Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254"

Transkript

1 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354

2 Mžerské kvtttví etody II - předášk č. - eore her

3 eore her 96 vo Neu, Morgester kldtelé teore her 996 J.Nsh dostl Noelov ceu Model koflktí rohodovcí stuce (RS) I I R I X Z, Z,, X X, Z,, X Y Y Y Y ož rcoálích účstíků RS ož dferetích účstíků RS ož ožých strtegí rcoálích účstíků ož ožých strtegí dferetích účstíků efekty, které rcoálí účstíc od rohodováí očekáví Dosud se vděl rohodovcí stuce tohoto typu: I I R R, I I leárí progrováí, dycké progrováí stochstcké progrováí

4 Poový prát eore her více rcoálích účstíků kofltk hrkoflktí rohodovcí stuce hráčsuekt rohodováí strtegeož ltertv od hryvektor přtých strtegí X X X výhrdosžeá hodot účelové fukce X,,

5 eore her ypy her Koečé hry ožy X sou koečé Koečé hry ožy X sou ekoečé Hry s kosttí součte výhry pltí-l pro kždé Hry s ulový součte výhry pltí-l pro kždé X, že, že X K 0 K Hr v orálí stvu pltí-l I I 0 Hr tgostcká co ede íská, druhý trtí Hr etgostcká - eí kosttí I R K

6 eore her tgostcké hry Hr hráčů v orálí tvru Zedodušeý áps ávslé volě strtege -tého -tého hráče, protože Le prcovt e s výhrou příkld.hráče K X X I R,,, ;, X X I R,,,,,,, výhr.hráče výhr.hráče K K,,,,,

7 tgostcké hry edy: Výhry le pst do tce Poe optálí strtege eore her Kždý uslue o lc své výhry. strtege e optálí tehdy, estlže odchylk od í eá horšeí výhry předpokldu, že druhý volí optu. edy: I R, ; X, X,,,,,, tcová výhr, () ()

8 eore her tgostcké hry Je-l K=0, pk pltí, že,,,,,,,,, (3) Vektor,, který splňue rovc (3), e řešeí hry strtege sou čsté strtege.,

9 eore her tgostcké hry Postup leeí,.hráč Volou uslue o l MXIMLIZUJÍCÍ HRÁČ Málě ůže ískt to lue, tedy.hráč Volou lue K-, t. lue MINIMLIZUJÍCÍ HRÁČ Volou ůže.hráč ískt álě o chce.hráč volou lovt, tedy

10 tgostcké hry Le dokát, že Důk: Levá str e eávslá volě Prvá str e eávslá volě eore her Slově: Nevětší výher, které se sží.hráč dosáhout eůže překročt evětší výhru, kterou se sží.hráč lovt.

11 eore her tgostcké hry Pltí-l pk á hr řešeí v čstých strtegích, Postup: \ \ Dvoce (3,3) e řešeí. Výhr.hráče e 40.

12 tgostcké hry Pokud pltí e, že eá hr řešeí v čstých strtegích. Le ho ít v tv. síšeých strtegích. eore her Já stuce. Nehledáe řešeí, le ech posloupost. tedy, pro přípdy opkových rohodutí, v chž hráč střídí strtege tk, y v průěru dosáhl álí výhry. X prvděpodoost, s ž udou hráč strtege střídt. \ ; X X ; X 0 X ; X ; X 0 0 X X

13 eore her tgostcké hry Středí hodot výhry Vo Neu: Kždá hr á řešeí ve síšeých strtegích. Důk ( ároveň ávod řešeí): Nechť > 0 (toho le dosáhout přčteí kostty), pk le pro dý ít tkové, pro které pro všech pltí erovost X

14 eore her tgostcké hry Stčí, y erovost pltl pro edotlvé vektory, usí pk pltt pro ech leárí koce. 0,0 0,0,00 e e vektory čstých strtegí,, 0 0,, 0 0,, 0 0

15 eore her tgostcké hry logcky pro dý le ít, pro které pro všech pltí erovost X Opět stčí dokát pltost pro edotlvé vektory,00 0,0 vektory čstých strtegí 0,0,00 0,0 0,0 f f

16 eore her tgostcké hry.hráč chce lovt svou výhru, tedy lovt /.hráč chce lovt výhru.hráče, tedy lovt / dvoce prárích duálích úloh e X e f X f 0 e 0 f / : > 0 / : > 0 / : > 0 / : > 0

