Posloupnosti na střední škole Bakalářská práce

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Posloupnosti na střední škole Bakalářská práce"

Transkript

1 MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová

2 Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které jsem vyprcovl smosttě. Všechy zdroje, prmey literturu, které jsem při vyprcováí používl ebo z ich čerpl, v práci řádě cituji s uvedeím úplého odkzu příslušý zdroj. Vedoucí práce: RNDr. Pvel Šišm

3 Obsh Prohlášeí... Obsh... Poslouposti... Pojem poslouposti... Rekuretí určeí poslouposti...8 Některé vlstosti posloupostí...0 Aritmetické geometrické poslouposti... Aritmetické poslouposti... Užití ritmetických posloupostí...9 Geometrické poslouposti... Užití geometrických posloupostí... Vlstosti ritmetických geometrických posloupostí...8 Limity poslouposti...0 Výsledky ávody k řešeí úloh...7 Sezm zkrtek zček...

4 Poslouposti Pojem poslouposti Fukce, jejíž defiičí obor je moži N všech přirozeých čísel ebo její podmoži typu {,,, k}, kde k N, se zývá posloupost. Posloupost ( ), jejíž defiičí obor je moži N se zývá ekoečá posloupost. Posloupost posloupost. ( ) k, jejíž defiičí obor je moži {,,, k} se zývá koečá Příkld V soustvě souřdic v roviě obrázku (Obr. ) je zobrzeo prvích sedm čleů jisté ekoečé poslouposti ( ). Vypište je: Obr. Řešeí, 0,,,,,. 7 Příkld () f. Prví čle poslouposti je tedy. Vypočtěte prvích šest čleů poslouposti zdé vzorcem pro -tý čle ( ). Řešeí Prví čle poslouposti je hodot fukce f v bodě, po doszeí do vzorce dosteme

5 Dále: f( ) f( ) f( ) f( ) f( ) 9 8 Prvích šest čleů poslouposti jsou tedy čísl,, 9,,, 8. Příkld Určete vzorcem -tý čle poslouposti posloupost zdou ěkolik prvími čley:,,,,,, Řešeí Vidíme, že, tj. liché sudé čley + poslouposti se liší pouze ve zméku. Vidíme, že zákldem bude číslo bude ásobeo mociou čísl. Protože u sudých čleů je lichá moci čísl musí být mocitel tvru +. Tvr -tého čleu poslouposti je ( ) +. Grfem poslouposti ( ) přičemž A má souřdice [, ], kde N, R. Grfem koečé poslouposti je moži vzájem izolových bodů A, A,, A,, ( ) k je koečá moži vzájem izolových bodů A, A,, A,, A k přičemž A má souřdice [, ], kde N, R. Příkld Zázorěte prvích čleů poslouposti Řešeí,,,,. Zázorěí těchto čleů je obrázku (Obr. )..

6 ,, 0, 0 0 Obr. Cvičeí. Překreslete si do sešitu ásledující tbulky doplňte je: 7 8! 7 si π 0. Npište prvích pět čleů těchto posloupostí: ( ) ) b) c) cos π d) ( ). Vypište prvích šest čleů poslouposti dé vzorcem pro -tý čle: ) b) ( ) ( ( ) ) d) + e) ( ( ) ) ) + ( ) c) ( ). Vypište prvích šest čleů poslouposti dé vzorcem pro -tý čle: ) cos π π b) si. Npište prvích deset čleů poslouposti h, která je dá tkto, h() 0, je-li mociou čísl, h(), eí-li mociou čísl. Máme mysli mociu s přirozeým expoetem.

7 . Njděte vyjádřeí -tého čleu koečé poslouposti: ),,,, c),, 0,,, b),,,,, d) tg 0, tg 0, tg 0, tg 80 e) log, log, log8, log, log Určete vzorcem pro -tý čle tyto koečé poslouposti: ),,,,, b),,,,,, c),,,, d),,,,,,, 8. Posloupost ( ) je defiová tkto: Je-li číslo prvočíslo, je, eí-li číslo prvočíslo, je 0. Určete čley, 7,,, 9,, 89, 99, 0, Zjistěte, která z čísel,, jsou čley poslouposti ( 8) 0. V ekoečé poslouposti ( ) +. je pro kždé sudé číslo, pro kždé liché číslo pltí. Zpište tuto posloupost vzorcem pro -tý čle.. Njděte záko vytvořeí poslouposti vyjádřete její -tý čle: ),, 9, 7, 8 b),,, 7, 9, c) 0,, 8,,. Zázorěte grficky prvích pět čleů poslouposti: ( ) ) ( ( ) ) c) ( ) ) b) + ( ) +. Je dá posloupost (8 0 ). Kolik bodů grfu této poslouposti leží: ) d osou x; b) vlevo od osy y. 7

