Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Rozměr: px
Začít zobrazení ze stránky:

Download "Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254"

Transkript

1 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354

2 Mžerské kvtttví etody II - předášk č. - eore her

3 eore her 96 vo Neu, Morgester kldtelé teore her 996 J.Nsh dostl Noelov ceu Model koflktí rohodovcí stuce (RS) I I R I X Z, Z,, X X, Z,, X Y Y Y Y ož rcoálích účstíků RS ož dferetích účstíků RS ož ožých strtegí rcoálích účstíků ož ožých strtegí dferetích účstíků efekty, které rcoálí účstíc od rohodováí očekáví Dosud se vděl rohodovcí stuce tohoto typu: I I R R, I I leárí progrováí, dycké progrováí stochstcké progrováí

4 Poový prát eore her více rcoálích účstíků kofltk hrkoflktí rohodovcí stuce hráčsuekt rohodováí strtegeož ltertv od hryvektor přtých strtegí X X X výhrdosžeá hodot účelové fukce X,,

5 eore her ypy her Koečé hry ožy X sou koečé Koečé hry ožy X sou ekoečé Hry s kosttí součte výhry pltí-l pro kždé Hry s ulový součte výhry pltí-l pro kždé X, že, že X K 0 K Hr v orálí stvu pltí-l I I 0 Hr tgostcká co ede íská, druhý trtí Hr etgostcká - eí kosttí I R K

6 eore her tgostcké hry Hr hráčů v orálí tvru Zedodušeý áps ávslé volě strtege -tého -tého hráče, protože Le prcovt e s výhrou příkld.hráče K X X I R,,, ;, X X I R,,,,,,, výhr.hráče výhr.hráče K K,,,,,

7 tgostcké hry edy: Výhry le pst do tce Poe optálí strtege eore her Kždý uslue o lc své výhry. strtege e optálí tehdy, estlže odchylk od í eá horšeí výhry předpokldu, že druhý volí optu. edy: I R, ; X, X,,,,,, tcová výhr, () ()

8 eore her tgostcké hry Je-l K=0, pk pltí, že,,,,,,,,, (3) Vektor,, který splňue rovc (3), e řešeí hry strtege sou čsté strtege.,

9 eore her tgostcké hry Postup leeí,.hráč Volou uslue o l MXIMLIZUJÍCÍ HRÁČ Málě ůže ískt to lue, tedy.hráč Volou lue K-, t. lue MINIMLIZUJÍCÍ HRÁČ Volou ůže.hráč ískt álě o chce.hráč volou lovt, tedy

10 tgostcké hry Le dokát, že Důk: Levá str e eávslá volě Prvá str e eávslá volě eore her Slově: Nevětší výher, které se sží.hráč dosáhout eůže překročt evětší výhru, kterou se sží.hráč lovt.

11 eore her tgostcké hry Pltí-l pk á hr řešeí v čstých strtegích, Postup: \ \ Dvoce (3,3) e řešeí. Výhr.hráče e 40.

12 tgostcké hry Pokud pltí e, že eá hr řešeí v čstých strtegích. Le ho ít v tv. síšeých strtegích. eore her Já stuce. Nehledáe řešeí, le ech posloupost. tedy, pro přípdy opkových rohodutí, v chž hráč střídí strtege tk, y v průěru dosáhl álí výhry. X prvděpodoost, s ž udou hráč strtege střídt. \ ; X X ; X 0 X ; X ; X 0 0 X X

13 eore her tgostcké hry Středí hodot výhry Vo Neu: Kždá hr á řešeí ve síšeých strtegích. Důk ( ároveň ávod řešeí): Nechť > 0 (toho le dosáhout přčteí kostty), pk le pro dý ít tkové, pro které pro všech pltí erovost X

14 eore her tgostcké hry Stčí, y erovost pltl pro edotlvé vektory, usí pk pltt pro ech leárí koce. 0,0 0,0,00 e e vektory čstých strtegí,, 0 0,, 0 0,, 0 0

15 eore her tgostcké hry logcky pro dý le ít, pro které pro všech pltí erovost X Opět stčí dokát pltost pro edotlvé vektory,00 0,0 vektory čstých strtegí 0,0,00 0,0 0,0 f f

16 eore her tgostcké hry.hráč chce lovt svou výhru, tedy lovt /.hráč chce lovt výhru.hráče, tedy lovt / dvoce prárích duálích úloh e X e f X f 0 e 0 f / : > 0 / : > 0 / : > 0 / : > 0