17 eore her tgostcké hry eá řešeí v čstých strtegích ,05 0,0605 0, ,05 / 0,075 0,67 0,0605 / 0,075 0, ,05 0,05 0, ,05 / 0,075 0,666 0,05 / 0,075 0,334

18 eore her Hry s ekoečý součte her esou už v příé tgostcké roporu Dvě tce: B,, Příkldy: McDolds X KFC ěsto X telé poeků B

19 Hry s ekoečý součte her Postup hledáí,, eore her V tc dee sloupcová R V tc B dee řádková R Průk R R = R R e ož rovovážých odů, le ůže ch ýt více výhry ohou ít růý poěr e Někdy poůže douící rovovážý od pro všechy rovovážé ody,,,,,,,, R R RD,, e-l K pro ěž pltí:

20 eore her Hry s ekoečý součte her příkldy s edí rovovážý ode B \ (,)(,) (,) (,) R,,,,,,, R Jede rovovážý od (,) K B \ (,)(,) (,) (,) R,,,,,,,,, R Zvolí-l.hráč.hráč (,)=0 Sedou se ehorší výsledku.

21 eore her Hry s ekoečý součte her příkldy s edí rovovážý ode B \ (,)(,) (,) (,) R R Doue (,),,,,,,, 40 6

22 eore her Hry s ekoečý součte her více rovovážých odů Je-l ch více, ůže ít o áěé rovovážé ody Jde o ody, u chž se hodoty eěí, dosdíe-l lovolé ody ožy R D, echť e to R Z Řešeí ohou ýt optálí rovovážé ody. Jde o ody ptřící do průku R Z R D Pokud R D = (0) le opět ít řešeí ve síšeých strtegích R R R D R Z R Z R D optálí rovovážý od

23 Hry s ekoečý součte her R R eore her R R od K více odů, douící R D,,,,, R D douící od K áěé R Z - Hodoty se eěí, dosdíe-l lovolé strtege R D, optálí R O R R R O Z D

24 eore her Hry s ekoečý součte her příkld s více rovovážý ody B \ (3,) (,) (,3) Záěé (3,) + =6+4=30 Záěé (,3) +=6+4=30 Douí odu (,) = 3+3=6 (,3) (,) (3,) R R,3,,, 3, Pokud se edohodou, ohou se seít ehorší výsledku:.hráč volí (,3) 6+6=.hráč volí (3,) 6+6=

25 eore her Hráč esou v tgostcké roporu, euseí tt rohodutí áhodý pokuse. Síšeé rošířeí e tedy přtelé v přípdech, kdy eáe řešeí é..hráč.hráč středí hodot výhry: středí hodot výhry: Má-l ýt od rovovážý od, usí pltt erovost:,, B,, B, B B B

26 eore her Stčí opět pltost pro edotkové vektory: 0,0, 0,,0,0,0 0,0, 0,,0,0,0,00,, 0 0 e f B

27 eore her Úprv: Podíky: Forulce úlohy: e e e f B f B f B / e e / B f f f B e 0, f B e / : / : / : / :

28 eore her Příkld: B \ (,) (,) (,) (,) R R 0,, 6;0, 8;7 7;8 ; ; 6;

29 Koopertví hry Možost dohody o roděleí výher Kdy á sysl? Nechť. s ůže stt. s ůže stt Př dohodě ude společá výhr: Je-l,,, eore her Nleeí e sé, vyeree v B tu, v íž e,,,,,,, á dohod sysl PODSNÁ HR eůže stt NEPODSNÁ HR

30 eore her Koopertví hry - příkld B \ (,)(,)(,3) (,) (,) (3,) Be dohody: R R, Dohod:,

31 eore her Koopertví hry Dlší koflkt Jk rodělt,? Roděleí hry Jádro hry opět ož {, }, splňuící prvdlo. Růá prvdl:. chrt. v poěru příosů 3. kždý své ytek půl,,,,,,,,,,,,, 4. kždý své ytek podle příosů 5. dvduálí dohod

32 Koopertví hry Dlší koflkt Jk rodělt,? eore her, ádro hry , (9,9)

33 eore her Hry prot přírodě I I R I, X, Y, Z Xstrtege rcoálího účstík Yáhodé stvy p() 0,3 0,6 0, \ *0,3-*0,6-3*0,=0, *0,3+8*0,6-*0,=5, *0,3+4*0,6+0*0,=4 5,5. Byes áe-l p() rohodováí rk Mlce středí hodoty výhry p ( )

