6 Řešení soustav lineárních rovnic rozšiřující opakování

Rozměr: px
Začít zobrazení ze stránky:

Download "6 Řešení soustav lineárních rovnic rozšiřující opakování"

Transkript

1 6 Řšní soustv linárníh rovni rozšiřujíí opkování Tto kpitol j rozšiřujíí ěžné učivo. Poku uvné mtoy zvlánt, zkrátí vám to čs potřný k výpočtům. Nní to všk učivo nzytné, řšit soustvy linárníh rovni lz i známými mtomi: oszoví sčítí. 6. Příkl: Řšt soustvu vou rovni pro vě nznámé ) mtoou oszoví ) mtoou sčítí x x y y Řšní: [,] Mtoy jsou opkováním z kvrty kvinty. Uváím j n připomnutí: mto oszoví: vyrm si rovnii z ní vypočtm jnu proměnnou (v tomto přípě j njjnoušší vypočítt z ruhé rovni proměnnou y); získám vzth mzi nznámými y = x - tu osím o zývjíí rovni x + (x - ) = x - = x = x = výslk osím vzthu vypočtm y = x = 9 = mto sčítí jnu no oě rovni vynásoím vhonými čísly tk, yhom s po sčtní oou rovni zvili jné proměnné x + y = x + y = x y = / 9x y = x = z vzniklé rovni vypočítám nznámou x = osím o jné rovni vypočtm ruhou nznámou, npř. + y = => y = zkoušk Nílnou součástí při řšní rovni jjih soustv j zkoušk. Jjí správné provní j oszní o lvé strny postupnými výpočty s ostt k honotě n prvé strně L =. +. = = = P L =. = 9 = = P Mnozí z vás s příliš spoléhát n svou nomylnost n tzv. kvivlntní úprvy. Ty si xistují, l př vlstními omyly hymi vás nohrání. Proto vžyky ěljt zkoušky spoň pro s v uhu. Určitě tím ni nztrtít můžt ty jn získt.

2 6. ini: trminnt ruhého řáu Nhť,,, R jsou rálná čísl. Tulk rovn číslu -. s nzývá trminnt ruhého řáu j 6. Vět: Crmrovo prvilo Nhť,,,,, R jsou rálná čísl x x j soustv vou linárníh rovni pro vě nznámé x,y R. Oznčm náslujíí trminnty x y, y y trminnt s nzývá trminnt soustvy. Pk pltí: J-li, pk xistuj jiné řšní x = x /, y = y /. Jsou-li všhny trminnty rovny nul = x = y =, pk má soustv nkončně mnoho řšní, ktré s určí z něktré rovni. J-li = zárovň x no y (j-li trminnt soustvy rovn nul spoň jn z trmnintů x, y různý o nuly), pk soustv nmá řšní. 6. Poznámk: výhoné uspořáání x y x = -/- = y = -/- = 6. Příkly: x y x y x y x y x y 8 x 6 y x y x y Řšní: [/,-] [-/,] [+y,y]

3 6.6 ini: trminnt třtího řáu Nhť,,,,,,g,h,i R jsou rálná čísl. Tulk třtího řáu j rovn číslu i+g+h-h-i-h. 6. Poznámk: g h i i g g h h - h - i - h i s nzývá trminnt 6.8 Příkly: 6 8

4 6.9 Gussov liminční mto ukážm si ji n příklu (j o sčítí mtou jn přsně orgnizovnou) x - y z u = -8 x - y + z + u = x + y - z + u = x + y + z - u = řšní: njprv si vypíšm koiinty ruhé strny o tulky zvné mti; kkoiinty nznámé hzky po s (sloup pro x, pro y, pro z, pro u prvé strny). 8 Nyní můžm řáky přhzovt, násoit nnulovým číslm no sčítt (očítt) jnotlivé řáky mzi sou. Pozor, při sčítání vou řáku jn zůstn v tul z změny ruhý u nhrzn součtm. Cílm j ostt po igonálu smé nuly. V nšm přípě. řák ponhám z změny osttní řáky změním tk, ž o nih očtm řák první. Jké jsm provl úprvy vžyky npíšu u příslušného řáku z uprvnou mtii; číslování řáků s vžy vzthuj n přhozí mtii. 8 8 () 8 () () () () () () Po igonálou mám smé nuly. Přpíšm nyní z mti zpět soustvu rovni x -y z u = -8 => x = / y +u = => y = z +u = => z = u = => u = / Z poslní rovni snno vypočítám nznámou u, osím ji o rovni n ní vypočítám nznámou z, t. (o přhozí rovni osím již vypočítné nznámé vypočtm zývjíí nznámou). V nšm příklu j výslkm uspořáná čtvři [/,,, /] () 8 () () () () () () () () ()