17 eore her tgostcké hry eá řešeí v čstých strtegích ,05 0,0605 0, ,05 / 0,075 0,67 0,0605 / 0,075 0, ,05 0,05 0, ,05 / 0,075 0,666 0,05 / 0,075 0,334

18 eore her Hry s ekoečý součte her esou už v příé tgostcké roporu Dvě tce: B,, Příkldy: McDolds X KFC ěsto X telé poeků B

19 Hry s ekoečý součte her Postup hledáí,, eore her V tc dee sloupcová R V tc B dee řádková R Průk R R = R R e ož rovovážých odů, le ůže ch ýt více výhry ohou ít růý poěr e Někdy poůže douící rovovážý od pro všechy rovovážé ody,,,,,,,, R R RD,, e-l K pro ěž pltí:

20 eore her Hry s ekoečý součte her příkldy s edí rovovážý ode B \ (,)(,) (,) (,) R,,,,,,, R Jede rovovážý od (,) K B \ (,)(,) (,) (,) R,,,,,,,,, R Zvolí-l.hráč.hráč (,)=0 Sedou se ehorší výsledku.

21 eore her Hry s ekoečý součte her příkldy s edí rovovážý ode B \ (,)(,) (,) (,) R R Doue (,),,,,,,, 40 6

22 eore her Hry s ekoečý součte her více rovovážých odů Je-l ch více, ůže ít o áěé rovovážé ody Jde o ody, u chž se hodoty eěí, dosdíe-l lovolé ody ožy R D, echť e to R Z Řešeí ohou ýt optálí rovovážé ody. Jde o ody ptřící do průku R Z R D Pokud R D = (0) le opět ít řešeí ve síšeých strtegích R R R D R Z R Z R D optálí rovovážý od

23 Hry s ekoečý součte her R R eore her R R od K více odů, douící R D,,,,, R D douící od K áěé R Z - Hodoty se eěí, dosdíe-l lovolé strtege R D, optálí R O R R R O Z D

24 eore her Hry s ekoečý součte her příkld s více rovovážý ody B \ (3,) (,) (,3) Záěé (3,) + =6+4=30 Záěé (,3) +=6+4=30 Douí odu (,) = 3+3=6 (,3) (,) (3,) R R,3,,, 3, Pokud se edohodou, ohou se seít ehorší výsledku:.hráč volí (,3) 6+6=.hráč volí (3,) 6+6=

25 eore her Hráč esou v tgostcké roporu, euseí tt rohodutí áhodý pokuse. Síšeé rošířeí e tedy přtelé v přípdech, kdy eáe řešeí é..hráč.hráč středí hodot výhry: středí hodot výhry: Má-l ýt od rovovážý od, usí pltt erovost:,, B,, B, B B B

26 eore her Stčí opět pltost pro edotkové vektory: 0,0, 0,,0,0,0 0,0, 0,,0,0,0,00,, 0 0 e f B

27 eore her Úprv: Podíky: Forulce úlohy: e e e f B f B f B / e e / B f f f B e 0, f B e / : / : / : / :

28 eore her Příkld: B \ (,) (,) (,) (,) R R 0,, 6;0, 8;7 7;8 ; ; 6;

29 Koopertví hry Možost dohody o roděleí výher Kdy á sysl? Nechť. s ůže stt. s ůže stt Př dohodě ude společá výhr: Je-l,,, eore her Nleeí e sé, vyeree v B tu, v íž e,,,,,,, á dohod sysl PODSNÁ HR eůže stt NEPODSNÁ HR

30 eore her Koopertví hry - příkld B \ (,)(,)(,3) (,) (,) (3,) Be dohody: R R, Dohod:,

31 eore her Koopertví hry Dlší koflkt Jk rodělt,? Roděleí hry Jádro hry opět ož {, }, splňuící prvdlo. Růá prvdl:. chrt. v poěru příosů 3. kždý své ytek půl,,,,,,,,,,,,, 4. kždý své ytek podle příosů 5. dvduálí dohod

32 Koopertví hry Dlší koflkt Jk rodělt,? eore her, ádro hry , (9,9)

33 eore her Hry prot přírodě I I R I, X, Y, Z Xstrtege rcoálího účstík Yáhodé stvy p() 0,3 0,6 0, \ *0,3-*0,6-3*0,=0, *0,3+8*0,6-*0,=5, *0,3+4*0,6+0*0,=4 5,5. Byes áe-l p() rohodováí rk Mlce středí hodoty výhry p ( )