34 Hry prot přírodě eore her. Lplce eáe-l p() rohodováí estoty Předpokld: p() = kost. Mlce středí hodoty \ (5--3)/3=0,3 (3+8-)/3=3 (+4+0)/3=5,3 5,3 3. Wldovo prvdlo Mlce álě dosžtelého příosu -3-3

35 eore her Hry prot přírodě 4. Svgeovo prvdlo Mtce trát \ \ 3 5-5=0 8-(-)=9 0-(-3)= = 8-5=0 0-(-)= 3 5-=3 8-4=4 0-0=

36 eore her Hry prot přírodě 5. Hurwtovo prvdlo Koefcet optsu k 0; k k Volíe k=0,6 \ ,6*5+0,4*(-3)=, ,6*8+0,4*(-)= ,6*0+0,4*=6,8 6,8

37 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

É Ů č Ě ě č ý ř ů ě ěř ř ě ř é č ě č ě ě č ěř ěř ř ž ř ž č é ě č é ů ř ý č čů ž žů ř é ý č č ě ř ř ě č ý čů ř ě ě ů ě ý čů ě é é ě ě é ř ř ž ý č ý ř ř ě č ř ě é é é ě é ř ř ň ž ůč č č ý ý ě ř č č ě č č

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

ž ě ž ě ě ě ě ě ě ě ě ě ě ě ž š ě ě ž ň ň ž Í ň ě ě š ž ě ě ě š ž ě ě ň ě ň ž ě š ě š ž ě ě ě ě ě ě ž š ň ě ě ň ď ě ž ě š ě š š ě ž ž ě ě š ěž ě ě ž ž ě ť ě Ž ě ě ě ě š ě ř ě ěš ť Ž ž ď Ž ž ž ě ě ž Í ě

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

čí ř ý č ř ě č ů ý ý ů Ž Í íř é Ž ý ř Ž ž é ě ů ý č Ž Ž Š ě č Ž č ý ěď Ž ž ě ť Í ř ů ř Ť ří ž ř ř š č ř í í ň í Č ě é ř š í ů é í Ž ů í ů č š ř í ě é í í é ž é ě í í ě ž ů í č é ří ž ý é č í ží ž í é ž

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

3.3.3 Rovinná soustava sil a momentů sil

3.3.3 Rovinná soustava sil a momentů sil 3.3.3 Rová soustava s a oetů s Předpoady Všechy síy soustavy eží v edé rově. Všechy oety sou oé a tuto rovu. *) Souřadý systé voíe ta, že rova - e totožá s rovou s. y O *) Po.: Sový oet ůžee ahradt dvocí

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla)

KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE. 123TVVM homogenizace (směšovací pravidla) KATEDRA MATERIÁLOVÉHO INŽENÝRSTVÍ A CHEMIE 23TVVM hoogenizce (sěšovcí prvidl) Hoogenizce Stvební teriály sou z hledisk zstoupení doinntních složek několikfázové systéy: Dvoufázové trice, vzduch (póry)

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

ž é é Č Ž é é Č Č ú é é Ž ů š é ů š é ú ž Ž š Ž Ž é é š é Ž é š š é ů š š é ú é é Ů ů Č Ú Ú é é Š Í ž ň é é Ž ň é é ň š é Ž ň é é é š ů ů ň Ž é Ž é é ú ň é Ž ů ů ů é ů Ž Ž é ú ú ú š Ž ú ž ž Ž é ů é é š

Více

ů ž é ž ž ň Š é ž ů ž ž ž ž é é ž ž ž é é ž ů ž ň ž é ž ž ů Ž ž é ž ů é ž é é é ž Ř Č é ů ž é ů é é ž ž ž Ř é Š Š é é ů ž ů ů ž é ů é ů ů ů ů é é ž ů ů é Š ž ž ž ž ů é žň ž ů ž ž é é ž ž ž Ž ů é é é ž

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

ť Íť š š ž ž š ž š š š ů ů ú š ů ž š š š ů ž ó š š Í š š ó ů š š ůž ž ň Ž ž ň š š ž ž ň ň ž ž š š š š š š ž Ú š Č š ž ú ž ů ď ů Č ž š ú š Í Í š ú ů ú ů ž ť ž ú ů ž š ž ž ž ú ú ď ž Í š š ů ž š š ó Č ó š