5 6. Příkl: Řšt soustvy rovni, výslk j uvn po soustvou. x y + 6z = x - z + u = y - 6z + u = x + 9y - u = 9 x + y = x + v + t = y + z + v = y - v + t = 9 z + u = v - t + u = - [, 8/, 9/, 9/] [,,, -,, ] x + y z + u = x u = - y + z = x + y = - x y + 6z = x - z + u = y - 6z + u = x + 9y - u = 9 [,-/,/,] [6,,, ] KONEC

3.4.12 Konstrukce na základě výpočtu II

3.4.12 Konstrukce na základě výpočtu II 3.4. Konstruk n záklě výpočtu II Přpokly: 34 Př. : J án úsčk o jnotkové él úsčky o élkáh,, >. Nrýsuj: ) úsčku o él = +, ) úsčku o él Při rýsování si élky úsčk, vhoně zvol. =. Prolém: O výrzy ni náhoou

Více

Rovinné nosníkové soustavy II h=3

Rovinné nosníkové soustavy II h=3 Stvní sttik,.ročník klářského stui Mimostyčníkové ztížní prutu V prutu č. vznikn v ůslku mimostyčníkového ztížní rovněž V M. q konst. Rovinné nosníkové soustvy II h Rovinný klouový příhrový nosník Mimostyčníkové

Více

Konstrukce na základě výpočtu III

Konstrukce na základě výpočtu III 3.3.3 Konstruk n záklě výpočtu III Přpokly: 0303 Př. : J án oélník o strnáh,. Sstroj čtvr o stjném oshu. Řšní přhozíh příklů vyházlo z vzorů popíšm si zání vzorm. Osh oélníku: S =, osh čtvr S = hlám élku

Více

Jmenovatele upravíme na součin a ze součinu určíme podmínky, pro které mají dané výrazy smysl.

Jmenovatele upravíme na součin a ze součinu určíme podmínky, pro které mají dané výrazy smysl. Mtmtik pro.ročník -. pololtí Kolktiv poů FZŠ Bričkov 88, Pr.. Lomné výrz Lomný výrz j poíl vou výrzů. Poíl píšm v tvru zlomku. Jmnovtl musí ýt různý o nul - musím určit pomínk, pro ktré mjí né výrz smsl.

Více

Zjednodušená styčníková metoda

Zjednodušená styčníková metoda Stvní sttik, 1.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Zjnoušná styčníková mto Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového

Více

5.2. Určitý integrál Definice a vlastnosti

5.2. Určitý integrál Definice a vlastnosti Určitý intgrál Dfinic vlstnosti Má-li spojitá funkc f() n otvřném intrvlu I primitivní funkci F(), pk pro čísl, I j dfinován určitý intgrál funkc f() od do vzthm [,, 7: [ F( ) = F( ) F( ) f ( ) d = (6)

Více

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA

1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA 1. ÚPRAVY ALGEBRAICKÝCH VÝRAZŮ V REÁLNÉM OBORU 1.1. ZLOMKY A ABSOLUTNÍ HODNOTA V této kpitole se ozvíte: co rozumíme lgebrickým výrzem; jk jsou efinovány zlomky jké záklní operce s nimi prováíme; jk je

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

Příhradové konstrukce - průsečná metoda v Ritterově úpravě

Příhradové konstrukce - průsečná metoda v Ritterově úpravě Příhrové konstruk - průsčná mto v Rittrově úprvě vyřšt síly v pruth u soustvy n orázku. goniomtri os = /( + ) / = 0,6 γ β () sin = /( + ) / = 0,8 (h) β osβ = /[ + ] / sinβ = /[ + ] / = 0, 987 = 0, 6 γ

Více

Statistika a spolehlivost v lékařství Spolehlivost soustav

Statistika a spolehlivost v lékařství Spolehlivost soustav Sttistik solhlivost v lékřství Solhlivost soustv 1 Soustvy s ví-stvovými rvky Něktré rvky (nř. rlé, vntily) slouží jko sínč rouu/klin/lynu mohou s orouht u v otvřném no zvřném stvu. Tyto vě oruhy j vhoné

Více

ověření Písemné ověření a ústní zdůvodnění

ověření Písemné ověření a ústní zdůvodnění PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 42 hoin (z PK1 60 hoin) + zkoušk (8hoin) Zčátk profsního vzělávání 26. 4. 2014; Dtum ukonční 15. 6. 2014 Rozpis výuky Miroslv Chumhl, soot 3.

