) = a n x n + a n 1 x n 1 + +a 2 x 2 + a 1 x+a 0 jepolynomstupeňpolynomu P (označujemestp)jenejvětší m Ntakové,že a m 0Stupeňnulovéhopolynomupoložímeroven 1 Polynom nultého stupně se nazývá konstantní, prvního stupně lineární, druhého stupně kvadratický a třetího stupně kubický 4 Definice Řekneme, že se polynomy P(x)= a i x i a Q(x)= m b i x i soběrovnají,jestližemajístejnýstupeň(stp=stq=k)anavíc a i = b i provšechna,1,, k 5 Poznámka Platí tedy, že x 3 +2x 1=x 3 +0x 2 +2x 1=0x 4 + x 3 +2x 1= =0x 4 + x 3 +0x 2 +2x 1=0x 5 +0x 4 + x 3 +2x 1= Takovéto natahování polynomůsenámmůžehodit,kdyžtřebapotřebujeme,abypolynommělurčitou délku Operace s polynomy 6DefiniceSoučetpolynomů:Nechť P(x)=a n x n + +a 1 x+a 0 a Q(x)=b m x m + +b 1 x+b 0 jsou polynomyanechť m npoložme b i =0pro i=m+1,,nsoučtempolynomů P(x)aQ(x)nazveme polynom(p + Q)(x) definovaný (P+ Q)(x)=(a n + b n )x n + +(a 1 + b 1 )x+(a 0 + b 0 )= 7 Pozorování Vlastnosti sčítání polynomů (a i + b i )x i 1 Sčítánípolynomůjekomutativní,tedyprokaždédvapolynomy P, Qplatí,že P+ Q=Q+P 2 Sčítánípolynomůjeasociativní,tedyprokaždétřipolynomy P, Q, Rplatí,že(P+Q)+R=P+(Q+R) 3 Nulovýpolynomjeneutrálnívzhledemkesčítání,tedyprojakýkolipolynom Pplatí,že P+ O=P= O+ P 4 Kekaždémupolynomu Pexistujeopačnýpolynom Ptakový,žeplatí P+( P)=O=( P)+P Množina všech polynomů s operací sčítání tvoří komutativní grupu, místo komutativní se také často říká Abelova podle norského matematika Nielse Henrika Abela 8 Poznámka Zřejmě platí, že koeficienty polynomu( P(x)) jsou opačná čísla ke koeficientům polynomu P(x),tedy ( P(x))= a n x n a n 1 x n 1 a 2 x 2 a 1 x a 0 = ( a i )x i Díky poslední vlastnosti můžeme také definovat odčítání polynomů jako přičítání opačného polynomu, tedy (P Q)(x)=(P+( Q))(x) 9 Definice Násobení polynomu číslem: Nechť P(x)=a n x n + +a 1 x+a 0 je polynom, α(reálné) číslo α-násobkem polynomu P(x) nazveme polynom(α P)(x) definovaný (α P)(x)=α a n x n + +α a 1 x+α a 0 = (α a i )x i
3 10 Pozorování Pro jakékoli polynomy P, Q a jakákoli(reálná) čísla α, β platí 1 α (β P)=(αβ) P 2 (α+β) P= α P+ β P 3 α (P+ Q)=α P+ α Q 4 1 P= P 5 0 P= O 11 Poznámka Těchto pět vlastností spolu s vlastnostmi 1 a 2 součtu polynomů jsou přesně axiomy lineárního prostoru(který budeme definovat později) Ve vhodnou dobu si připomeneme, že množina všech polynomů s operacemi sčítání a násobení reálným číslem tvoří lineární prostor 12DefiniceSoučinpolynomů:Nechť P(x)=a n x n + +a 1 x+a 0 a Q(x)=b m x m + +b 1 x+b 0 jsou polynomypoložme a i =0pro i=n+1,, n+mab i =0pro i=m+1,,m+nsoučinempolynomů P(x)aQ(x)nazvemepolynom(P Q)(x)definovaný kdepro k=0,1,2,, m+nje (P Q)(x)=c m+n x m+n + +c 1 x+c 0 = c k = a 0 b k + a 1 b k 1 + +a k 1 b 1 + a k b 0 = m+n k=0 c k x k, k a i b k i 13 Pozorování Vlastnosti násobení polynomů 1 Násobenípolynomůjekomutativní,tedyprokaždédvapolynomy P, Qplatí,že P Q=Q P 2 Násobenípolynomůjeasociativní,tedyprokaždétřipolynomy P, Q, Rplatí,že(P Q) R=P (Q R) 3 Polynom E(x) = 1(konstantní jednička) je neutrální vzhledem k násobení, tedy pro jakýkoli polynom Pplatí,že P E= P= E P 4 Násobení polynomů je distributivní vzhledem ke sčítání, to znamená, že pro každé tři polynomy P, Q, R platí (a) P (Q+R)=P Q+P R (b) (P+ Q) R=P R+Q R 14 Poznámka Množina všech polynomů s operacemi sčítání a násobení tvoří komutativní okruh s jednotkou 15 Pozorování Pro polynomy P, Q platí: 1 st(p+ Q) max{stp,st Q} 2 st(α P)=stP pro α 0, st(0 P)= 1 3 st(p Q)=stP+stQ,pokudjsouobapolynomynenulové,vopačnémpřípadějestupeňroven 1 16VětaDělenípolynomůsezbytkem:Kekaždýmdvěmapolynomům Pa Q,kdepolynom Qjenenulový, existujípolynomy Y a Ztakové,že Tyto polynomy jsou určeny jednoznačně P= Y Q+Z a stz < stq Důkaz tohoto tvrzení má dvě části Je třeba dokázat jak existenci těchto dvou polynomů(algoritmus dělení), tak jednoznačnost
