( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312
|
|
- Andrea Vítková
- před 6 lety
- Počet zobrazení:
Transkript
1 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní honotou. Pegogiká poznámk: Násleujíí příkl nvzuje n poslení příkl minulé hoin. Snžím se, b si stuenti ujsnili, o je stejné, o je jink pole toho se zříili. Pegogiká poznámk: Násleujíí příkl počítáme pouze nltikým přístupem (ruhá vrint), konstrukční přístup je uveen pouze pro emonstri. Bo n příme njeme v, v kžé lvii tk vznikne vojie, která se snží ojít k výsleku věm (trošku) různými způsob. Př. : Nji přímku, která je rovnoběžná s přímkou p : + = 0 je o ní vzálen. Dv způsob řešení. Konstrukční přístup: Hlená přímk je rovnoběžná rovnie + = 0 potřebujeme njít bo, přes který přímk prohází hleáme bo vzálený o přímk + = 0 o tkovýh boů je nekonečně mnoho musíme omezit výběr, npříkl bueme hlet pouze bo n ose. Anltiký přístup: Hlená přímk je rovnoběžná rovnie + = 0 hleáme pomínku, kterou přímk splňuje která nám určí prmetr. Hlená přímk je vzálen o přímk + = 0 o je vzálen o libovolného bou přímk + = 0 o. Hleáme bo n příme p : + = 0 : jenu souřnii zvolíme, ruhou opočítáme. Volíme souřnii (u je číslo při opočítávání souřnie se nemusí ělit), nekonečně mnoho možností. = = 0 = P [ ;0], = + = 0 P ;. = [ ] Hlená přímk + = 0 je o nlezeného bou vzálen o. P, přímk + = 0. Bo [ ] ;0 p + bp b + + = / = hleáme čísl, jejihž obrz je o obrzu čísl vzálený o =, = 8. P, přímk + = 0. Bo [ ] ; p + bp b + + = / = hleáme čísl, jejihž obrz je o obrzu čísl vzálený o =, = 8.
2 V rovině eistují ve vzálenosti vě přímk rovnoběžné s přímkou p : + = 0 : q : + = 0, q : 8 = 0. Ke stejnému výsleku bhom ospěli i konstrukčním přístupem. Bo n ose : A. Dosíme o vzore pro vzálenost: p + bp = + b +. = Použijeme + =. Rovnie s bsolutní honotou ělíme n intervl: = 0 =. ; ; 0 = + + = = 8 8 = Dv bo, které splňují pomínk. A [ ] Dosíme o rovnie: + = + = 0 =. + = 0 0 = = = = 8 A Dosíme o rovnie: 8 + = + = 0 = 8. 8 = 0 Pegogiká poznámk: U konstrukčního přístupu velká část žáků potřebuje iskusi o roli bou A v řešení příklu. Je o to, b si uvěomili, že bo A je pouze pomoným ílem k nlezení rovni přímk že si ho můžeme volit libovolně. Ni nám te nebrání si ho zvolit o nejjenoušeji. Př. : N příme + = 0 nji bo, který je o přímk + = 0 vzálen. Souřnie bou A ; n určení vou neznámýh potřebujeme vě rovnie. Bo A leží n příme + = 0 vhovuje její rovnii + = 0. Bo A je o přímk + = 0 vzálen : p + bp b + Z první rovnie + = 0 osíme o ruhé =.