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST

26 l Základní informace. 27 l RDLTS. 28 l DRUE. 29 l DRUF. 30 l DRUL. 31 l RDST 26 l Záklní informc 27 l RDLTS 28 l DRUE 29 l DRUF 30 l DRUL 31 l RDST Záklní informc 26 Ztížitlnost uzlového ou: Pro ztížitlnost uzlového (nulového) ou zpojní o hvězy j tř vzít o úvhy náslující skutčnosti,

Více

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech).

29. PL Čtyřúhelníky, mnohoúhelníky Čtyřúhelník = rovinný útvar, je tvořen čtyřmi úsečkami, které se protínají ve čtyřech bodech (vrcholech). .ročník 9. PL Čtyřúhlníky, mnohoúhlníky Čtyřúhlník = rovinný útvr, j tvořn čtyřmi úsčkmi, ktré s protínjí v čtyřh oh (vrholh). Pozn.: Njčstěji s používá znční,,, pro vrholy,,,, pro strny α, β, γ, δ pro

Více

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled

Přijímací řízení akademický rok 2011/12 Kompletní znění testových otázek matematický přehled řijímí řízení kemiký rok / Kompletní znění testovýh otázek mtemtiký přehle Koš Znění otázky Opověď ) Opověď ) Opověď ) Opověď ) Správná opověď. Které číslo oplníte místo otzníku? 9 7?. Které číslo oplníte

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33

4. Determinanty. Výpočet: a11. a22. a21. a12. = a 11 a 22 a 33 + a 12 a 23 a 31 + a 13 a 21 a 32 a 13 a 22 a 31. a 11 a 23 a 32 a 12 a 21 a 33 . Determinnty Determinnt, znčíme deta, je číslo přiřzené čtvercové mtici A. Je zveden tk, by pro invertibilní mtici byl nenulový pro neinvertibilní mtici byl roven nule. Výpočet: = + = + + - - - + + +

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvšování kvlit výuk tehnikýh oorů Klíčová ktivit IV. Inove zkvlitnění výuk směřujíí k rozvoji mtemtiké grmotnosti žáků střeníh škol Tém IV.. Algeriké výrz, výrz s moninmi omoninmi Kitol Honot výrzu RNDr.

Více

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů.

Jaký vliv na tvar elipsy má rozdíl mezi délkou provázku mezi body přichycení a vzdáleností těchto bodů. 7.5.7 lips Přdpokldy: 7501 lips = rozšlápnutá kružnic. Jk ji sstrojit? Zhrdnická konstrukc lipsy (tkto s vytyčují záhony): Vzmm provázk n koncích ho přidělám tk, y nyl npnutý. Klcíkm provázk npnm tk, y

Více

Stavební mechanika 1 (K132SM01)

Stavební mechanika 1 (K132SM01) Stní mnik 1 (K132SM01) Přnáší: o. ng. Mtěj Lpš, P.D. Ktr mniky K132 místnost D2034 konzult Čt 9:30-11:00 -mil: mtj.lps@fs.ut.z ttp://m.fs.ut.z/~lps/ting/inx.tml Řáný trmín zápočtoé písmky j ÚTERÝ 25. un

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ h is D ur & # # is h is A ur & # # # h is is is E ur &

Více

Obsah rovinného obrazce

Obsah rovinného obrazce Osh rovinného orzce Nejjednodušší plikcí určitého integrálu je výpočet oshu rovinného orzce. Zčneme větou. Vět : Je-li funkce f spojitá nezáporná n n orázku níže roven f ( ) d. ;, je osh rovinného orzce

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

Lineární nerovnice a jejich soustavy

Lineární nerovnice a jejich soustavy teorie řešené úlohy cvičení tipy k mturitě výsledky Lineární nerovnice jejich soustvy Víš, že pojem nerovnice není opkem pojmu rovnice? lineární rovnice má většinou jediné řešení, kdežto lineární nerovnice