34 Hry prot přírodě eore her. Lplce eáe-l p() rohodováí estoty Předpokld: p() = kost. Mlce středí hodoty \ (5--3)/3=0,3 (3+8-)/3=3 (+4+0)/3=5,3 5,3 3. Wldovo prvdlo Mlce álě dosžtelého příosu -3-3

35 eore her Hry prot přírodě 4. Svgeovo prvdlo Mtce trát \ \ 3 5-5=0 8-(-)=9 0-(-3)= = 8-5=0 0-(-)= 3 5-=3 8-4=4 0-0=

36 eore her Hry prot přírodě 5. Hurwtovo prvdlo Koefcet optsu k 0; k k Volíe k=0,6 \ ,6*5+0,4*(-3)=, ,6*8+0,4*(-)= ,6*0+0,4*=6,8 6,8

37 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354

Analytická geometrie

Analytická geometrie MATEMATICKÝ ÚSTAV Slezská uverzt N Rybíčku, 746 0 Opv DENNÍ STUDIUM Alytcká geoetre Té 5.: Shodá zobrzeí Defce 5.. Zobrzeí f eukldovského prostoru E do eukldovského prostoru E se zývá shodé (zoetrcké),

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

2. Matice a determinanty

2. Matice a determinanty Mtce deterty Defce : Odélíové sche (řádů) (sloupců) čísel zvee tce typu : [ ] M Je-l luvíe o čtvercové tc Prvy ( ) tvoří hlví dgoálu Zčíe ovyle : [ ] O - všechy prvy ulové - ulová tce I - edotová tce (

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť

Sbírka úloh z matematiky pro 9.ročník Lomené výrazy ZŠ Třešť Sík úloh z tetik po 9.očík I. Loeé výz ZŠ Třešť . Loeý výz je zloek. Jeovtel zloku e eí ovt ule. U loeých výzů učujee vžd podík, po kteé á loeý výz l. Řešeý příkld Uči podík, po kteé jí výz l, řeš dlší

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

Nejistoty v mìøení III: nejistoty nepøímých mìøení

Nejistoty v mìøení III: nejistoty nepøímých mìøení Nestoty v ìøeí III: estoty epøíých ìøeí MÌØIÍ TEHNIK V èácích [] a [] by podá pøehed soèasých ázorù a probeatk estot v ìøeí obecì a pøedstave zpùsob výpoèt estot pø éì ároèých pøíých ìøeích. Teto tøetí

Více

š ě ú ě Á ŘÁ č

š ě ú ě Á ŘÁ č š ě ú ě Á ŘÁ č ť ě ě Á Á š ř š ý ú ýě ř Ť ř ě ů ě ýč ě ý ž ú ů ě ě ú ů ž č ť ž ť ř ě ě ě ě ž č ž š š ě ů ř č š ě ž š ů ě ů ú š č č ů ěť ý š ě č š ě ý ú ů ř š ý ř ž ž ěř š ě ů ý ň ý ě ěř č ě ý ř č č ě ě

Více

Ý Á Í ŘÁ Č Á

Ý Á Í ŘÁ Č Á Ý Á Í ŘÁ Č Á Ř Á úč ř č ě ů Ť é č ě š ř ž š é é š é é Ý ž š é ó ó ť š ž ů é Ť é ž é ů ú š ň ž ě š ž š é é ř š š ě š ó č é ů š ě ř š ť ť é ř ž ó ř š é Ť é ě š ř ě ř š ř ě ó é é ú ů Á ř é é é č š é ř ž ř

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzt Krlov v Prze Pegogcká kult SEMINÁRNÍ PRÁCE Z POLYNOMICKÉ ALGEBRY POLYNOM 00/00 CIFRIK Záí: Vyšetřete všem probrým prostřeky polyom 0 0 Vyprcováí: Pole věty: Rcoálí kořey. Nechť p Q je koře polyomu

Více

Č ř ž č č č ř ž ř č ů ř Č Č č č úč š š Č Č ř ř ž ř š č úč č š ř ů ř Š ř Š ó ř ř ž č š ř ž úč č ř ř š ř ř ř č ř ó ť Ť Í Íř č č č ř č č ň ů ď ř Ý ť ž ž ůž ž ř č ř ř ť ř ď Í č č ó ů ů č ř š č ů š ž ú ř ř