3 ( ) = = + = = / = hleáme čísl vzálená o o v. = = = = A [ ;] = = = ( ) = A [ ; ] Řešením příklu je vojie boů A [ ;] A [ ; ]. Pegogiká poznámk: Nejůležitějším místem příklu je sestvení rovni. Npíšeme pomínk n tbuli slovně, le sestvení rovni musí nejříve provést smosttně žái. Orienti v příklu může zlepšit pojmenování přímek. Žákům to nezkzuji, le ni to z ně neělám. Př. : Sestv soustvu rovni v přehozím příklu, poku si jko hlený bo zvolíme B ;. bo [ ] Souřnie bou B[ ; ] n určení vou neznámýh potřebujeme vě rovnie. Bo B leží n příme + = 0 vhovuje její rovnii + = 0. Bo A je o přímk + = 0 vzálen : p + bp b +. Použití bou B[ ; ] je rhlejší, le vžuje lepší orienti v oszování o rovni. Pegogiká poznámk: Pro některé stuent je přehozí oszení oprvu oříšek, zejmén fkt v první pomíne, k po oszení zůstne rovnie beze změn. Př. : Jsou án vě rovnoběžné přímk + 6 = 0 = 0. Nji přímku, která je s nimi rovnoběžná má o obou stejnou vzálenost. Příkl je možné řešit věm způsob: nltik npoobením konstruke. Anltiké řešení: Hlená přímk je rovnoběžná s přímkou = 0 je popsán rovnií + = 0. Koefiient určíme pomoí libovolného bou n této příme. Zvolíme si npříkl bo s nulovou -ovou souřnií: 0 + = 0 =. Bo je stejně vzálen o přímek = = 0.
4 = = + = + řešíme po intervleh: + 6 = / 0 ( ; + = = 0 K = ; + = + = = ; ) = + = 0 K = Hlenou přímkou je přímk + = 0. Konstrukční řešení: Rovnoběžku, která je osou pásu můžeme vést střeem libovolné úsečk, která má krjní bo n přímkáh + 6 = 0 = 0. Průsečík přímk + 6 = 0 s osou : = 0 Průsečík přímk = 0 s osou : 0 = 0 B. + = = stře úsečk AB: S AB 8. Rovnie rovnoběžk: + = 0, osíme bo Osou pásu je přímk + = 0. S AB = bo [ ] A. = bo 8 : = = Pegogiká poznámk: Stuenti mjí teneni uělt průměr z koefiientů v obou rovniíh, ož je možné pouze v přípě, že jsou obě rovnie postvené n stejném normálovém vektoru. V tkovém přípě, je smozřejmě o řešení nejrhlejší: + ( ) + = 0, = 0 = =. Př. : Nji všehn bo rovin, které mjí stejnou vzálenost o přímek p : + = 0 q : = 0. Z obrázku je zřejmé, že hlené bo tvoří vě přímk os obou úhlů, které přímk svírjí. q p
5 Zkusíme njít tto přímk pomoí pomínk ze zání. X ;. Hleáme bo [ ] + Vzálenost bou X [ ; ] o přímk p : + = 0 :. + Vzálenost bou X [ ; ] o přímk q : = 0 :. + + Obě vzálenosti se rovnjí: = / :. + = musíme ostrnit bsolutní honot. Dvě možnosti: umonění: ( ) ( ) + = - získáme stršné výrz n obou strnáh, ověřování si ušetříme, obě strn bl pře umoněním klné, ostrnění bsolutní honot: výhonější nepřibuou nám ruhé monin. Jk zjistíme, k ostrnit bsolutní honot, výrz uvnitř jsou složité. Jsou jen čtři možnosti, které rovnou vzkoušíme: ob výrz záporné: + = + = = 0 + = ob výrz klné: + = + = + = 0 (stejná přímk jko v přehozím přípě) levý výrz klný, prvý záporný: + = + = + = = 0 levý výrz záporný, prvý klný: + = + = + = + = 0 (stejná přímk jko v přehozím přípě) Množinu všeh boů rovin, které mjí stejnou vzálenost o přímek p : + = 0 q : = 0 tvoří vojie přímek + = 0 + = 0. Př. 6: Petáková: strn 9/vičení 6 strn 9/vičení 66 strn 9/vičení 68 strn 9/vičení Shrnutí:
Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku? ?