4 Hornerovo schema 17 Algoritmus pro výpočet hodnoty polynomu pro nějaké číslo s minimálním počtem násobení Polynom zapíšeme trochu jiným způsobem Platí totiž Tedy Položme Zřejmě Také platí, že P(x)=a n x n + a n 1 x n 1 + +a 2 x 2 + a 1 x+a 0 = =(a n x n 1 + a n 1 x n 2 + +a 2 x+a 1 ) x+a 0 = =((a n x n 2 + a n 1 x n 3 + +a 2 ) x+a 1 ) x+a 0 = = =(( (a n x+a n 1 )x+ +a 2 )x+a 1 )x+a 0 P(x 0 )=(( (a n x 0 + a n 1 )x 0 + +a 2 )x 0 + a 1 )x 0 + a 0 b n = a n b n 1 = b n x 0 + a n 1 = a n x 0 + a n 1 b 1 = b 2 x 0 + a 1 = ( (a n x 0 + a n 1 )x 0 + +a 2 )x 0 + a 1 b 0 = b 1 x 0 + a 0 = (( (a n x 0 + a n 1 )x 0 + +a 2 )x 0 + a 1 )x 0 + a 0 P(x 0 )=b 0 P(x)=(x x 0 )(b n x n 1 + b n 1 x n 2 + +b 2 x+b 1 )+b 0, což můžeme ověřit pomocí algoritmu pro dělení polynomů Hornerovo schema je tabulka, která má tři řádky V prvním řádku jsou zapsány koeficienty polynomu P(x) (včetněnulových)dotřetíhořádkubudemepostupnězapisovatkoeficienty b i,nejprve b n = a n potom vždyckytak,ženejprvedodruhéhořádkuzapíšeme b i+1 x 0,koeficient b i jepaksoučtemčíselvprvníma druhém řádku Schema tedy vypadá takto a n a n 1 a n 2 a 2 a 1 a 0 x 0 b n x 0 b n 1 x 0 b 3 x 0 b 2 x 0 b 1 x 0 b n b n 1 b n 2 b 2 b 1 b 0 18PříkladUžitímHornerovaschematuspočtětehodnotupolynomu P(x)=3x 4 2x 2 5x+1pročíslo x 0 = Tedy P(2)=31 Kořeny polynomů V této části musíme pojem polynomu rozšířit na komplexní polynom Budeme se nadále zajímat především opolynomyreálné,alebudemesenanědívatjakonapolynomykomplexnítolze,protožekaždéreálné číslo je také číslem komplexním(s nulovou imaginární částí) 19 Definice Nechť P(x) je nenulový(komplexní) polynom Řekneme, že komplexní číslo α je kořenem polynomu P,jestliže P(α)=0 20TvrzeníKomplexníčíslo αjekořenempolynomu P(x)právětehdy,kdyžjepolynom P(x)bezezbytku dělitelný polynomem(x α) 21 Definice Řekneme, že(komplexní) číslo α je k-násobným kořenem polynomu P(x), jestliže k je největší přirozenéčíslotakové,že P(x)jebezezbytkudělitelnýpolynomem(x α) k 22 Poznámka Tato definice vyhovuje i případu, kdy dané číslo není kořenem polynomu, je totiž 0-násobným kořenem Místo o jednonásobném kořenu mluvíme většinou o jednoduchém kořenu 23 Pozorování(Komplexní) číslo α je k-násobným kořenem polynomu P(x) právě tehdy, když existuje polynom Q(x)takový,že P(x)=Q(x) (x α) k a Q(α) 0
5 24 Základní věta algebry: Každý(komplexní) polynom alespoň prvního stupně má alespoň jeden(komplexní) kořen 25 Důsledek Nenulový polynom n-tého stupně má právě n kořenů, počítáme-li každý kořen tolikrát, kolik je jeho násobnost 26 Tvrzení Rozklad polynomu na součin kořenových činitelů(resp kořenových polynomů) Každý polynom můžeme zapsat ve tvaru P(x)=a n (x α s ) ks (x α 2 ) k2 (x α 1 ) k1, kde α 1,,α r jsoukořenypolynomu P(x), k 1,, k r jsounásobnostitěchtokořenú 27Důsledek(základnívětyalgebry):Nechť P a Qjsoupolynomystupněnejvýše n-tého, α 1,, α n+1 navzájemrůznákomplexníčíslataková,že P(α i )=Q(α i )provšechna i=1,,n+1potom P= Q 28VětaNechť P(x)jepolynomsreálnýmikoeficientyakomplexníčíslo a+bi, b 0jejeho k-násobný kořen Pak také komplexně sdružené číslo a bi, je k-násobným kořenem polynomu P(x) 29 Důsledek Reálný polynom lichého stupně má vždy aspoň jeden reálný kořen 30 Definice Reálný polynom nazveme ireducibilní, jestliže se nedá zapsat jako součin dvou reálných polynomů alespoň prvního stupně 31 Tvrzení Ireducibilní reálné polynomy jsou všechny polynomy prvního stupně a ty polynomy