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á

Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á Ý Á Í ŘÁ Á Ý Ú Á Ě Á Ů Á Ý Ů Ú É Á ř ů ý Ť Ž ř ř č Í Á ď č ě ř ú ž ě ř ý ý ů řů č ú č ř ž ě ú ž ř ť č ř Ť ú ř ě š ř ý ž ú ě č ý ý ú Ř ú ěš ě ě ř ř č ž ě ř ě ř ě Í ě ý š ý ž šš ě šč ř ř š ř č ý ř ř ý ř

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

É Ů č Ě ě č ý ř ů ě ěř ř ě ř é č ě č ě ě č ěř ěř ř ž ř ž č é ě č é ů ř ý č čů ž žů ř é ý č č ě ř ř ě č ý čů ř ě ě ů ě ý čů ě é é ě ě é ř ř ž ý č ý ř ř ě č ř ě é é é ě é ř ř ň ž ůč č č ý ý ě ř č č ě č č

Více

ě ě š é Č ě ě š Š š Č ú ě ě ě ě ó š ě ě š é ě é š ě é é é ě é é ěž ě Ž ě ě ě ů ě š ů ů é Ž ňů ňů Ž Ž é ňů ů ď é ů ď é ů Ý ď é é ňů ňů ě ů ňů ů ů ě é ňů Ý ě Ý ď é é š Ž š š Ž ě Ž ů ě š ě Ž Ž š ě é Ž Ž š

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

ů Ú ý ě ý ř ě š é š é ý řš šé š ě ž ý ž ě é š š Ž ť ú ě é ž ý ř é Ó š ř ý ě ěž š ě Ž ý ř ť ř ě é ů é ý ě ý Š ú é ď ŤŽ š ě ž ý Ř ď ě é ů ť é š ě ž ý ť ž ě é Č ř ú ě é Ž ě Ž ě ř ě ý ů ř ř š Š é ď é ů ň ý

Více

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic. Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když

Více

Á řš ž ž ó ó ě É É É č č ž ó ě ů ě č ž š ž ž ú ň ú ě š č ř Ó ř č ž Ů Č ř č ě ó č ó č ě Ú ě ě č ž č ó ŮŽ ž č ó ŮŽ ů č Í č ě ů č ů č š ň č ř č č ř č č š Á ř ž č ř č č ř č ě č ě č č č č č č č č č Á š š ů

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

í ž ý š í ď ý í ě í í ť Ž ě š ěž ě í í ě í ě í ů Ž ěž ý ů ě í ě í í í ě Ž Ú í í í Ť í í í í ť í í í í š í íť ó í ý í ý í ó í í ů ů ě í ů ů ě í ů ě ěž ů ě ěž ě ě í í í ó í í í ó í í í í í í í í ů í í š

Více

Opakovací test. Posloupnosti A, B

Opakovací test. Posloupnosti A, B VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků).

Obr. DI-1. K principu reverzibility (obrácení chodu paprsků). Učebí text k předášce UFY8 Dvojvzková tererece teké vrtvě Dvojvzková tererece teké vrtvě Předpokládejme, vl o mpltudě dvou delektrk tk, že mpltud održeé vly bude o dexu lomu bude t (vz obr. DI-1). v protředí

Více

ě Á Á é é ě ě ě ú é é é ě é é ď ď ď š š Č Á ě ú Á ď š ě Č ě š ěž ě é ě ě ě ě ě ě Č Á ě Á é ú Ž é š ě š š é Ž ě é š é Š ť Ž ě Č Á ú Á Ť é ě é š ě ě š š ď ď Č é š š Č ě ě ú ě ú Ť é ě š ě ě š ě š ě ě ú ě

Více

3.2. LOGARITMICKÁ FUNKCE

3.2. LOGARITMICKÁ FUNKCE .. LOGARITMICKÁ FUNKCE V této kpitole se dovíte: jk je definován ritmická funkce (ritmus) jké má ákldní vlstnosti; důležité vorce pro práci s ritmickou funkcí; co nmená ritmovt odritmovt výr. Klíčová slov

Více

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný

Soustava kapalina + tuhá látka Izobarický fázový diagram pro soustavu obsahující vodu a chlorid sodný Soustv kpl + tuhá látk Izobrcký fázový dgrm pro soustvu obshující vodu chlord sodý t / o C H 2 O (s) + esyceý roztok 30 20 10 0-10 -20 t I t II esyceý roztok 2 1 p o NCl (s) + syceý roztok eutektcký bod

Více

Základy teorie matic

Základy teorie matic Zákldy teorie mtic 1. Pojem mtice nd číselným tělesem In: Otkr Borůvk (uthor): Zákldy teorie mtic. (Czech). Prh: Acdemi, 1971. pp. 9--12. Persistent URL: http://dml.cz/dmlcz/401328 Terms of use: Akdemie

Více

Teoretický souhrn k 2. až 4. cvičení

Teoretický souhrn k 2. až 4. cvičení SYSTÉMOVÁ ANALÝZA A MODELOVÁNÍ Teoretcký souhrn k 2. ž 4. cvčení ZS 2009 / 200 . Vyezení zákldních poů.. Systé e Systé e účelově defnovná nožn prvků vze ez n, která spolu se svý vstupy výstupy vykzue ko

Více

Riemannův určitý integrál.