Více

Ť ť Ú Ť ň Ú úč ň Á Úč úč úč úč Ú Í Ú ť ď ů ů ů úý ň č ú úč ů č ú ů úč Č ů úč úč č Ú ů Ú Í ú č Í ň Á Á ú č Č ú ů ů Á Á Á ď Í Ú Ú Í Ú ň ó Á ď ň Ú ů ť č č č úč Ý č ú úč Ó Ú ů ó ď ď Í Ť č ú č ú ť úč Úč ů č

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

š ř ý é č ú ý ř Ó ó ř í ř ě Ž á Í á ší á é ý ě á ň ě ý í ř ě á á í ŘÍ Í Á Ž É Ř É ŘÍŠ ěž á á ě ě ů š ž á í ž ž ě ř č é á ě í ř ž ý í ášé ú ý íž š é í š á ů é é ř é ří ř ž ý á ž ý á é í ý ě á é ž é éž ě

Více

ó ž Ž ť Ó Ž Č Ž ž ž Ž ž Ž Š Ž ď ž Ž ž ž Š Ž ž Š Ž Ž ó Ž Ž Č ó ž Ž ž ž ž Ů ž ž Ž Ů ť ž Ž ž Ž Ž ž ž Ž É ó É É ž Ž Ž ó Ž Ě ť ó Á Ž Á ť Ó Ů Ů Ý ÓŽ Ž Ó ž Č Ž ž ž Ů Ů ž Ů ž ž ž ž ž ž ž É ť ó Š ž ó Š ž ť ó Ď

Více

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě

Rekonstrukce vodovodních řadů ve vztahu ke spolehlivosti vodovodní sítě Rekostrukce vodovodích řadů ve vztahu ke spolehlvost vodovodí sítě Ig. Jaa Šekapoulová Vodáreská akcová společost, a.s. Bro. ÚVOD V oha lokaltách České republky je v současost aktuálí problée zastaralá

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

Nepředvídané události v rámci kvantifikace rizika

Nepředvídané události v rámci kvantifikace rizika Nepředvídaé událost v rác kvatfkace rzka Jří Marek, ČVUT, Stavebí fakulta {r.arek}@rsk-aageet.cz Abstrakt Z hledska úspěchu vestce ohou být krtcké právě ty zdroe ebezpečí, které esou detfkováy. Vzhlede

Více

Á Á ŇŘ Ú ú Ť ťš č Á ě ú ě č ě ů ě ě š š š ý ýó ť š ť ý ó Ť š ť Á š č š ú č š ť ú č ě Á ýť ě Á ú ť č č Á č ý ý ě ť ě ě Á ú ť č úč ť Á ě ý č ú Ž Ž ú Ž Ť č ů ý ě č ú ě č ý ú š ú ú Ž ť ýš š Á ě ť ě ť š ú ť

Více

Í é É í ó ž á ó ý Ž á á ó ý í š ú Ó ř Ýí č ý Ó ř Ú í Ť ř č Ó ý Č ý Ó Ó ý ě Ž á Ž Ú ř Ž š á ýě š ě š š í í ě š ř ě š Ó ě úč ě š ě é óř ř Ó Ř Ó ý ř ý Ó ú Ó ý í éř ř ř é řč ň šé á é ěřé ý Ó Ó ý Ó ří é š á

Více

ě Ň ť Ť ě šň Č ů ě ě Ň ě ě ě ž Ú Ň ě ě ě ě ě Ň ě Ť Ť ě Áě Ú ů ň ě ě ě Ú ě Ť ě ž ů ě ž ě ž ě ů ž ů ě ě ů ě ž ěď Á ů ě Ť ě ž ž ě ů ě ž ů ď ď ď ě ě Ú Ň ů ů ď ě ě ě ů ě Á Ň ě ě ě ď ě ě ď Č ž ě ž ě Ý ě š ě

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

ř ú ú Š Í Á É ř ř ř é é ř ř š é ř ř š ř é ž é ž š é š é é ř ů ž ž ř é ř ů é é ž é ř é é ř é ú é é ž é é š ň é ř š é š é Ť é ř ů ž ž ď ř é é é ž ř é Š ů é ř é ř é Š ú ř Í ž ž ř ř Í é š ž é ř Ť š ř ř ř š