8 Rekuretí určeí poslouposti Nechť je posloupost ( ) zdá vzorcem pro -tý čle:... + c + c, kde c c,..., R kde pro ěkteré i {,..., }, c + c + c může pltit, že 0. Pk řekeme, že posloupost je zdá rekuretě (z ltiského recurrere, což zmeá vrceti se zpět). c i... Příkld Nechť, +. Určete prvích sedm čleů této poslouposti. + Řešeí Do rekuretího vzorce budeme postupě doszovt vypočíté hodoty, dokud ezískáme prvích sedm čleů Prvích sedm čleů zdé poslouposti jsou čísl,, 7,,,, 7. Pozámk: Posloupost zdá rekuretě, může být tké zdá jiými vzorci pro vyjádřeí -tého čleu poslouposti v závislosti předchozích čleech ež rekuretím vzorcem uvedeým v předchozí defiici. Lze použít příkld vzorce: c +, kde c R + c, kde c R 8

9 Cvičeí. Njděte prvích sedm čleů poslouposti ( ), v íž je: ) 0, + b) b 0, b, b + b c) c,c,c c d) + c - d 0,,d 0,d + d + d. Vypište prvích sedm čleů poslouposti ( ) ), + + b), + c) + d),. Určete dé poslouposti rekuretě: ) ( ( + ) ) b) +, +, která je dá rekuretě: c) ( log0 ). Určete prví sedmý čle poslouposti, pro kterou pltí: + ) b) 0. Určete prví čle poslouposti ( ) N je , 0, pro kterou pltí,, pro všech,. Njděte záko vytvořeí poslouposti vyjádřete rekuretím vzorcem: ),,, 0,, b),,,,, 8,,,, 9

10 Některé vlstosti posloupostí Posloupost Posloupost ( ) Je-li r < s, pk r < s. ( ) Je-li r < s, pk r > s. se zývá rostoucí, právě když pro všech r, s N pltí: se zývá klesjící, právě když pro všech r, s N pltí: Příkld Dokžte, že posloupost ( ) Řešeí b je klesjící. Vypíšeme si ěkolik prvích čleů poslouposti ( ) b, b, b, b, b 8 9 b > b +. 7 b : vidíme, že pro kždé {,,, } pltí Zdá se, že posloupost pltí: eboli: ( b ) je klesjící. K tomu je všk uté ověřit, že pro všech N Úprvmi erovosti dosteme postupě: b > > > b + > ( + ) ( ) < Tto erovost je prvdivá pro kždé N. Tímto jsme dokázli, že posloupost ( ) klesjící. b je 0

11 Posloupost ( ) se zývá eklesjící, právě když pro všech r, s N pltí: Je-li r < s, pk r s. Posloupost ( ) se zývá erostoucí, právě když pro všech r, s N pltí: Je-li r < s, pk r s. Příkld b Rozhoděte, zd posloupost ( ) Řešeí + je erostoucí ebo eklesjící. Opět si vypíšeme prvích ěkolik čleů poslouposti: b, b, b, b, 7 9 b {,, }, b b + vidíme, pro kždé pltí. Zdá se, že posloupost b ) je erostoucí. K tomu je všk uté ověřit, že pro všech N pltí: eboli: Úprvmi erovosti postupě dosteme: b b ( ) > 0 Tto erovost je prvdivá pro kždé N. Tím jsme ukázli, že posloupost b ) je erostoucí. Dokoce vidíme, že posloupost je klesjící. ( ( Poslouposti poslouposti. ( ), které jsou erostoucí ebo eklesjící, se zývjí mootóí