Riemannův určitý integrál. Riemnnův určitý integrál. Definice 1. Budiž

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

8.2.4 Užití aritmetických posloupností

8.2.4 Užití aritmetických posloupností 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jká by byl

Více

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č

ž éď ě ě ď ž Ý š ě ě ě ž Íá č á ž ě ě Í ž č Í ě č é Í Í Ď ž é č Ý á ě áťí ď á ť č é Ť ť Ž ě š ň á éč á é é ě ž č Í á á Ť é č é ď ď č á ě é ď ž é č é č ž ž č Ý ť ž ž Ó š á ď č č č ž Ó á ě é ě ž á ě š á ěč ě á ť ž á ď áš Ť ď Ž ď á š é é é á ž ď ď ďč á ž š ď á á é č č é é á ť ž ň ěď á é Ž á ž ď á ě Ť á ž é é é ě ě á žá žď é ě áť é á Ž č č é Ý ď ě é é ě

Více

ň ě ň Ú ě Ť Ť ě ě ě Ť ě ě Ť ž ž ě ě ť Ť ž Ť ě ž Í ě Ť č ž ě Ť ž ě ě ě ě Á ž Ť ě ě ě ě Ó ě ě ě ě ě ž ě ě ž ě ž Ó ž Ó ě Ť č č ť ě ě ě Ť ě Ř ě č ě č ě ě ě Ť ž č Ť ě Ť Ť ě Š ě Í ě ě ě Ť Ě Ť ě ž ž č ěž Ť ž

Více

ý ů č č Í ď ř č ý ř ý č č ď č ř ý ř ó Í ř č ď ď ř ů ý ý Š ř ďý ř Ž č č ý ř ý ř ř ý ý čř ď É Ř Ě ý č ů ř ď č č ř ý ř ý č č ý č ř ď ř ů ý ř ř č ř ď ď ď ý ý č ď ů ů ů ř ď ď ř č č ý č ď ř ď ý ý ý ď ů ř ř ď

Více

Národ í katalog otevře ých dat veřej é správy

Národ í katalog otevře ých dat veřej é správy Národ í katalog otevře ých dat veřej é správy I g. Duša Chlapek, Ph.D. 1 Mgr. Martin Nečaský, Ph.D. 1 Mgr. To áš Kroupa 2 Mgr. Jiří Kár ík 2 1 V soká škola eko o i ká Praze 2 Ministerstvo vnitra Co jsou

Více

Konstrukce na základě výpočtu I

Konstrukce na základě výpočtu I .4.11 Konstruke n zákldě výpočtu I Předpokldy: Pedgogiká poznámk: Je důležité si uvědomit, že následujíí sled příkldů neslouží k tomu, y si žái upevnili mehniký postup n dělení úseček. Jediné, o y si měli

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ

1. Trapézový plech poloha pozitivní (betonem jsou vyplněna úzká žebra) TR 50/250-1mm. Tloušťka Hmotnost PL Ý PRŮŘEZ EFEKTIV Í PRŮŘEZ Příkld 0: Nvrhěte pouďte protě uložeou oelobetoovou tropii rozpětí 6 m včetě poouzeí trpézového plehu jko ztreého beděí. - rozteč tropi m - tloušťk betoové dek elkem 00 mm - oel S 5 - beto C 0/5 - užité

Více

ý úř é é ř ý č Ř ř ž č č é é ě ý š ě é ě š ě ěž Č é ř Č ěč ě Č ý š ě ř č Í š ž č ř Á Í ý č š ě Í ě šť Ú č é ý š ě ř ý Č ÁŠ é ý š ě š é ý š ě Ž ř ý š Č ý š ě ř Š ě é ž ě č ž ž č Ť ž ě Š š Úř ě ý Š Ť ž é