Více

Technická kybernetika. Obsah

Technická kybernetika. Obsah 28.02.207 Akemiký rok 206/207 Připrvil: Rim Frn Tehniká kyernetik Logiké řízení 2 Osh Logiké řízení. Booleov lger. Zání logiké funke. Syntéz knonikého tvru kominční logiké funke. Sestvení logiké funke

Více

Úlohy školní klauzurní části I. kola kategorie C

Úlohy školní klauzurní části I. kola kategorie C 52. ročník mtemtické olympiády Úlohy školní kluzurní části I. kol ktegorie 1. Odtrhneme-li od libovolného lespoň dvojmístného přirozeného čísl číslici n místě jednotek, dostneme číslo o jednu číslici krtší.

Více

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1 Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí

Více

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II

1.3.5 Řešení slovních úloh pomocí Vennových diagramů II 1.3.5 Řešení slovníh úloh pomoí Vennovýh igrmů II Přepokly: 1304 Pegogiká poznámk: Ieální je poku tto hoin vyje n vičení. Postup stuentů je totiž velmi iniviuální ěljí velké množství hy, oěht elou tříu

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Manuál kouče. www.mindset.cz

Manuál kouče. www.mindset.cz Mnuál kouč www.minst.z Osh: A Li Cohing D Sorgniz Vstupní otzník strn 4 Dotzník péč o s strn 65 Co o koučinku očkávát? strn 7 Dnní návyky strn 69 Mti nléhvé & ůlžité strn 73 Mti priority činností strn

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti

Evropská unie Evropský sociální fond Praha & EU: Investujeme do vaší budoucnosti Evropská unie Evropský soiální fon Prh & EU: Investujeme o vší uounosti ávrh čítče jko utomtu Osh ÁVRH ČÍAČE JAKO AUOMAU.... SYCHROÍ A ASYCHROÍ AUOMA..... Výstupy utomtu mohou ýt přímo ity pměti stvu.....

Více

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306

( t) ( t) ( t) Nerovnice pro polorovinu. Předpoklady: 7306 7.3.8 Nerovnice pro polorovinu Předpokldy: 736 Pedgogická poznámk: Příkld 1 není pro dlší průěh hodiny důležitý, má smysl pouze jko opkování zplnění čsu při zpisování do třídnice. Nemá smysl kvůli němu

Více

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby:

Jak již bylo uvedeno v předcházející kapitole, můžeme při výpočtu určitých integrálů ze složitějších funkcí postupovat v zásadě dvěma způsoby: .. Substituční metod pro určité integrály.. Substituční metod pro určité integrály Cíle Seznámíte se s použitím substituční metody při výpočtu určitých integrálů. Zákldní typy integrálů, které lze touto

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Zvyšování kvality výuky technických oborů

Zvyšování kvality výuky technických oborů Zvyšování kvlity výuky technických oorů Klíčová ktivit IV. Inovce zkvlitnění výuky směřující k rozvoji mtemtické grmotnosti žáků středních škol Tém IV.. Algerické výrzy, výrzy s mocninmi odmocninmi Kpitol

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

Odraz na kulové ploše Duté zrcadlo

Odraz na kulové ploše Duté zrcadlo Odz n kulové ploše Duté zcdlo o.. os zcdl V.. vchol zcdl S.. střed zcdl (kul. ploch).. polomě zcdl (kul. ploch) Ppsek vchází z odu A n ose zcdl po odzu n zcdle dopdá do nějkého odu B n ose. Podle oázku

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant. Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi

Více

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule.

Lokální extrémy. 1. Příklad f(x, y) = x 2 + 2xy + 3y 2 + 5x + 2y. Spočteme parciální derivace a položíme je rovny nule. Lokální xtrémy - řšné příklady 1 Lokální xtrémy Vyštřt lokální xtrémy násldujících funkcí víc proměnných: 1 Příklad fx, y = x + xy + 3y + 5x + y Spočtm parciální drivac a položím j rovny nul Vznikn soustava

Více

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ

ŘEŠENÍ OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI POMOCÍ GRAFŮ SIGNÁLOVÝCH TOKŮ ŘEŠENÍ OBVODŮ S ANSMPEDANČNÍM OPEAČNÍM ESLOVAČ POMOÍ AFŮ SNÁLOVÝH OŮ ÚVOD Dlior Biolek, VA Brno rnsimpenční operční zesilovče (O) jsou perspektivní tegrovné ovoy, které jsou svými přenosovými vlstnostmi