Více

ň ý ě ý ý ý ě ň ý ě ý Ú ú ň ň ý ě ý ó ž ý ň ě ě ě ú ú Ř ň ň ý ě ý ě ě ž ý ž ě ý ě ý ě ě ů ě Ů Č Í Ě Á Á Í ě ě ě ě Ž Ů ú ě ě ě Ú ě ů ě ý ě ě ú ň ý ě Ů ž ů ž ě ý ý ý ý ě Č Č ě Č ě ů ý ě ý ý ž ě ě ž ů ž ě

Více

ě ě ú ě ě ě ě ě ň ě ň ů ě ů Ý ě ě ů ň ě Í ě ň ě ě Ž ě ň ě ě ú ů ú ě ě ě ú ě ě ě ě ě ě ů ě ů ě ě ú ů ě ě ě Ž ů ě ě ú Ž Ž Ú ě ě ě ě Ž Ž ě ť Ž Í ě Ž ě Ž Ž ů ěž ů ěž ě Í Ú ů ě ů ě Ž Ž Ž ě ě ě ů ě ě ě ě ě ů

Více

Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství

Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství MAS Pobeskydí, z. s. 739 53 Třanovice č. p. 1 IČ: 71212612 Zápis ze společného jednání odborných pracovních skupin a místních aktérů Venkovské hospodářství k přípravě strategie komunitně vedeného místního

Více

ě ě č ě ě ý ú ž č é č ě Ž ě ý č Ž ú ů ý ž ý ý ě ž ž ž č ý ě ě ý ě ě ž č é ž é ů ž é ě č ů ý ě ů ů ě ů ě ě ě č ů č č ý ě ě ě é Ž ě Ž Ž č ů ě é ě ě č ě é ý ů ý ý Í č ó ý ý ě ě ů ý č ý ě č ý é Č úč č ě č

Více

ťí Ý É Č ů Č é éž š ů ú ů ů š ů é ť é ú ů é é ú é ú ů ů ú ú ú Í š ť é ů Ž Ž ú ů š ť ú ů Ž ú é é Ž é ů ú é ň é ú ž ů é ů ť ú ů žň é é é ť ž é é š šš é é ž Č š é Í Ť é é ů š é š é ú ú é ú ú ú ů Žň Ú é ú

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

ý ý ý íú í ě Á ý ž ů ěí ě ž ý ó ý ý ú í ý ž ý ě í ýě ýýš í ú íú ěž ý ý íě ň ě í š ě ý íů ě ý ž ý ý í ě ý íí ě ý Á ý ě í ý ě ý í í ý í ě Č ď ů ě š ě ě ň í ú í ýě í í ě í š ě í í í ě ě ý š ý ž ěž ě ší ňž

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

í Í é í é Ť Š Ť í Ť é Í Ť é Ť ž é é Č š ě š í Č š ž ě ě íž é í í ž Ť ž í é Ť í Ž é š ž í Í í ž é é ě í ě é ě ě í é Ť ě é é é ě í Ť Ť š š é Ž ž Ť í í ě Č é í Ťí é ě Ž š Ž š í ž é é ž š é é Ť í í é í š Ť

Více

Í Ě Ť Ž š Ž Éč č ž é ě ž ě é ě Í ž š ě é ž ž ž ě ž ž ň ě ž ž ž ž ž žš č ě č ž č č č ě č č ě ž ě ž č č š ě ě č ě ů ů š é č ě š é č ě ě č ů ž č č ě ě ě ž š é č š š é é ě ž é é é ě ě é ě ě š ě ž é é ů ů š

Více

Č š é č š ž Č Í é ř ě ě š ž ř ě č ř š č č ž ř Í č č č ě ř ž ěř č č Č ČŠ ř ě é š Ž ř ě š ď Š ř ě č č šť ě ů ě é é ě š ž ě ř š ř šš é é ďě š é ě ě š ř ů šť ě š ě ě é š ř ě š é č š č ě š ě é ě č ě é ě é é

Více

é é é é é ý ý ý ý Í ý ý ý ý ý ý ý ý ý ž ý é é é ó ú ž ú é é ú ú ú ú ó é ž é ú ž Í Í Í ý ý ž ů ú ó ý ů ž ý ů Ď Í ň ů ž ž Í Í ó ý ů ý ů ů ů ý Í ÍÍ é é é ť Í ů ů ů ů ů ý ý é ů é Í é ž ý ý ů ý é ý ý ů ů ý