Více

É Á ŠŤ Ý č Ť é Ť č Í š Í é é č Í č č Í č š č ž Í ťč č Ť Ť é Ť Ť é Ť š ž Ť é Ž Ťš ž Í š š č é č č š š Ť č š Í ú šé Ť č č č č š č č č š ř ř š ž ž é Ť Ť Ť Ť Ť š é Ť é Ť Ť Ť ďš š ď é Č ť é ž Č Ť ž č ď š š

Více

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak,

s N, r > s platí: Základní požadavek na krásu matematického pravidla: Musí být co nejobecnější s minimem a a = a = a. Nemohli bychom ho upravit tak, .6. Mocniny celý ocnitele I Předpokldy: 6, 6 Př. : Kteé ze dvou pvidel je teticky hezčí? ) Po kždé R, N pltí: +. ) Po kždé R,, N, > pltí:. Zákldní poždvek n káu tetického pvidl: Muí ýt co nejoecnější inie

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!!

celek jsme rozdělili na 8 dílů, ale žádný jsme si nevzali celek na nulka dílů rozdělit nelze!!! . Dělení celku zlomek 0 zlomek zlomková čár čittel udává z kolik stejných částí se zlomek skládá ( z ) jmenovtel udává n kolik stejných částí je celek rozdělen () Vlstnosti: Je-li v čitteli zlomku nul

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

DISTRIBUČNÍ ÚLOHY (Speciální úlohy LP)

DISTRIBUČNÍ ÚLOHY (Speciální úlohy LP) DISTRIBUČNÍ ÚLOHY (Specálí úlohy L) Forulace dstrbučí (dopraví) úlohy: Je dáo dodavatelů se záý počte edotek určtého produktu a ( =,,, ) a spotřebtelů, kteří požaduí teto produkt v ožství b edotek ( =,,,

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více

čí ř ý č ř ě č ů ý ý ů Ž Í íř é Ž ý ř Ž ž é ě ů ý č Ž Ž Š ě č Ž č ý ěď Ž ž ě ť Í ř ů ř Ť ří ž ř ř š č ř í í ň í Č ě é ř š í ů é í Ž ů í ů č š ř í ě é í í é ž é ě í í ě ž ů í č é ří ž ý é č í ží ž í é ž

Více

ě ú ě ú ů ě ů ě é ú ž ú ě Ú ů ů ě é š ů ě ě Ú ě ě ě ň é ň é Ú é é ěž é é ž Ú ž ž ž ů ě ě ž ě é ě ě ů é ň Č ž é Č ě Č ň ů ú ěž ú ú Č Ú ě ú ů Ú ě ú ě ů Ú é é ě é ú ě ú Ú ě é ú ú ů ú ď Č Ř é ě ú ů ů ě ě š

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivrzit Krlov v Prz Pdgogická fkult SEMINÁRNÍ PRÁCE Z MATEMATICKÉ ANALÝZY KONVERGENCE ŘAD. přprcové vydáí / Cifrik, M-ZT Zdáí: Vyštřt kovrgci řdy, jstliž. ( ).!.. l ( ). 7.!. ( ). 8..! 4. 9. cos.. Vyprcováí:

Více

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter. Statistika Cíle: Chápat pomy statistický soubor, rozsah souboru, statistická edotka, statistický zak, umět sestavit tabulku rozděleí četostí, umět zázorit spoicový diagram a sloupcový diagram / kruhový

Více

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž

ž ě é ú ž é ů á ž ú á š ú Í Ť č é ž ě š ý ěž é řá é é Í č é ž ý Í ě ť ě ě ž é úř ž ř ú ý ř žá ý ý ř ú ý ý ůž ý ř á ě á á ř ě é á á ě ř á ř á é á á é ž ň č ý ě ř š ž ř ř é ý á ř é š ě á ú č č ý ě ž é ř á ů á á á ť é ěř ů ť Ť ž č Í úž Ě ě š á é á ě á ř é ř ě ě ž áč ž ě ůž á ž ů á ů é á á á ř é š ě á ž ě š á š é ř áč ý ř ž é ř á ý é ě ž ž ý á ý ů ěř ť ě

Více

Struktura a architektura počítačů

Struktura a architektura počítačů Struktur rchtektur počítčů Číselé soustvy Převody me soustvm, kódy Artmetcké operce České vysoké učeí techcké Fkult elektrotechcká Ver J Zděek 3 Polydcké číselé soustvy (počí) Hodot čísl v soustvě se ákldem