Více

Studijní materiály ke 4. cvičení z předmětu IZSE

Studijní materiály ke 4. cvičení z předmětu IZSE ZSE 8/9 Studijní mteriály ke 4 vičení z předmětu ZSE Předkládný studijní mteriál je určen primárně studentům kterým odpdlo vičení dne 4 9 (velikonoční pondělí) Ke studiu jej smozřejmě mohou využít i studenti

Více

Křivkový integrál prvního druhu verze 1.0

Křivkový integrál prvního druhu verze 1.0 Křivkový integrál prvního druhu verze. Úvod Následující text popisuje výpočet křivkového integrálu prvního druhu. Měl by sloužit především studentům předmětu MATEMAT k příprvě n zkoušku. Mohou se v něm

Více

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1

= = Řešení: Pro příspěvek k magnetické indukci v bodě A platí podle Biot-Savartova zákona. d 1 Mgntiké pol 8 Vypočtět mgntikou inuki B kuhové smyčky o poloměu 5 m n jjí os symti v válnosti 1 m o oviny smyčky, jstliž smyčkou potéká lktiký pou 1 A Řšní: Po příspěvk k mgntiké inuki v boě A pltí pol

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

Durové stupnice s křížky

Durové stupnice s křížky Durové stupni s křížky poří + přznmnání: & # # # # # # # # # # # # # ## # # # ## # # # # ## # # G ur D ur A ur E ur H ur Fis ur Cis ur G ur & # ġ is D ur & # # is is A ur & # # # is is is E ur & # # #

Více

1.3.6 Řešení slovních úloh pomocí Vennových diagramů I

1.3.6 Řešení slovních úloh pomocí Vennových diagramů I 1.3.6 Řešení slovníh úloh pomoí Vennovýh igrmů I Přepokly: 010304, řešení rovni Pegogiká poznámk: Řešení slovníh množinovýh úloh pomoí Vennovýh igrmů mně přije zjímvé přínosné z těhto ůvoů: je o první

Více

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole.

Příklad 33 : Energie elektrického pole deskového kondenzátoru. Ověření vztahu mezi energií, kapacitou a veličinami pole. Přík 33 : Energie eektrického poe eskového konenzátoru. Ověření vzthu mezi energií, kpcitou veičinmi poe. Přepokáné znosti: Eektrické poe kpcit eskového konenzátoru Přík V eskovém konenzátoru je eektrické

Více

18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16

18ST - Statika. 15. dubna Dan et al. (18ST) Vnitřní síly na lomených nosnících 15. dubna / 16 Vnitřní síy n omný nosníí Dn Kytýř, Tomáš Doktor, Ptr Kouk 8ST - Sttik 5. un 03 Dn t. (8ST) Vnitřní síy n omný nosníí 5. un 03 / 6 Zání Zání Vyjářt vykrst funk průěů vnitřní si N(x), T(x), M(x) n ném nosníku.

Více

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25

56. ročník Matematické olympiády. b 1,2 = 27 ± c 2 25 56. ročník Mtemtické olympiády Úlohy domácí části I. kol ktegorie 1. Njděte všechny dvojice (, ) celých čísel, jež vyhovují rovnici + 7 + 6 + 5 + 4 + = 0. Řešení. Rovnici řešíme jko kvdrtickou s neznámou

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

Výpočet vnitřních sil lomeného nosníku

Výpočet vnitřních sil lomeného nosníku Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky

Více

Konstrukce na základě výpočtu II

Konstrukce na základě výpočtu II 3.3.1 Konstruke n zákldě výpočtu II Předpokldy: 030311 Př. 1: Jsou dány úsečky o délkáh,,. Sestroj úsečku o déle =. Njdi oený postup, jk sestrojit ez měřítk poždovnou úsečku pro liovolné konkrétní délky

Více

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály:

Skalární matice. Jednotková matice. Matice také mohou být různě symetrické. Nejčastěji se však uplatní symetrie podle diagonály: Mte N mte jem už rzl v kptole zveeí otáčeí. Tm jem le leko víe ež mte upltl kompleí číl, mž yí už eue možé pomo, protože kompleí číl jou upořáé voje reálýh číel, ož e pro rovu hoí. Tto kptolk je prví,