druhého stupně, které mají pouze komplexní kořeny 32 Tvrzení Rozklad polynomu na součin ireducibilních reálných polynomů Každý reálný polynom můžeme zapsat ve tvaru P(x)=a n (x α 1 ) k1 (x α r ) kr (x 2 + p 1 x+q 1 ) l1 (x 2 + p t x+q t ) lt, kde α 1,,α r jsoureálnékořenypolynomu P(x)a(x 2 + p 1 x + q 1 ),,(x 2 + p t x+q t )jsousoučiny kořenových polynomů odpovídajících vždy dvěma komplexně sdruženým kořenům 33 Poznámka Hledání kořenů polynomů je obecně velmi těžké Dokonce neexitují žádné obecné postupy, jak najít kořeny polynomů pátého a vyšších stupňů(abel) Kořeny kvadratických polynomů(pouze kladné) uměli najít už arabští matematici(al-khwarizmí: Al-kitáb al-mukhtasar fi hisab al-jabr wa-l-muqabala(829)) Vzorce pro kořeny polynomů 3 a 4 stupně publikoval v díle Ars magna(1545) Gerolamo Cardano(odtud Cardanovy vzorce), který ale nebyl jejich objevitelem Někdy můžeme využít specifických vlastností určitého typu polynomů(binomické, reciproké,) Někdy nám může pomoci následující tvrzení 34TvrzeníNechť P(x)jepolynomsceločíselnýmikoeficientystupně n 1aracionálníčíslo p q,kde paq jsounesoudělnáčísla,jejehokořenpotom pmusídělitabsolutníčlen a 0 a qmusídělitkoeficientunejvyšší mocniny,tj a n
[1] Definice 1: Polynom je komplexní funkce p : C C, pro kterou. pro všechna x C. Čísla a 0, a 1,..., a n nazýváme koeficienty polynomu.
Polynomy Polynom je možno definovat dvěma způsoby: jako reálnou nebo komplexní funkci, jejichž hodnoty jsou dány jistým vzorcem, jako ten vzorec samotný. [1] První způsob zavedení polynomu BI-LIN, polynomy,
VícePolynomy. Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1.1 Teorie Zavedení polynomů Operace s polynomy...
Polynomy Obsah Mgr. Veronika Švandová a Mgr. Zdeněk Kříž, Ph. D. 1 Základní vlastnosti polynomů 2 1.1 Teorie........................................... 2 1.1.1 Zavedení polynomů................................
VíceVěta o dělení polynomů se zbytkem
Věta o dělení polynomů se zbytkem Věta. Nechť R je okruh, f, g R[x], přičemž vedoucí koeficient polynomu g 0 je jednotka okruhu R. Pak existuje jediná dvojice polynomů q, r R[x] taková, že st(r) < st(g)
VíceLineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda frantisek.stampach@fit.cvut.cz, karel.klouda@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních technologií České
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
Více1 Mnohočleny a algebraické rovnice
1 Mnohočleny a algebraické rovnice 1.1 Pojem mnohočlenu (polynomu) Připomeňme, že výrazům typu a 2 x 2 + a 1 x + a 0 říkáme kvadratický trojčlen, když a 2 0. Číslům a 0, a 1, a 2 říkáme koeficienty a písmenem
VíceLineární algebra : Polynomy
Lineární algebra : Polynomy (2. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 15. dubna 2014, 11:21 1 2 2.1 Značení a těleso komplexních čísel Značení N := {1, 2, 3... }... množina
VícePolynomy nad Z p Konstrukce faktorových okruhů modulo polynom. Alena Gollová, TIK Počítání modulo polynom 1/30
Počítání modulo polynom 3. přednáška z algebraického kódování Alena Gollová, TIK Počítání modulo polynom 1/30 Obsah 1 Polynomy nad Zp Okruh Zp[x] a věta o dělení se zbytkem 2 Kongruence modulo polynom,
Více)(x 2 + 3x + 4),
3 IREDUCIBILNÍ ROZKLADY POLYNOMŮ V T [X] 3 Ireducibilní rozklady polynomů v T [x] - rozklady polynomů na ireducibilní (dále nerozložitelné) prvky v oboru integrity polynomů jedné neurčité x nad tělesem
Více4C. Polynomy a racionální lomené funkce. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s odmocninami. Polynomy
4C. Polynomy a racionální lomené funkce Polynomy a racionální funkce mají zvláštní význam zejména v numerické a aplikované matematice. Patří mezi tzv. algebraické funkce, ke kterým patří také funkce s