Více

Ě Ě Á Á Č É ŘÍČÍ ř š ž ý ý ý ř š ě š ť Ť ě č Í č ž ň É č ř š ě ř ý ř ř ý č ě ě ě ý ž ě ý ě ý ř ř ě ř č ř č ž š š č š č ř ř š č ě č ž ýěž ťž ž š ě ě ý č ž š ž ř ý ě ý ř ů ě ž ý č ý ý ň č ž ž ů č ý ě ů č

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR

Lineární a adaptivní zpracovní dat. 4. Lineární filtrace II: FIR, IIR Leárí a adaptví zpracoví dat 4 Leárí fltrace II: FIR, IIR Dael Schwarz Ivestce do rozvoje vzděláváí Opakováí 2 Co je to fltrace? Co je to fltr? A jak ho popsujeme? Jaký je vztah Z trasformace a Fourerovy

Více

ž é ů ý é ž ě é é ž ů ů ý é Ý ý ó ů ž Ý ě ě ý ý ý š ě Č ů ž Ý ě ů ž Ý ě ý ý ý ň ů ž Ý ě ž š

ž é ů ý é ž ě é é ž ů ů ý é Ý ý ó ů ž Ý ě ě ý ý ý š ě Č ů ž Ý ě ů ž Ý ě ý ý ý ň ů ž Ý ě ž š ů ó ý ý ě ě š ů Ý é ě Ť Ť é é Ř ě Č ý ď ž ý Č Č ú ů é ž ž ž é ž Ú ž ž ě ď Ú ž Ž Ž š ž é é é ž ž ž é ů ý é ž ě é é ž ů ů ý é Ý ý ó ů ž Ý ě ě ý ý ý š ě Č ů ž Ý ě ů ž Ý ě ý ý ý ň ů ž Ý ě ž š ů ů ž ĎÝ ě ů

Více

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců

Interpolace a aproximace. Interpolace algebraickým polynomem a aproximace metodou nejmenších čtverců Iterpolce promce Iterpolce lgebrckým polomem p g ý p promce metodou ejmeších čtverců Iterpolce lgebrckým polomem Apromce metodou ejmeších čtverců Úloh. Dá tbulk hodot,, j pro j. Hodot jsou přesé. Hledáme

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

ž ě ž ě ě ě ě ě ě ě ě ě ě ě ž š ě ě ž ň ň ž Í ň ě ě š ž ě ě ě š ž ě ě ň ě ň ž ě š ě š ž ě ě ě ě ě ě ž š ň ě ě ň ď ě ž ě š ě š š ě ž ž ě ě š ěž ě ě ž ž ě ť ě Ž ě ě ě ě š ě ř ě ěš ť Ž ž ď Ž ž ž ě ě ž Í ě

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

ý Ť Ú ř ť š ě é ě é ě ě ř ž ý ř ý ý š ý á ý ě Í š ť Ú ř ě Ó Ž ý ý ě ě ř ř Ó Ó ů ř ě ů ř ě č č Ó é ř č Í ě Í ř ř ě Ó č ě Ó Ó Ž é č ř ý ě é Ó Ó š ů Í Ž ř Ž é ý Ž é ě Ž é ř š ě ý Ó ě Ó é Ž é řó Ž Ý ě ě ěž

Více

Nejistoty v mìøení II: nejistoty pøímých mìøení

Nejistoty v mìøení II: nejistoty pøímých mìøení V úvodí èásti [] volého cylu èláù yl uvede struèý pøehled proletiy ejistot v ìøeí, pøilíže historicý vývoj v této olsti zèey dùvody výhody používáí souèsé odifice v širších souvislostech eziárodí etrologie

Více

ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č

ř ě š ý č ů č č ý č ý š č ý ý ž é ž ě š č ř ý ž ž č ě é ý ž ě š ř ů č ř ř ž ř č ř č ě č ě ě ř ž ž ó ň ý é ě ý č š ř ě šš č ř ý úř é č č ř ýš č ř č ě č š č š ž ř Č ě ý ě ř ě é úč č é ú ý ě ý ů ů č š ř ů Č ě ě š č š ě č ý ě š ž č ř č é ř ě é ě úč ě ý ě č é é č ž ž ě š ě ž ý ě ř ě é ů ž ě š ř š ě š ř ě ě č é č ž ř š ě ý č ú ú ě š ž ý ř š ý ř ČČ Č ý č ý