Přijímí řízení kemiký rok 07/08 B. stuium Kompletní znění testovýh otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 6 6? 6 86 8. Které
1.3.5 Řešení slovních úloh pomocí Vennových diagramů II
1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu
Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled
řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
2.5.9 Vztahy mezi kořeny a koeficienty kvadratické rovnice
59 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 57, 58 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin Příkld 8 9 zůstávjí n vičení nebo polovinu hodin při píseme + b + - zákldní
( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308
731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost
Spojitost funkce v bodě, spojitost funkce v intervalu
10.1.6 Spojitost funkce v bodě, spojitost funkce v intervlu Předpokldy: 10104, 10105 Př. 1: Nkresli, jk funkce f ( x ) dná grfem zobrzí vyznčené okolí bodu n ose x n osu y. Poté nkresli n osu x vzor okolí
( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306
7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu
Vzdálenosti přímek
5..11 Vzdálenosti přímek Předpokldy: 510 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
3.4.12 Konstrukce na základě výpočtu II
3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou
Vzdálenosti přímek
5..1 Vzdálenosti přímek Předpokldy: 511 Př. 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti dvou přímek nvrhni definici této vzdálenosti. Vzdálenost přímek má smysl, když přímky nemjí společné body tedy
1.3.6 Řešení slovních úloh pomocí Vennových diagramů I
1.3.6 Řešení slovníh úloh pomoí Vennovýh igrmů I Přepokly: 010304, řešení rovni Pegogiká poznámk: Řešení slovníh množinovýh úloh pomoí Vennovýh igrmů mně přije zjímvé přínosné z těhto ůvoů: je o první
Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy
Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)
Kolmost rovin a přímek
Kolmost rovin a přímek 1.Napište obecnou rovnici roviny, která prochází boem A[ 7; ;3] a je kolmá k přímce s parametrickým vyjářením x = + 3 t, y = t, z = 7 t, t R. Řešení: Hleanou rovinu si označíme α:
( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.
76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0
7 Analytická geometrie
7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.
{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507
58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní
Trojkloubový nosník. Rovinné nosníkové soustavy
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult
Koš Znění otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správná odpověď 1. 1 Které číslo doplníte místo otazníku: c
řijímaí řízení akaemiký rok 06/07 B. stuium Kompletní znění testovýh otázek matematika Koš Znění otázk Opověď a) Opověď ) Opověď ) Opověď ) Správná. Které číslo oplníte místo otazníku: 7 5 8 6 9 7?. Které
2.2.9 Grafické řešení rovnic a nerovnic
..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci
Rovinné nosníkové soustavy III Příhradový nosník
Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená
Analytická geometrie lineárních útvarů
) Na přímce: a) Souřadnice bodu na přímce: Analtická geometrie lineárních útvarů Bod P nazýváme počátek - jeho souřadnice je P [0] Nalevo od počátku leží čísla záporná, napravo čísla kladná. Každý bod
Konstrukce na základě výpočtu I
.4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli
Průřezové charakteristiky základních profilů.
Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové
Větu o spojitosti a jejich užití
0..7 Větu o spojitosti jejich užití Předpokldy: 706, 78, 006 Pedgogická poznámk: Při proírání této hodiny je tře mít n pměti, že všechny věty, které studentům sdělujete z jejich pohledu neuvěřitelně složitě
( ) ( ) Sinová věta II. β je úhel z intervalu ( 0;π ). Jak je vidět z jednotkové kružnice, úhly, pro které platí. Předpoklady:
4.4. Sinová vět II Předpokldy 44 Kde se stl hy? Námi nlezené řešení je správné, le nenšli jsme druhé hy ve hvíli, kdy jsme z hodnoty sin β určovli úhel β. β je úhel z intervlu ( ;π ). Jk je vidět z jednotkové
2.1 - ( ) ( ) (020201) [ ] [ ]
- FUNKCE A ROVNICE Následující zákldní znlosti je nezbytně nutné umět od okmžiku probrání ž do konce studi mtemtiky n gymnáziu. Vyždováno bude porozumění schopnost plikovt ne pouze mechnicky zopkovt. Některé
Konstrukce na základě výpočtu III
3.3.3 Konstruk n záklě výpočtu III Přpokly: 0303 Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku
Další polohové úlohy
5.1.16 alší polohové úlohy Předpoklady: 5115 Průniky přímky s tělesem Př. 1: Je dána standardní krychle. Sestroj průnik přímky s krychlí pokud platí: leží na polopřímce, =, leží na polopřímce, =. Příklad