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VícePOLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie
POLYNOMY 1 Jan Malý UK v Praze a UJEP v Ústí n. L. 1. Přehled teorie Komplexní čísla. Komplexní čísla jsou objekty tvaru α+iβ, kde α, β R. Množina všech komplexních čísel se značí C. Rovnost komplexních
VíceMATICE. a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij]
MATICE Matice typu m/n nad tělesem T je soubor m n prvků z tělesa T uspořádaných do m řádků a n sloupců: a 11 a 12 a 1n a 21 a 22 a 2n A = = [a ij] a m1 a m2 a mn Prvek a i,j je prvek matice A na místě
Vícea a
1.. Cíle V této kapitole se naučíme určovat zejména celočíselné kořeny některých polynomů. Výklad Při výpočtu hodnoty polynomu n k p( x) = ak x n-tého stupně n 1 v bodě x 0 C k = 0 musíme provést ( n 1)
VíceMatematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci
Matematika 1A. PetrSalačaJiříHozman Fakulta přírodovědně-humanitní a pedagogická Technická univerzita v Liberci petr.salac@tul.cz jiri.hozman@tul.cz 5.12.2016 Fakulta přírodovědně-humanitní a pedagogická
VícePomocný text. Polynomy
Pomocný text Polynomy Tato série bude o polynomech a to zejména o polynomech jedné proměnné (pokud nebude uvedeno explicitně, že jde o polynom více proměnných). Formálně je někdy polynom jedné proměnné
VíceLineární algebra Operace s vektory a maticemi
Lineární algebra Operace s vektory a maticemi Robert Mařík 26. září 2008 Obsah Operace s řádkovými vektory..................... 3 Operace se sloupcovými vektory................... 12 Matice..................................
VíceKapitola 7: Integrál. 1/17
Kapitola 7: Integrál. 1/17 Neurčitý integrál - Motivační příklad 2/17 Příklad: Necht se bod pohybuje po přímce rychlostí a) v(t) = 3 [m/s] (rovnoměrný přímočarý pohyb), b) v(t) = 2t [m/s] (rovnoměrně zrychlený
VíceLineární prostory. - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem
Lineární prostory - vektorové veličiny(síla, rychlost, zrychlení,...), skládání, násobení reálným číslem - volné vektory a operace s nimi(sčítání, násobení reálným číslem) -ve 2 nebove 3 vázanévektorysespolečnýmpočátkem
Vícez = a bi. z + v = (a + bi) + (c + di) = (a + c) + (b + d)i. z v = (a + bi) (c + di) = (a c) + (b d)i. z v = (a + bi) (c + di) = (ac bd) + (bc + ad)i.
KOMLEXNÍ ČÍSLA C = {a + bi; a, b R}, kde i 2 = 1 Číslo komplexně sdružené k z = a + bi je číslo z = a bi. Operace s komplexními čísly: z = a + bi, kde a, b R v = c + di, kde c, d R Sčítání Odčítání Násobení
VíceVlastní čísla a vlastní vektory
Vlastní čísla a vlastní vektory 1 Motivace Uvažujme lineární prostor všech vázaných vektorů v rovině, které procházejí počátkem, a lineární zobrazení tohoto prostoru do sebe(lineární transformaci, endomorfismus)
VícePolynomy a racionální lomené funkce
Polnom a racionální lomené funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Polnom Definice a základní pojm Násobnost kořene Počet kořenů Kvadratický polnom Rozklad na součin kořenových
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Vektory Definice 011 Vektorem aritmetického prostorur n budeme rozumět uspořádanou n-tici reálných čísel x 1, x 2,, x n Definice 012 Definice sčítání
VíceOperace s maticemi. 19. února 2018
Operace s maticemi Přednáška druhá 19. února 2018 Obsah 1 Operace s maticemi 2 Hodnost matice (opakování) 3 Regulární matice 4 Inverzní matice 5 Determinant matice Matice Definice (Matice). Reálná matice
Více[1] x (y z) = (x y) z... (asociativní zákon), x y = y x... (komutativní zákon).