Více

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem

Příklad 22 : Kapacita a rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Příkld 22 : Kpcit rozložení intenzity elektrického pole v deskovém kondenzátoru s jednoduchým dielektrikem Předpokládné znlosti: Elektrické pole mezi dvěm nbitými rovinmi Příkld 2 Kpcit kondenzátoru je

Více

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ

5. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ Intgrální počt funkc jdné proměnné. INTEGRÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ V kpitolách věnovných difrnciálnímu počtu jsm poznli, ž vypočítt drivci funkc j úloh vclku jdnoduchá. Stčí znát doř drivc lmntárních

Více

Rentgenová strukturní analýza

Rentgenová strukturní analýza Rntgnová strukturní nlýz Příprvná část Objktm zájmu difrkční nlýzy jsou 3D priodicky uspořádné struktury (krystly), n ktrých dochází k rozptylu dopdjícího zářní. Díky intrfrnci rozptýlných vln vzniká difrkční

Více

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 )

F=F r1 +F r2 -Fl 1 = -F r2 (l 1 +l 2 ) Stvbní mchnik A1 K132 SMA1 Přdnášk č. 3 Příhrdové konstrukc Co nás čká v čtvrté přdnášc? Příhrdové konstrukc Zákldní přdpokldy Sttická určitost/nurčitost Mtody výpočtu Obcná mtod styčných bodů Nulové pruty

Více

ÚSPORNÝ POPIS OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI MODIFIKOVANOU METODOU UZLOVÝCH NAPĚTÍ

ÚSPORNÝ POPIS OBVODŮ S TRANSIMPEDANČNÍMI OPERAČNÍMI ZESILOVAČI MODIFIKOVANOU METODOU UZLOVÝCH NAPĚTÍ ÚSPONÝ POPS OBVODŮ S ANSMPEDANČNÍM OPEAČNÍM ZESLOVAČ MODFKOVANO MEODO ZLOVÝCH NAPĚÍ Dlior Biolek, VA Brno, kter elektrotehniky elektroniky ÚVOD rnsimpenční operční zesilovče (OZ) nes ptří k perspektivním

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus

2.9.16 Přirozená exponenciální funkce, přirozený logaritmus .9.6 Přirozná ponnciální funkc, přirozný ritmus Přdpokldy: 95 Pdgogická poznámk: V klsické gymnziální sdě j přirozná ponnciální funkc 0; j funkc y = +. Asi dvkrát vyrán jko funkc, jjíž tčnou v odě [ ]

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

Rozpis výuky ISŠ-COP Valašské Meziříčí (Miroslav Chumchal) - 8 vyučovacích hodin Aplikování základních pojmů a vztahů v elektrotechnice

Rozpis výuky ISŠ-COP Valašské Meziříčí (Miroslav Chumchal) - 8 vyučovacích hodin Aplikování základních pojmů a vztahů v elektrotechnice PROFESNÍ KVALIFIKACE Montér lktrikýh rozvěčů (kó: 26-019-H), 30 hoin tori (ISŠ-COP) + 96 hoin prx (BBC) + 12 hoin zkoušk (ISŠ-COP) Zčátk profsního vzělávání 1. 12. 2014; Dtum ukonční 31. 1. 2015 Rozpis

Více

- Ohybový moment zleva:

- Ohybový moment zleva: příkl 1 q = 10k/m =0 1) Ohněte směry rekí z pomínek rovnováhy určete jejih velikost, proveďte kontrolu ) ykreslete průěhy vnitřníh sil jejih honoty určete ve všeh vyznčenýh oeh,,. R z R Reke z pomínek

Více

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11

a i,n+1 Maticový počet základní pojmy Matice je obdélníkové schéma tvaru a 11 Mticový počet zákldní pojmy Mtice je obdélníkové schém tvru 2...... n 2 22. 2n A =, kde ij R ( i =,,m, j =,,n ) m m2. mn ij R se nzývjí prvky mtice o mtici o m řádcích n sloupcích říkáme, že je typu m/n

Více

Mocnina částečně uspořádané množiny

Mocnina částečně uspořádané množiny Monin částečně uspořáné množiny Ing. Emilie Šeptáková Kter informtiky, FEI, VŠB Tehniká Univerzit Ostrv, 7. listopu 5, 708, Ostrv Poru Emilie.Septkov @vs.z Astrkt. V příspěvku popisuji novou metou pro