4.2.1 Goniometrické funkce ostrého úhlu
.. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α
4.4.3 Kosinová věta. Předpoklady:
443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější
Stereometrie metrické vlastnosti 01
Stereometrie metrické vlstnosti 01 Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
7.3.2 Parametrické vyjádření přímky II
7 Paraetriké vyjádření příky II Předpoklady 07001 Pedagogiká poznáka V podstatě pro elou hodinu platí že příklady by neěly působit žáků větší probléy Pokud se probléy objeví (stává se to často) je třeba
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon
ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Ampérův zákon Peter Dourmashkin MIT 26, překla: Jan Pacák (27) Obsah 5 AMPÉRŮV ZÁKON 3 51 ÚKOLY 3 52 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ 3 ÚLOHA 1: VÁLCOVÝ PLÁŠŤ
Zlomky závěrečné opakování
2.2. Zlomky závěrečné opkování Přepokly: 02022 Př. : Vypočti. ) + b) 8 2 4 0 c) 2 4 2 : : 4 24 ) 2 22 4 2 2 9 + 0 9 ) + = + = = 8 2 8 2 2 24 24 8 = 4 2 2 = 4 4 2 4 2 b) 0 = = = 2 4 8 2 4 4 c) 4 2 4 24
7.5.3 Hledání kružnic II
753 Hledání kružnic II Předpoklady: 750 Pedagogická poznámka: Tato hodina patří mezi vůbec nejtěžší Není reálné předpokládat, že by většina studentů dokázala samostatně přijít na řešení, po čase na rozmyšlenou
Konstrukce na základě výpočtu II
3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky
Definice limit I
08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí
Říkáme, že přímka je tečnou elipsy. p T Přímka se protíná s elipsou právě v jednom bodě.
7.5. Elips přímk Předpokldy: 7504, 7505, 7508 Př. : epiš všechny možné vzájemné polohy elipsy přímky. Ke kždému přípdu nkresli obrázek. Z obrázků je zřejmé, že existují tři přípdy vzájemné polohy kružnice
Přijímací řízení akademický rok 2015/2016 Bc. studium Kompletní znění testových otázek matematika
Přijímcí řízení kemický rok 0/06 Bc. stuium Kompletní znění testových otázek mtemtik Koš Znění otázk Opověď ) Opověď ) Opověď c) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 7 6 8 6?. Které
2.8.5 Lineární nerovnice s parametrem
2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první
VZÁJEMNÁ POLOHA DVOU PŘÍMEK
VZÁJEMNÁ POLOHA DVOU PŘÍMEK VZÁJEMNÁ POLOHA DVOU PŘÍMEK p: a x b y c 0 q: a x b y c 0 ROVNOBĚŽNÉ PŘÍMKY (RŮZNÉ) nemají žádný společný bod, můžeme určit jejich vzdálenost, jejich odchylka je 0. Normálové
Výraz. podmínky (B) 1 (E) (A) 56 (B) 144 (C) 512 (D) 2 011 (E) Taková čísla neexistují. Počet všech přirozených čísel, která vyhovují
. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n +. = = n+ 3, 3n + n je totožná s posloupností: n n n = Dvid hrje kždý všední den fotbl v sobotu i v neděli chodí do posilovny. Dnes se sportovně
4. cvičení z Matematiky 2
4. cvičení z Mtemtiky 2 14.-18. březn 2016 4.1 Njděte ity (i (ii (iii (iv 2 +(y 1 2 +1 1 2 +(y 1 2 z 2 y 2 z yz 1 2 y 2 (,y (0,0 2 +y 2 2 y 2 (,y (0,0 2 +y 3 (i Pro funkci f(, y = 2 +(y 1 2 +1 1 2 +(y
7.2.12 Vektorový součin I
7 Vektorový součin I Předpoklad: 708, 7 Při násobení dvou čísel získáváme opět číslo Skalární násobení vektorů je zcela odlišné, protože vnásobením dvou vektorů dostaneme číslo, ted něco jiného Je možné
Rovinné nosníkové soustavy Gerberův nosník
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité
(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a
Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:
Hyperbola a přímka
7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B
Parabola a přímka
755 Parabola a přímka Předpoklad: 755, 756, 75, 75, 753 Pedagogická poznámka: Na probrání celého obsahu je třeba tak jeden a půl vučovací hodin Pokud tolik času nemáte, je potřeba buď rchle proběhnout
Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1
Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí
Logaritmické rovnice I
.9.9 Logritmické rovnice I Předpokldy: 95 Pedgogická poznámk: Stejně jko u eponenciálních rovnic rozkldů n součin bereme ritmické rovnice jko nácvik výběru metody. Sestvujeme si rzenál metod n konci máme
Hledání hyperbol
759 Hledání hyperol Předpokldy: 756, 757, 758 Pedgogická poznámk: Některé příkldy jsou zdlouhvější, pokud mám dosttek čsu proírám tuto následující hodinu ěhem tří vyučovcích hodin Př : Npiš rovnici hyperoly,
13. Soustava lineárních rovnic a matice
@9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky
. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
7.3.5 Obená rovnie přímky Předpoklady: 7303 Př. 1: Jsou dány body A[ 1; 1] a B [ 1;3]. Najdi parametriké vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadni a najdi její další vyjádření.