Grupy, tělesa grupa: množina s jednou rozumnou operací příklady grup, vlastnosti těleso: množina se dvěma rozumnými operacemi příklady těles, vlastnosti, charakteristika tělesa lineární prostor nad tělesem
VíceALGEBRA. 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = , b =
ALGEBRA 1 Úkol na 13. 11. 2018 1. Pomocí Eukleidova algoritmu najděte největší společný dělitel čísel a a b. a) a = 204, b = 54, b) a = 353 623, b = 244 571. 2. Připomeňte si, že pro ε = cos 2π 3 + i sin
VíceÚvod do lineární algebry
Úvod do lineární algebry 1 Aritmetické vektory Definice 11 Mějme n N a utvořme kartézský součin R n R R R Každou uspořádanou n tici x 1 x 2 x, x n budeme nazývat n rozměrným aritmetickým vektorem Prvky
VíceLineární algebra : Lineární prostor
Lineární algebra : Lineární prostor (3. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 17. dubna 2014, 14:43 1 2 3.1 Aximotické zavedení lineárního prostoru Číselné těleso Celou lineární
VíceZáklady matematiky pro FEK
Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé
Více4 Počítání modulo polynom
8 4 Počítání modulo polynom Co se vyplatilo jendou, vyplatí se i podruhé. V této kapitole zavedeme polynomy nad Z p a ukážeme, že množina všech polynomů nad Z p tvoří komutativní okruh s jednotkou. Je-li
VíceUčební texty k státní bakalářské zkoušce Matematika Algebra. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Algebra študenti MFF 15. augusta 2008 1 8 Algebra Požadavky Grupa, okruh, těleso definice a příklady Podgrupa, normální podgrupa, faktorgrupa, ideál
VíceZáklady matematické analýzy
Základy matematické analýzy Spojitost funkce Ing. Tomáš Kalvoda, Ph.D. 1, Ing. Daniel Vašata 2 1 tomas.kalvoda@fit.cvut.cz 2 daniel.vasata@fit.cvut.cz Katedra aplikované matematiky Fakulta informačních
VíceUčební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty. študenti MFF 15. augusta 2008
Učební texty k státní bakalářské zkoušce Matematika Vlastní čísla a vlastní hodnoty študenti MFF 15. augusta 2008 1 14 Vlastní čísla a vlastní hodnoty Požadavky Vlastní čísla a vlastní hodnoty lineárního
VíceLineární algebra Kapitola 1 - Základní matematické pojmy
Lineární algebra Kapitola 1 - Základní matematické pojmy 1.1 Relace a funkce V celém textu budeme používat následující označení pro číselné množiny: N množina všech přirozených čísel bez nuly, N={1, 2,
VíceMatice. Předpokládejme, že A = (a ij ) je matice typu m n: diagonálou jsou rovny nule.
Matice Definice. Maticí typu m n nazýváme obdélníkové pole, tvořené z m n reálných čísel (tzv. prvků matice), zapsaných v m řádcích a n sloupcích. Značíme např. A = (a ij ), kde i = 1,..., m, j = 1,...,
Vícematiceteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést
Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud
VíceCharakteristika tělesa
16 6 Konečná tělesa V této kapitole budeme pod pojmem těleso mít na mysli vždy konečné komutativní těleso, tedy množinu s dvěma binárními operacemi (T, +, ), kde (T, +) je komutativní grupa s neutrálním
VíceVektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace
Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi
VíceLineární algebra Eva Ondráčková
Lineární algebra Eva Ondráčková Vektorové prostory Mnozízvásužsenejspíšsetkalispojmemvektor.Ukážemesi,ževektorynejsoujen množiny orientovaných úseček v rovině či trojrozměrném prostoru, ale něco zajímavějšího,
VíceMaticí typu (m, n), kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru:
3 Maticový počet 3.1 Zavedení pojmu matice Maticí typu (m, n, kde m, n jsou přirozená čísla, se rozumí soubor mn veličin a jk zapsaných do m řádků a n sloupců tvaru: a 11 a 12... a 1k... a 1n a 21 a 22...
VíceHisab al-džebr val-muqabala ( Věda o redukci a vzájemném rušení ) Muhammada ibn Músá al-chvárizmího (790? - 850?, Chiva, Bagdád),
1 LINEÁRNÍ ALGEBRA 1 Lineární algebra Slovo ALGEBRA pochází z arabského al-jabr, což znamená nahrazení. Toto slovo se objevilo v názvu knihy islámského matematika Hisab al-džebr val-muqabala ( Věda o redukci
VíceALGEBRA. Téma 4: Grupy, okruhy a pole
SLEZSKÁ UNIVERZITA V OPAVĚ Matematický ústav v Opavě Na Rybníčku 1, 746 01 Opava, tel. (553) 684 611 DENNÍ STUDIUM Téma 4: Grupy, okruhy a pole Základní pojmy unární operace, binární operace, asociativita,
VíceOperace s maticemi
Operace s maticemi Seminář druhý 17.10. 2018 Obsah 1 Operace s maticemi 2 Hodnost matice 3 Regulární matice 4 Inverzní matice Matice Definice (Matice). Reálná matice typu m n je obdélníkové schema A =
Více0.1 Úvod do lineární algebry