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š

š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š ý ú ť ťť ú č š ěť ý š ě ý úč ě Ý č Ť ž é Ť ě č ý ř ě ř ů é ěž Ť ž ů ř ě č ž ě ě ž é ěž ě ř š ř ď ě Ť ě Ť é ž Ť Ť ž č ý ž ěť ž ěš Ť š é š é š ř ř ž ň é ť š é ň š ýř ů ě ě é ň š ď ý ů č ž ř ž č ř ř ě ě č

Více

é Í ž Ž č ž ť é č ú ó ó Í é ú č é č ý ů ž ž ž ý é é ů ó ý úč ý ž č é č ů ý ý ŘÍ Í Ů ý č é ž é ůž Í ý ý ž ž ž ť ý é é é Č ů é ý č é ú ů č Ú ž ý é č ý ž ž ž é ý ž é č č é č ý Í ý ů ó é ž ý ž ů é ý ů ů é

Více

č Ž ž Ť Ť č Ž ů ž Ť Ť Ť Ť Ť ž č Ť ň ž Ďč č č č ť Ě Ťž Ť č Ž ž Ť Ť Ž ž ž Ž ž ž Ť žď Ť ŽĎ Ť č Ť č Ž ž č ž Ž ŤÍ ň Ž č Í ň Í Í ů ž č ž ž Ž Ť ž Ž Ť ž Ť ž ž

č Ž ž Ť Ť č Ž ů ž Ť Ť Ť Ť Ť ž č Ť ň ž Ďč č č č ť Ě Ťž Ť č Ž ž Ť Ť Ž ž ž Ž ž ž Ť žď Ť ŽĎ Ť č Ť č Ž ž č ž Ž ŤÍ ň Ž č Í ň Í Í ů ž č ž ž Ž Ť ž Ž Ť ž Ť ž ž Ť ž Ť č č Ť ž ž Ú č Ť č Ž Ť Ť č ž Ť Ť Ř Ž Ž ň Ž ž č Ž č č Ž Ť Ž ň č Ť č Ž ž Ť Ť č Ž ů ž Ť Ť Ť Ť Ť ž č Ť ň ž Ďč č č č ť Ě Ťž Ť č Ž ž Ť Ť Ž ž ž Ž ž ž Ť žď Ť ŽĎ Ť č Ť č Ž ž č ž Ž ŤÍ ň Ž č Í ň Í Í ů ž č ž

Více

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308

( t) ( t) ( ( )) ( ) ( ) ( ) Vzdálenost bodu od přímky I. Předpoklady: 7308 731 Vzdálenost odu od římky I Předokldy: 7308 Pedgogiká oznámk: Pokud máte málo čsu, můžete odvodit vzore ez smosttné ráe studentů oužít některý z říkldů z dlší hodiny Tím jednu ze dvou hodin ro vzdálenost

Více

ř ř š ý Š ř ž ř š ř šš é é ď š ý š ř ů š ř ů ř é ý ů ť š ř ů Í é é ý š š š ř Í ř é š ž ý ř ř ž ř ů ý ý é š š š š é ř ú é é é ý é š š ď ř é ú é é ř ž Š ř ý ř ř Ž ř é ýš é é ý ú ů ř ř ř ž ý ř ú ř ř ú é é

Více

ůř Í ý Í Ť ý Á Ž Í Á ť Í ť ý ť Ť ě č ě Š ř ú ý š Č ř č ď ř Á Í Í ě ě ř ó ě č ř č ě ř š ě Á Í č ě Í Í Č É ě Š Í Č ě Í ě ů ů ů Č ý ú Ž ří Á Ý Í Á ÍČ ŽÍ Ý Ů ě č ě ě ě ř ě ě ó ž ž ě ýš ě ě ó ě ř ú ě ďý ě Ú

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl:

9 NÁHODNÉ VÝBĚRY A JEJICH ZPRACOVÁNÍ. Čas ke studiu kapitoly: 30 minut. Cíl: 9 ÁHODÉ VÝBĚR A JEJICH ZPRACOVÁÍ Čas ke studu katol: 30 mut Cíl: Po rostudováí tohoto odstavce budete rozumět ojmům Základí soubor, oulace, výběr, výběrové šetřeí, výběrová statstka a budete zát základí

Více

ř ň ČÚ Č š É ř Č Č ř ř ť ý ý ž é ř š š ý ý š ý š Č Č ř ů ý ů ý Č ž ř ů é ř ý šř ř š ý ý ř ř Š Ý Č ř ř Ě Š ž š Ň Č š š é š é Č š é é é Č Í ž é é é š Ý Ě Ý É ň Í é Č é ž é š Č Ž ó š Ř é é ť š Č š ž ž Í ž

Více