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

Obecná chemie. Jan Sedláček, Miroslav Štěpánek, Petr Šmejkal

Obecná chemie. Jan Sedláček, Miroslav Štěpánek, Petr Šmejkal Oecá chee J Sedláče rolv Šěpáe Per Šel Sechoercé výpoč Aoové ádro 3 Eleroový ol ou 4 Checá v 5 Opcé vlo láe 6 Speroope 7 Supeé v láe 8. vě erod: erochee 9. vě erod: rér rovováh 0 Checé rovováh Fáové rovováh

Více

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu):

5. Konstrukce trojúhelníků Konstrukce trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 5. Konstruke trojúhelníků Konstruke trojúhelníků podle vět sss, sus, usu, Ssu (ssu): 1. Nrýsuj trojúhelník ABC, je-li dáno: AB = 7,6 m, BC = 4,2 m, AC = 5,6 m Řešení: Pro strny trojúhelníku musí pltit

Více

É č š ó š ý ž č ý ý ó ó ó ó ě ó ě č ó č ě č ž ý č ý ý ž č ó š č ý Ý ý š š š č Ň š ý Ě ň ó ý ž ó ž Ť Ť ó ý ý ý Ť ý Ú ý ý č č ě ý š ý ž ž č č ó ž šš č ě ě ě ó ž Ý ý ý ó ě č š ě ý č ž š ý č ý š ě ý š ě ý

Více

Č t. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Františka Křižíka Učebna: P1 rozvrh platný od 1. 9. 2015

Č t. Vyšší odborná škola a Střední průmyslová škola elektrotechnická Františka Křižíka Učebna: P1 rozvrh platný od 1. 9. 2015 Vyšší dbrn škla a řední průmyslv škla elekrechnick Franiška Křižíka Učebna: 1 rzvrh planý d 1. 9. 2015 Bakalři Vyšší dbrn škla a řední průmyslv škla elekrechnick Franiška Křižíka Učebna: 2 rzvrh planý

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š...

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š... 2 0 1 2 / 2 01 V ý r o č n í z p r á v a o č i n n o s t i š š k o l n í k r2o0 1 2 / 2 01 Z p r a c o v a l : I n g. P e t r a M a n s f e l d o v á D o k u m e n t : I I V O S / I / S M 9 8 8 S c h v

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad VŠB TU OSTRAVA, FEI, KATEDRA APLIKOVANÉ MATEMATIKY Úvod do lýz čsových řd [Zdeje podiul dokueu.] Mri Lischová Popis čsových řd Čsová řd je uerická proěá, jejíž hodo podsě závisí čse, v ěž bl získá (posloupos

Více

Ý úř ř č ď É ť řň Ž Ť Č č ř č ž ň ř ě ě úř ř č ž ř ě ě ř Š ř ř č ě ě ě š Ů ě ř č ř ě ř ě ž ě ř ě Č š ž ě ě ř ě Č Í š ě ě ů ě č ř Ž ň ř č Ž Ž ě ř ě ů ř ě ú ě ů ě č ř ž ř ě ú ě ů ě ě č ú ě ů ř š Ž č ů č

Více

á é š Ž ř ž éčá é ý ů Ťž é á č ář é ž ý ř ú ý ď ť á Ú á ú Í ř á ř ř ž éčá Ť é ý ů é žší čí á Ťá ý č ý ů č é ď é ř ý é ď š š č ř ý Ý ů é á áš ň ú á é á ý é Ž é š á á á áň á Ž Ú ů é ž é á á ž č ř ý š ř á

Více

Ť á á á á Á Č Č ý ť ť á ň ý š ů Á Í ť á Í Ťť ý á á É ú á á á á á á á á ž á á á á Ž á á á á á Í á á ý á ů ú ú á ž š Ž ů á á ý á á ý Ž á Í ý á á Ž ů ť á á ý ů á á á Ž ý Í ý á ú Ž Š ýš á ž ý ž á á Čú Ž á

Více

Á Á Ě ĺ ć É Í řč Áľ Á Á ř č ě ě ě š ř ů ä č š ě ě ĺ ě ě š ř ů č č ý ě ř ý ě ě š ř ů ě š ř ž Ú š ě š ě ř Ú š ě Š ě Č ĺ č úč ě ĺ ž ě ĺ ě řč ä š ě ě ř Úř Č Í Í Č ě ří ě č úě ď Š ě ý Ú ľĺ ě ř ř ř ř š ě ř ä

Více

Stav výuky soudo ý h ději Te h i ká zpráva. Ústav pro studiu totalit í h reži ů. 25. červ a 2012. Fakta na dosah