Matematika KMI/PMATE 1 01 Úvod do lineární algebry 011 Lineární rovnice o 2 neznámých Definice 011 Lineární rovnice o dvou neznámých x, y je rovnice, která může být vyjádřena ve tvaru ax + by = c, kde
VíceZavedení a vlastnosti reálných čísel
Zavedení a vlastnosti reálných čísel jsou základním kamenem matematické analýzy. Konstrukce reálných čísel sice není náplní matematické analýzy, ale množina reálných čísel R je pro matematickou analýzu
VíceŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceMatice. Modifikace matic eliminační metodou. α A = α a 2,1, α a 2,2,..., α a 2,n α a m,1, α a m,2,..., α a m,n
[1] Základní pojmy [2] Matice mezi sebou sčítáme a násobíme konstantou (lineární prostor) měníme je na jiné matice eliminační metodou násobíme je mezi sebou... Matice je tabulka čísel s konečným počtem
Vícegrupa těleso podgrupa konečné těleso polynomy komutativní generovaná prvkem, cyklická, řád prvku charakteristika tělesa
grupa komutativní podgrupa těleso generovaná prvkem, cyklická, řád prvku Malá Fermatova věta konečné těleso charakteristika tělesa polynomy ireducibilní prvky, primitivní prvky definice: G, je grupa kde
Víceoznačme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,
Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání
VíceŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceBCH kódy. Alena Gollová, TIK BCH kódy 1/27
7. přednáška z algebraického kódování Alena Gollová, TIK 1/27 Obsah 1 Binární Alena Gollová, TIK 2/27 Binární jsou cyklické kódy zadané svými generujícími kořeny. Díky šikovné volbě kořenů opravuje kód
VíceVektorový prostor. Př.1. R 2 ; R 3 ; R n Dvě operace v R n : u + v = (u 1 + v 1,...u n + v n ), V (E 3 )...množina vektorů v E 3,
Vektorový prostor Příklady: Př.1. R 2 ; R 3 ; R n...aritmetický n-rozměrný prostor Dvě operace v R n : součet vektorů u = (u 1,...u n ) a v = (v 1,...v n ) je vektor u + v = (u 1 + v 1,...u n + v n ),
VíceOkruhy, podokruhy, obor integrity, těleso, homomorfismus. 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): f) M = { a
Sbírka příkladů z okruhů a polynomů Algebra I Okruhy, podokruhy, obor integrity, těleso, homomorfismus 1. Rozhodněte, zda daná množina M je podokruhem okruhu (C, +, ): a) M = {a + i a R}, b) M = {a + i
VíceMatematika (CŽV Kadaň) aneb Úvod do lineární algebry Matice a soustavy rovnic
Přednáška třetí (a pravděpodobně i čtvrtá) aneb Úvod do lineární algebry Matice a soustavy rovnic Lineární rovnice o 2 neznámých Lineární rovnice o 2 neznámých Lineární rovnice o dvou neznámých x, y je
Více2. V Q[x] dělte se zbytkem polynomy:
Sbírka příkladů z polynomů pro předmět Cvičení z algebry I Dělení v okruzích polynomů 1. V Q[x] dělte se zbytkem polynomy a) (x 5 + x 3 2x + 1) : ( x 3 + x + 1), b) (3x 3 + 10x 2 + 2x 3) : (5x 2 + 25x
VíceV předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti
Kapitola 5 Vektorové prostory V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti operací sčítání a násobení
VíceZáklady aritmetiky a algebry II
Osnova předmětu Základy aritmetiky a algebry II 1. Lineární rovnice, řešení v tělesech Q, R, C, Z p, počet řešení v okruhu Z n, n N \ P. Grafické řešení, lineární nerovnice. 2. Kvadratická rovnice. Didaktický
VíceGenerující kořeny cyklických kódů. Generující kořeny. Alena Gollová, TIK Generující kořeny 1/30
Generující kořeny cyklických kódů 6. přednáška z algebraického kódování Alena Gollová, TIK Generující kořeny 1/30 Obsah 1 Alena Gollová, TIK Generující kořeny 2/30 Hammingovy kódy Hammingovy kódy jsou
VíceTěleso racionálních funkcí
Těleso racionálních funkcí Poznámka. V minulém semestru jsme libovolnému oboru integrity sestrojili podílové těleso. Pro libovolné těleso R je okruh polynomů R[x] oborem integrity, máme tedy podílové těleso
VíceFaculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague
Tomáš Faculty of Nuclear Sciences and Physical Engineering Czech Technical University in Prague 1 / 63 1 2 3 4 5 6 7 8 9 10 11 2 / 63 Aritmetický vektor Definition 1 Aritmetický vektor x je uspořádaná
VíceMAT 1 Mnohočleny a racionální lomená funkce
MAT 1 Mnohočleny a racionální lomená funkce Studijní materiály Pro listování dokumentem NEpoužívejte kolečko myši nebo zvolte možnost Full Screen. Brno 2012 RNDr. Rudolf Schwarz, CSc. First Prev Next Last
VíceNechť M je množina. Zobrazení z M M do M se nazývá (binární) operace
Kapitola 2 Algebraické struktury Řada algebraických objektů má podobu množiny s nějakou dodatečnou strukturou. Například vektorový prostor je množina vektorů, ty však nejsou jeden jako druhý : jeden z
VíceMatice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.
Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n
VíceAritmetika s didaktikou I.