5.1.5 Základní vztahy mezi body, přímkami a rovinami
5.1.5 Zákldní vzthy mezi body, přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů přímk - jednorozměrná podmnožin prostoru (množin bodů), rovin - dvojrozměrná podmnožin prostoru (množin
Neurčité výrazy
.. Neurčité výrzy Předpokldy: Př. : Vypočti ity: ) d) ) d) neeistuje,, Zjímvé. Získli jsme čtyři nprosto rozdílné výsledky, přestože přímým doszením do všech výrzů získáme to smé: výrz může při výpočtu
Vzdálenost roviny a přímky
511 Vzdálenost roviny přímky Předpokldy: 510 Př 1: Rozhodni, kdy má smysl uvžovt o vzdálenosti přímky od roviny, nvrhni definici této vzdálenosti Uvžovt o vzdálenosti přímky roviny můžeme pouze v přípdě,
Rovinné nosníkové soustavy
Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter
X = A + tu. Obr x = a 1 + tu 1 y = a 2 + tu 2, t R, y = kx + q, k, q R (6.1)
.6. Analtická geometrie lineárních a kvadratických útvarů v rovině. 6.1. V této kapitole budeme studovat geometrické úloh v rovině analtick, tj. lineární a kvadratické geometrické útvar vjádříme pomocí
3.2.7 Příklady řešené pomocí vět pro trojúhelníky
..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí
SMR 2. Pavel Padevět
SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie
5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):
5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit
Stereometrie metrické vlastnosti
Stereometrie metrické vlstnosti Odchylk dvou přímek Odchylk dvou různoběžek je velikost kždého z ostrých nebo prvých úhlů, které přímky spolu svírjí. Odchylk rovnoběžek je 0. Odchylk mimoběžných přímek
5.1.5 Základní vztahy mezi body přímkami a rovinami
5.1.5 Zákldní vzthy mezi body přímkmi rovinmi Předpokldy: 510 Prostor má tři rozměry, skládá se z bodů. Přímk - jednorozměrná podmnožin prostoru (množin bodů) Rovin - dvojrozměrná podmnožin prostoru (množin
+ c. n x ( ) ( ) f x dx ln f x c ) a. x x. dx = cotgx + c. A x. A x A arctgx + A x A c
) INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem neurčitého integrálu Je dán funkce Pltí všk tké F tk, y pltilo F ( ) f ( ) Zřejmě F ( ), protože pltí, 5,, oecně c, kde c je liovolná kon- stnt f ( ) nším
Úlohy školní klauzurní části I. kola kategorie C
52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.