Stav výuky soudo ý h ději Te h i ká zpráva. Ústav pro studiu totalit í h reži ů. 25. červ a 2012. Fakta na dosah Stav výuky soudo ý h ději Te h i ká zpráva Ústav pro studiu totalit í h reži ů 25. červ a 2012 Fakta na dosah 1 Úvod Na základě dohod ezi Ústave pro studiu totalit í h reži ů a firmou Factum Invenio provedla

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků

2. Směsi, směšování a ředění roztoků, vylučování látek z roztoků 2. Sě ěšováí a ředěí roztoů vyučováí áte z roztoů Sožeí ě áte ůžee vyadřovat poocí hototích zoů edotvých áte (ože ě). Hototí zoe -té ožy e defová ao poěr eí hotot hotot ě : (2) Pode záoa zachováí hotot

Více

3.4.3 Množiny bodů dané vlastnosti I

3.4.3 Množiny bodů dané vlastnosti I 3.4.3 Množiny odů dné vlstnosti I Předpoldy: 3401 Něteé z těchto množin už známe. J je definován užnice ( ; )? Množin všech odů oviny, teé mjí od středu vzdálenost. Předchozí vět znmená dvě věci: Vzdálenost

Více

O jednom mučedníkovi nebo mučednici

O jednom mučedníkovi nebo mučednici 1. nešpory spočné texty O dnom mučedníkov nebo mučednc Jkub Pvlík 1. nt. - VI.F (Žlm 118-I.II) já Ke kž dé mu, př znám před svým kdo cem v neb. ke mně j. př zná před ld m, 2. nt. - VI.F (Žlm 118-III) ž

Více

Ž Ú ď Č Ú ď Ž Š Ž ť Š Ž Ž ť Č Č Ž Ž ť Č ť Š Ý ŘÁ Ů ť Č Š Ž ť ď Č Ú ť ť ť ť Č Č Ů ť Ů Á ť Š Á ď Š ť Č Ó ť Ú Ž ť Ž Ú Č Ú ť É ť ť ť Ž Ž Ž ť Ž ÝČ Č ť Š ť ť ť Ž ť ť ď ť Ž ť ť Á Ž Ž Ž Ů Ž Ž Ú Ě Ý Č Ž Š Š Ř Ě

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

ř á á ü č ů á ř ř á ě ř ý á á ě á á ř á Č á á á ě řč á Č á ě á ř ř á ě ý ů á ě ř á á Ř Ě Ě Ř É Á ř á á ř ř á á Ž ř ř ř ě ě ř á á ě ěá ě ř á á ě ě ě ěá ř ě ě ř á á čá ř ě ě ř á ý ů č ě šíř č Š á ř á á

Více

katastru e o itostí ČR Jiří Poláček

katastru e o itostí ČR Jiří Poláček Služ i for ač ího s sté u katastru e o itostí ČR Jiří Poláček Obsah prezentace Přehled služe )kuše osti s o ě za ede ý i služ a i Pro oz í statistik Připra o a é o i k Strá ka 2 On-line Geoportál ETL 3

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více

Ergodické Markovské et zce

Ergodické Markovské et zce 1. b ezen 2013 Denice 1.1 Markovský et zec nazveme ergodickým, jestliºe z libovolného stavu m ºeme p ejít do jakéhokoliv libovolného stavu (ne nutn v jednom kroku). Denice 1.2 Markovský et zec nazveme

Více

Ú č č ě ř ó č č Ú ě ě ě ř ů ž ž š č ř Ú č ó ž ě ř ř ě ř č ž ř ě Ý ěš š č ž ň ř ě ě č š ěž ú ě ř ú š ě ž ě ž ů š č ř ů č ž ě ů ž ž ě ř š ů š č ř ě ó ě ó ř ě š ě ě ř ě ó ě ě ř ů ř š ěž ó č ž ř ě č č č ě

Více

ů Ť ě Á Ř ž ó ě Ž ž ž ž ě ě ž ě ž ž ě ě ž Č ůž ě ě ž ě ů ě ě ú ú ě ě ě ž ě ě ž ě ž Š Č ů ž ó ž ů ě ů ž ů ž ů ů ž ž ě ů ě ž ů ž ů ů ž ě ů Ž ž Ž ě ě ě Š ě ó ě ě ě ě ě ě ů ů Š ě Ó ú Ť ě ěž ž ě ú ěž úě ěž