Katedra matematiky PF UJEP Aritmetika s didaktikou I. KM / Přednáška Struktury se dvěma binárními operacemi O čem budeme hovořit: opakování struktur s jednou operací struktury se dvěma operacemi Struktury
VíceMatematika I (KMI/5MAT1)
Přednáška první aneb Úvod do algebry (opakování ze SŠ a možná i ZŠ) Seznámení s předmětem Osnova přednášky seznámení s předmětem množiny pojem množiny operace s množinami číselné obory intervaly mocniny
VíceOkruh Lineární rovnice v Z m Těleso Gaussova eliminace (GEM) Okruh Z m. Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20
Okruh Z m Jiří Velebil: X01DML 19. listopadu 2007: Okruh Z m 1/20 Minule: 1 Slepování prvků Z modulo m: množina Z m. 2 Operace na Z m : m (sčítání), m (násobení). 3 Speciální prvky: [0] m a [1] m. 4 Vlastnosti
VíceAlgebraické struktury s jednou binární operací
16 Kapitola 1 Algebraické struktury s jednou binární operací 1.1 1. Grupoid, pologrupa, monoid a grupa Chtěli by jste vědět, co jsou to algebraické struktury s jednou binární operací? No tak to si musíte
Více15. Moduly. a platí (p + q)(x) = p(x) + q(x), 1(X) = id. Vzniká tak struktura P [x]-modulu na V.
Učební texty k přednášce ALGEBRAICKÉ STRUKTURY Michal Marvan, Matematický ústav Slezská univerzita v Opavě 15. Moduly Definice. Bud R okruh, bud M množina na níž jsou zadány binární operace + : M M M,
VíceAbstrakt. Bairstowovy iterační metody. V práci je odvozena Bairstowova metoda
Hledání kořenů algebraické rovnice Michaela Kožuchová 1,MichaelaSládková 2,Vojtěch Pék 3 Abstrakt Práce se zabývá hledáním kořenů algebraické rovnice za pomoci Bairstowovy iterační metody. V práci je odvozena
Vícea počtem sloupců druhé matice. Spočítejme součin A.B. Označme matici A.B = M, pro její prvky platí:
Řešené příklady z lineární algebry - část 1 Typové příklady s řešením Příklady jsou určeny především k zopakování látky před zkouškou, jsou proto řešeny se znalostmi učiva celého semestru. Tento fakt se
Více10. Vektorové podprostory
Matematický ústav Slezské univerzity v Opavě Učební texty k přednášce ALGEBRA II, letní semestr 2000/2001 Michal Marvan Definice. Bud V vektorový prostor nad polem P. Podmnožina U V se nazývá podprostor,
Více15 Maticový a vektorový počet II
M. Rokyta, MFF UK: Aplikovaná matematika III kap. 15: Maticový a vektorový počet II 1 15 Maticový a vektorový počet II 15.1 Úvod Opakování z 1. ročníku (z kapitoly 8) Označení. Množinu všech reálných resp.
Více1 Lineární prostory a podprostory
Lineární prostory a podprostory Přečtěte si: Učebnice AKLA, kapitola první, podkapitoly. až.4 včetně. Cvičení. Které z následujících množin jsou lineárními prostory s přirozenými definicemi operací?. C
Vícepro každé i. Proto je takových čísel m právě N ai 1 +. k k p
KOMENTÁŘE ÚLOH 43. ROČNÍKU MO, KATEGORIE A 1. Přirozené číslo m > 1 nazveme k násobným dělitelem přirozeného čísla n, pokud platí rovnost n = m k q, kde q je celé číslo, které není násobkem čísla m. Určete,
VíceOdpřednesenou látku naleznete v kapitolách skript Abstraktní a konkrétní lineární algebra.
nad obecným tělesem a lineární kombinace Odpřednesenou látku naleznete v kapitolách 1.1 1.4 skript Abstraktní a konkrétní lineární algebra. Jiří Velebil: A7B01LAG 1.10.2015: 1/20 nad obecným tělesem Co
VíceDosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty.
Kapitola 4 Tělesa Dosud jsme se zabývali pouze soustavami lineárních rovnic s reálnými koeficienty. Všechna čísla byla reálná, vektory měly reálné souřadnice, matice měly reálné prvky. Také řešení soustav
VíceTeorie grup 1 Příklad axiomatické teorie
Teorie grup 1 Příklad axiomatické teorie Alena Šolcová 1 Binární operace Binary operation Binární operací na neprázdné množině A rozumíme každé zobrazení kartézského součinu A x A do A. Multiplikativní
Více6.1.2 Operace s komplexními čísly
6.. Operace s komplexními čísly Předpoklady: 60 Komplexním číslem nazýváme výraz ve tvaru a + bi, kde a, b jsou reálná čísla a i je číslo, pro něž platí i =. V komplexním čísle a + bi se nazývá: číslo
Více9.2. Zkrácená lineární rovnice s konstantními koeficienty
9.2. Zkrácená lineární rovnice s konstantními koeficienty Cíle Řešíme-li konkrétní aplikace, které jsou popsány diferenciálními rovnicemi, velmi často zjistíme, že fyzikální nebo další parametry (hmotnost,
VíceVÝSLEDKY Písemný test z předmětu BI-LIN( ), varianta R
VÝSLEDKY Písemný test z předmětu BI-LIN(19. 4. 2011), varianta R 1.Nechť p, q, rjsoupolynomy,všechnymajístupeňroven n.pakpolynom má stupeň: a)vždyroven n 2, b)vždyroven2n, c)vždyroven n, d)nejvýšeroven
VíceKapitola 7: Neurčitý integrál. 1/14
Kapitola 7: Neurčitý integrál. 1/14 Neurčitý integrál 2/14 Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f (x) x I nazýváme primitivní
VíceVI. Maticový počet. VI.1. Základní operace s maticemi. Definice. Tabulku
VI Maticový počet VI1 Základní operace s maticemi Definice Tabulku a 11 a 12 a 1n a 21 a 22 a 2n, a m1 a m2 a mn kde a ij R, i = 1,, m, j = 1,, n, nazýváme maticí typu m n Zkráceně zapisujeme (a ij i=1m
VíceNejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. y + y = 4 sin t.