Více

2.8.5 Lineární nerovnice s parametrem

2.8.5 Lineární nerovnice s parametrem 2.8.5 Lineární nerovnice s prmetrem Předpokldy: 2208, 2802 Pedgogická poznámk: Pokud v tom necháte studenty vykoupt (což je, zdá se, jediné rozumné řešení) zere tto látk tk jednu půl vyučovcí hodiny (první

Více

H - Řízení technologického procesu logickými obvody

H - Řízení technologického procesu logickými obvody H - Řízní tchnologického procsu logickými ovody (Logické řízní) Tortický úvod Součástí řízní tchnologických procsů j i zjištění správné posloupnosti úkonů tchnologických oprcí rozhodování o dlším postupu

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Opkování

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky

Více

Hyperbola a přímka

Hyperbola a přímka 7.5.8 Hperol přímk Předpokld: 75, 75, 755, 756 N orázku je nkreslen hperol = se středem v počátku soustv souřdnic. Jká je vzájemná poloh této hperol přímk, která prochází počátkem soustv souřdnic? E B

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

F9 SOUSTAVA HMOTNÝCH BODŮ

F9 SOUSTAVA HMOTNÝCH BODŮ F9 SOUSTAVA HMOTNÝCH BODŮ Evopský sociální fon Ph & EU: Investujee o vší buoucnosti F9 SOUSTAVA HMOTNÝCH BODŮ Nyní se nučíe popisovt soustvu hotných boů Přepokláeje, že áe N hotných boů 1,,, N N násleující

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34.

Vzdělávací materiál. vytvořený v projektu OP VK. Název školy: Gymnázium, Zábřeh, náměstí Osvobození 20. Číslo projektu: CZ.1.07/1.5.00/34. Vzdělávcí mteriál vytvořený v projektu OP VK Název školy: Gymnázium, Zářeh, náměstí Osvoození 20 Číslo projektu: Název projektu: Číslo název klíčové ktivity: CZ.1.07/1.5.00/34.0211 Zlepšení podmínek pro

Více

Baterie testů byla sestavena pro použití v rámci projektu CZ /0.0/0.0/15_007/ Škola pro všechny: Inkluze jako cesta k efektivnímu

Baterie testů byla sestavena pro použití v rámci projektu CZ /0.0/0.0/15_007/ Škola pro všechny: Inkluze jako cesta k efektivnímu INVENTÁŘ METAKOGNITIVNÍHO POVĚDOMÍ ŽÁKŮ ZÁKLADNÍ ŠKOLY (l Sprling, R. A., Howr, B. C., Millr, L. A., & Murphy, C., 00) Zjímá nás, o žái ěljí, kyž s učí. Přčti si náslujíí věty zkroužkuj honotu -, ktrá

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

7 Analytická geometrie

7 Analytická geometrie 7 Anlytiká geometrie 7. Poznámk: Když geometriké prolémy převedeme pomoí modelu M systému souřdni n lgeriké ritmetiké prolémy pk mluvíme o nlytiké geometrii neo též o metodě souřdni užité v geometrii.

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2)

M A = M k1 + M k2 = 3M k1 = 2400 Nm. (2) 5.3 Řešené příkldy Příkld 1: U prutu kruhového průřezu o průměrech d d b, který je ztížen kroutícími momenty M k1 M k2 (M k2 = 2M k1 ), viz obr. 1, vypočítejte rekční účinek v uložení prutu, vyšetřete

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

Sada 1 Matematika. 04. Množiny Vennovy diagramy - slovní úlohy

Sada 1 Matematika. 04. Množiny Vennovy diagramy - slovní úlohy S třední škol stvení Jihlv Sd 1 Mtemtik 04. Množiny Vennovy digrmy - slovní úlohy Digitální učení mteriál projektu: SŠS Jihlv šlony registrční číslo projektu:cz.1.09/1.5.00/34.0284 Šlon: III/2 - inove

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení. Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně

Více

Dynamický výpočet vačkového hřídele Frotoru

Dynamický výpočet vačkového hřídele Frotoru Zápočeská univerzit v Plzni Fkult plikovných vě Kter mechniky ynmický výpočet včkového hříele Frotoru Výzkumná zpráv č. 5//7 Řešitel: oc. r. Ing. Jn upl Plzeň, únor 7 Úvo: Cílem přeložené zprávy je vyšetření

Více