3. Kvadratické rovnice
CZ..07/..08/0.0009. Kvdrtické rovnice se v tetice oznčuje lgebrická rovnice druhého stupně, tzn. rovnice o jedné neznáé, ve které neznáá vystupuje ve druhé ocnině (²). V zákldní tvru vypdá následovně:
( a) Okolí bodu
0..5 Okolí bodu Předpokldy: 40 Pedgogická poznámk: Hodin zjevně překrčuje možnosti většiny studentů v 45 minutách. Myslím, že nemá cenu přethovt do dlší hodiny, příkldy s redukovnými okolími nejsou nutné,
5.2.4 Kolmost přímek a rovin II
5..4 Kolmost přímek rovin II Předpokldy: 503 Př. 1: Zformuluj stereometrické věty nlogické k plnimetrické větě: ným bodem lze v rovině k dné přímce vést jedinou kolmici. Vět: ným bodem lze v prostoru k
Název školy: ZŠ A MŠ ÚDOLÍ DESNÉ, DRUŽSTEVNÍ 125, RAPOTÍN Název projektu: Ve svazkové škole aktivně - interaktivně Číslo projektu:
Název školy: ZŠ MŠ ÚOLÍ ESNÉ, RUŽSTEVNÍ 125, RPOTÍN Název projektu: Ve svzkové škole ktivně - interktivně Číslo projektu: Z107/1400/213465 utor: Mgr Monik Vvříková Temtiký okruh: Geometrie 7 Název:VY_32_INOVE_16_Čtyřúhelníky
- Ohybový moment zleva:
příkl 1 q = 10k/m =0 1) Ohněte směry rekí z pomínek rovnováhy určete jejih velikost, proveďte kontrolu ) ykreslete průěhy vnitřníh sil jejih honoty určete ve všeh vyznčenýh oeh,,. R z R Reke z pomínek
Vzdálenost rovin
510 zdálenost rovin ředpokldy: 509 Kdy má cenu uvžovt o vzdálenosti dvou rovin? ouze, když jsou rovnoběžné, jink se protínjí ř 1: Nvrhni definici vzdálenosti dvou rovnoběžných rovin Z vzdálenost dvou rovnoběžných
a a Posloupnost ( ) je totožná s posloupností: (A) 9 (B) 17 (C) 21 (D) 34 (E) 64 (B) (C) (E)
. Když c + d + bc + bd = 68 c+ d = 4, je + b+ c+ d rovno: 9 7 34 64 4. Posloupnost ( ) =, n+ = 3 =, n+ n = 3 3 =, n+ = = 3, n+ = n + 3n + n je totožná s posloupností: n n =. n+ = 3, = n Povrch rotčního
6 Řešení soustav lineárních rovnic rozšiřující opakování
6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i
( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t
7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU
LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y
7.2.10 Skalární součin IV
7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně
Rovinné nosníkové soustavy II h=3
Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové
Lineární funkce, rovnice a nerovnice
Lineární funkce, rovnice a nerovnice 1. Lineární funkce 1.1 Základní pojmy Pojem lineární funkce Funkce je předpis, který každému číslu x z definičního oboru funkce přiřadí právě jedno číslo y Obecně je
Hyperbola, jejíž střed S je totožný s počátkem soustavy souřadnic a jejíž hlavní osa je totožná
Hyperol Hyperol je množin odů, které mjí tu vlstnost, že solutní hodnot rozdílu jejich vzdáleností od dvou dných různých odů E, F je rovn kldné konstntě. Zkráceně: Hyperol = {X ; EX FX = }; kde symolem
Konstrukce na základě výpočtu I
..11 Konstrukce n zákldě výpočtu I Předpokldy: Pedgogická poznámk: Původně yl látk rozepsnou do dvou hodin, v první ylo kromě dělení úseček zřzen i čtvrtá geometrická úměrná. Právě její prorání se nestíhlo,
II. INTEGRÁL V R n. Obr. 9.1 Obr. 9.2 Integrál v R 2. z = f(x, y)
. NTEGRÁL V R n Úvod Určitý integrál v intervlu, b Pro funki f :, b R jsme definovli určitý integrál jko číslo, jehož hodnot je obshem obrze znázorněného n obrázíh. Pro funki f : R n R budeme zvádět integrál
KVADRATICKÁ FUNKCE (vlastnosti, grafy)
KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,
Parametrická rovnice přímky v rovině
Parametrická rovnice přímky v rovině Nechť je v kartézské soustavě souřadnic dána přímka AB. Nechť vektor u = B - A. Pak libovolný bod X[x; y] leží na přímce AB právě tehdy, když vektory u a X - A jsou
Technická kybernetika. Obsah
28.02.207 Akemiký rok 206/207 Připrvil: Rim Frn Tehniká kyernetik Logiké řízení 2 Osh Logiké řízení. Booleov lger. Zání logiké funke. Syntéz knonikého tvru kominční logiké funke. Sestvení logiké funke
Zjednodušená styčníková metoda
Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového
Určete a graficky znázorněte definiční obor funkce
Určete a grafick znázorněte definiční obor funkce Příklad. z = ln( + ) Řešení: Vpíšeme omezující podmínk pro jednotlivé části funkce. Jmenovatel zlomku musí být 0, logaritmická funkce je definovaná pro
Vektory II. Předpoklady: Umíme už vektory sčítat, teď zkusíme opačnou operací rozklad vektoru na složky.