Více

DLUHOPISY. Třídění z hlediska doby splatnosti

DLUHOPISY. Třídění z hlediska doby splatnosti DLUHOISY - dlouhodobý obchodovatelý ceý papír - má staoveou dobu splatost - vyadřue závaze emteta oblgace (dlužía) vůč matel oblgace (věřtel) Tříděí z hledsa doby splatost - rátodobé : splatost do 1 rou

Více

Č ý Á Ě Á Á ě ř č ř é é é ř č ř š ž ř č ě ř č ř ý ě ě š ř ů č č š ě č ř ů š ř č ň š ž ň č ě ň ú Č č ě ě ŠÍ ř ů ů ř ý č ý š š ř ý č é ř é ř š ď ůž č ž ď é ůž ý š ý ň ď ď ž ž ú č ý š ý ž ů ý ě ý ď ř é ž

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

É ž Áš ř ý ž ě ě š ř ů ž š š é ž ž ž ý ž ř ř ž ž š ž ž č Š úč ů ž ž ž č ý é ě Ú ž č Č Ť ž š ý č ž č č ř ě ž č ý č ě ž č ě č č ý č ě ž č ý č č č ý ě č ú šť šť úř ý š ě é ř ě ž ě é ř é č é Á é č é é č ř

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

ň ž ň ě ň ň ó óž ě ů ň ž ň ě ě ě ě ě ů ě ň Ú ů ů ů ž ů ě ě ě Ř ň ň ě ů ě ú ě ě ě ě ě ů ěž ě ň ň ž ě ú ň ě ž ú ď ě ě Ť Ž ě ě ě ě ě ě ž ň Ž ě ů ě ě ě ů ě ž Ú ě ě ě ě ě ů ž ž ů ů ě ů ě ď ě ž ě ď ě ě ě ě ě

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

Nákupní kurzy zlata. Seite 1/17

Nákupní kurzy zlata. Seite 1/17 Nákupní kurzy zlata 12.01.2015 33,44 08.01.2015 33,11 05.01.2015 32,34 29.12.2014 31,63 22.12.2014 31,48 18.12.2014 31,74 15.12.2014 31,69 11.12.2014 31,61 09.12.2014 31,52 04.12.2014 31,58 01.12.2014

Více

, jsou naměřené a vypočtené hodnoty závisle

, jsou naměřené a vypočtené hodnoty závisle Měřeí závslostí. Průběh závslost spojtá křvka s jedoduchou rovcí ( jedoduchým průběhem), s malým počtem parametrů, která v rozmezí aměřeých hodot vsthuje průběh závslost, určeí kokrétího tpu křvk (přímka,

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor

PDF compression, OCR, web optimization using a watermarked evaluation copy of CVISION PDFCompressor ť Č Č É ě ý ůž č ě ž Č ž ě óň ž Á Ý Č ň ř š ú ěž Ž ž č ž č ý ý Ž ý ěž ý Č ý ý č ý ý Ž č ý Ž č č ó Ž ž č ě ů ů Ž Ž č ě Í ů ú Ž ž č Ž č č Ž Ž č ž č č Ž ž č Ž č č čž č č ů ř č ě Ž ž č č ů ě č Ž ř č Ž ž č

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

Š Ě Č é Š č é é é é é ě ě š Á é ě é é Ř Á č ť é é é é é š ě é é č ě ě š ž é č č ě ť é ě č é é é č ě č ě ě č š ě č ě é ě ť é Ý č ž ť ě ě š ť ť ě š ě š ť š ě ě é ě ě ě ě č ě š é š é ě ž é ť ě ť é é é é š

Více

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso

3.3 Soustavy sil a silových momentů. soustava sil a momentů = seskupení sil a momentů sil působících na těleso 3.3 Soustav s a sových oetů soustava s a oetů sesupeí s a oetů s působících a těeso váští případ: svae s (paps všech s soustav se potíají v jedo bodě) soustava ovoběžých s (paps všech s soustav jsou aváje

Více

ř ě í í í č ý č ý č ě úč ř ě í í í č ý č ý č ě ř ě í í í č ý č ý č ě úč Ú í í ě í í č é č é í é ý ý ů í í í ě č í ř ř í ů ě ě í ž ů ž í é ží í šť ě ří ě ý Ůž ů í í ú í č ž ž ř ě í ý ů ě č í ř í í ů í ří

Více