1 Variace konstanty Nejdřív spočítáme jeden příklad na variaci konstant pro lineární diferenciální rovnici 2. řádu s kostantními koeficienty. Příklad 1 Najděte obecné řešení rovnice: y + y = 4 sin t. Co
VíceMENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
VíceMENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA VEKTORY, MATICE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
VíceINVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.
INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Relace, zobrazení, algebraické struktury Michal Botur Přednáška
Více8 Matice a determinanty
M Rokyta, MFF UK: Aplikovaná matematika II kap 8: Matice a determinanty 1 8 Matice a determinanty 81 Matice - definice a základní vlastnosti Definice Reálnou resp komplexní maticí A typu m n nazveme obdélníkovou
VícePrimitivní funkce a Riemann uv integrál Lineární algebra Taylor uv polynom Extrémy funkcí více prom ˇenných Matematika III Matematika III Program
Program Primitivní funkce a Riemannův integrál Program Primitivní funkce a Riemannův integrál Lineární algebra Program Primitivní funkce a Riemannův integrál Lineární algebra Taylorův polynom Program Primitivní
VícePetr Hasil. c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125
Množiny, číselné obory, funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Množiny, číselné obory, funkce MA I (M1101) 1 / 125 Obsah 1 Množiny a číselné obory Množinové operace Reálná
VíceDeterminant matice řádu 5 budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku nebo sloupce. Aby byl náš výpočet
Řešené příklady z lineární algebry - část 2 Příklad 2.: Určete determinant matice A: A = 4 4. Řešení: Determinant matice řádu budeme počítat opakovaným použitím rozvoje determinantu podle vybraného řádku
VíceANOTACE nově vytvořených/inovovaných materiálů
ANOTACE nově vytvořených/inovovaných materiálů Číslo projektu Číslo a název šablony klíčové aktivity Tematická oblast CZ.1.07/1.5.00/34.1017 III/2 - Inovace a zkvalitnění výuky prostřednictvím ICT Komplexní
VíceUspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ). Čísla a 1, a 2,..., a n se nazývají složky vektoru
1 1. Lineární algebra 1.1. Lineární závislost a nezávislost vektorů. Hodnost matice Aritmetické vektory Uspořádanou n-tici reálných čísel nazveme aritmetický vektor (vektor), ā = (a 1, a 2,..., a n ).
Více1 Polynomiální interpolace
Polynomiální interpolace. Metoda neurčitých koeficientů Příklad.. Nalezněte polynom p co nejmenšího stupně, pro který platí p() = 0, p(2) =, p( ) = 6. Řešení. Polynom hledáme metodou neurčitých koeficientů,
VíceTeorie množin. Čekají nás základní množinové operace kartézské součiny, relace zobrazení, operace. Teoretické základy informatiky.
Teorie množin V matematice je všechno množina I čísla jsou definována pomocí množin Informatika stojí na matematice Znalosti Teorie množin využijeme v databázových systémech v informačních systémech při
VíceZáklady maticového počtu Matice, determinant, definitnost
Základy maticového počtu Matice, determinant, definitnost Petr Liška Masarykova univerzita 18.9.2014 Matice a vektory Matice Matice typu m n je pravoúhlé (nebo obdélníkové) schéma, které má m řádků a n
VíceLDF MENDELU. Simona Fišnarová (MENDELU) LDR druhého řádu VMAT, IMT 1 / 22
Lineární diferenciální rovnice druhého řádu Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Více8 Kořeny cyklických kódů, BCH-kódy
24 8 Kořeny cyklických kódů, BCH-kódy Generující kořeny cyklických kódů Nechť K je cyklický kód délky n nad Z p s generujícím polynomem g(z). Chceme najít rozšíření T tělesa Z p, tedy nějaké těleso GF
VíceKomutativní a nekomutativní polookruhy ve školské matematice. Commutative and non-commutative semi-rings in educational mathematics
Komutativní a nekomutativní polookruhy ve školské matematice Drahomíra Holubová Resume Polookruhy, které nejsou okruhy, mají významné zastoupení ve školské matematice. Tento příspěvek uvádí příklady komutativních
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
Více1. Matice a maticové operace. 1. Matice a maticové operace p. 1/35
1. Matice a maticové operace 1. Matice a maticové operace p. 1/35 1. Matice a maticové operace p. 2/35 Matice a maticové operace 1. Aritmetické vektory 2. Operace s aritmetickými vektory 3. Nulový a opačný
Více