5 Vektor II Předpoklad: 4 Umíme už vektor sčítat, teď zkusíme opačnou operací rozklad vektoru na složk Př : Na obrázku je nakreslena síla Nakresli do obrázku síl a tak, ab platilo = + Kolik má úloha řešení?
Rovinné nosníkové soustavy Gerberův nosník
Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Opkování
Geometrické vyhledávání
mnohoúhelníky a jejich vlastnosti lokalizace bodu vůči konvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či vnější lokalizace bodu vůči nekonvexnímu mnohoúhelníku rozhodnutí, zda je bod vnitřní či
Analytická geometrie kvadratických útvarů v rovině
Analytická geometrie kvadratických útvarů v rovině V následujícím textu se budeme postupně zabývat kružnicí, elipsou, hyperbolou a parabolou, které souhrnně označujeme jako kuželosečky. Současně budeme
Jmenovatele upravíme na součin a ze součinu určíme podmínky, pro které mají dané výrazy smysl.
Mtmtik pro.ročník -. pololtí Kolktiv poů FZŠ Bričkov 88, Pr.. Lomné výrz Lomný výrz j poíl vou výrzů. Poíl píšm v tvru zlomku. Jmnovtl musí ýt různý o nul - musím určit pomínk, pro ktré mjí né výrz smsl.
. Najdi parametrické vyjádření přímky AB. Nakresli přímku AB do kartézské soustavy souřadnic a najdi její další vyjádření.
735 Obená rovnie přímky I Předpoklady: 070304 Pedagogiká poznámka: Úvodní příklad se nesmí příliš prodlužovat Nemá enu ztráet čas tím, že si většina žáků nepamatuje lineární funke Raději ryhle napíši řešení
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII
PŘÍMKA A JEJÍ VYJÁDŘENÍ V ANALYTICKÉ GEOMETRII V úvodu analytické geometrie jsme vysvětlili, že její hlavní snahou je popsat geometrické útvary (body, vektory, přímky, kružnice,...) pomocí čísel nebo proměnných.
ROTAČNÍ PLOCHY. 1) Základní pojmy
ROTAČNÍ PLOCHY 1) Základní pojmy Rotační plocha vznikne rotací tvořicí křivky k kolem osy o. Pro zobrazení a konstrukce bude výhodnější nechat rotovat jednotlivé body tvořicí křivky. Trajektorii rotujícího
Grafické řešení úloh LP se dvěma neznámými
. přenáška Grafické řešení úloh LP se věma nenámými Moel úlohy lineárního programování, který obsahuje poue vě nenámé, le řešit graficky v rovině pravoúhlých souřaných os. V této rovině se nejprve obraí
+ 2y. a y = 1 x 2. du x = nxn 1 f(u) 2x n 3 yf (u)
Diferenciální počet příklad 1 Dokažte, že funkce F, = n f 2, kde f je spojitě diferencovatelná funkce, vhovuje vztahu + 2 = nf ; 0 Řešení: Označme u = 2. Pak je F, = n fu a platí Podle vět o derivaci složené
Fotogrammetrie. Rekonstrukce svislého snímku
Fotogrammetrie Rekonstrukce svisléo snímku Zaání: prove te úplnou rekonstrukci svisléo snímku anéo objektu, je-li známo, že vstupní část má čtvercový půorys o élce strany s = 2. pro větší přelenost nejprve
Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.
Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické
( ) 1.7.8 Statika I. Předpoklady: 1707
.7.8 Sik I Přeokly: 707 Peoická oznámk: Hoinu rozěluji n vě čási. V rvní čási (5 minu) očíáme rvní čyři říkly, ve ruhé (0 minu) zývjící ři. Př. : N koncích yče o hmonosi 0 k élce m jsou zvěšen závží o