12 Příkld Rozhoděte, zd je posloupost Řešeí ( log ) mootóí. Vypíšeme si ěkolik prvích čleů poslouposti: 0, 0, 0, 0, 0. Víme, že logritmus o jkémkoli zákldu je vždy 0. Vidíme, že tto posloupost má všechy čley stejé. Dá posloupost tedy eí i rostoucí i klesjící, le je mootóí. Posloupost ( ) pro všech N je h. Posloupost ( ) pro všech N je d. se zývá shor omezeá, právě když existuje tkové číslo h R, že se zývá zdol omezeá, právě když existuje tkové číslo d R, že Posloupost ( ) se zývá omezeá, právě když je omezeá shor i zdol. Příkld Dokžte, že posloupost Řešeí Vypíšeme si ěkolik čleů poslouposti: je omezeá. 8 0,,,,,,... Vidíme, že ejmeší čle je 0 9 ejvětší čle se přibližuje. Posloupost číslem 0. Nyí toto tvrzeí musíme dokázt pro N: 0 0 je omezeá shor číslem zdol < 0

13 Prví erovost bude vždy pltit, protože zlomek ikdy epřevýší číslo pro >. Rovost ste pouze pro. Druhá erovost pltí vždy pro kždé N. Posloupost je tedy omezeá shor číslem zdol číslem 0. Dohromdy je tedy posloupost omezeá. Cvičeí. Zjistěte, zd posloupost + je rostoucí ebo klesjící.. Rozhoděte, zd ásledující poslouposti jsou rostoucí ebo klesjící: ) log b) ( ) c) 7 ( log ) 0, ) d) ( cosπ e) ( ) + 0. Rozhoděte, zd posloupost ( ), je erostoucí ebo eklesjící.. Zjistěte, které z ásledujících posloupostí jsou mootóí: ) ) ( log ) d) ( cos( )) π b) ( c). Pro která x R je posloupost ( ), x : + ) rostoucí ; b) klesjící; c) mootóí.. Rozhoděte, které z ásledujících posloupostí jsou shor omezeé; zdol omezeé; omezeé: + ) ([ ( ) ] ) ( ) + b) c) ( ) 7. Je dá posloupost log. ) Dokžte, že dá posloupost je rostoucí; ( ) d) tg π b) rozhoděte, zd uvedeá posloupost je shor omezeá, zdol omezeá, omezeá; c) vyjádřete tuto posloupost rekuretě.

14 Aritmetické geometrické poslouposti Aritmetické poslouposti Aritmetickou posloupostí rozumíme tkovou číselou posloupost ( ), v íž se rozdíl mezi libovolými dvěm po sobě jdoucími čley eměí (je kosttí). Teto rozdíl, tj. +, ozčíme d zveme diferece ritmetické poslouposti. Je-li posloupost tvr: ( ) ritmetická s diferecí d, pk vzorec pro -tý čle poslouposti má ( ) d +. Příkld Zpište prvích pět čleů ritmetické poslouposti, jejíž prví čle diferece d. Zázorěte je v soustvě souřdic. Řešeí Prví čle je ze zdáí. Druhý čle je, třetí čle, čtvrtý čle pátý čle. Tyto čley pk zázoríme v soustvě souřdic (viz Obr. ): Obr. V ritmetické poslouposti ( ) s diferecí d pltí pro kždé N rekuretí vzorec: + + d.

15 Příkld V ritmetické poslouposti této poslouposti čle. Řešeí ( ) jsou dáy její čley, 8. Určete difereci 7 Uvedeé čley dosdíme do vzorce pro -tý čle, vyřešeím dosteme difereci poslouposti: d d ( 7 ) 7 + d 8 + d Zjistili jsme tedy, že diferece d. Nyí určíme čle : tedy čle 8. + ( )( ) + ( ) 8 ; V ritmetické poslouposti ( ) s diferecí d pltí pro všech r, s N vzorec: s ( s r) d +. r Příkld V ritmetické poslouposti čley 7. ( ) Řešeí Nejdříve podle vzorce spočteme difereci d. Pltí tedy: jsou dáy její čley, 8. Určete difereci d 8 + (8 ) d + d d Tedy diferece d. Dále spočítáme čle podle vzorce: Tedy prví čle poslouposti. + d d

16 Nkoec spočítáme čle 7 podle stejého vzorce: Sedmáctý čle poslouposti je tedy 7. + (7 ) d Součtem s prvích čleů ritmetické poslouposti čleů poslouposti, tj Součet s vypočítáme vzorcem: s ( + ). ( ) rozumíme součet prvích Důkz vzorce: Nejdříve si zpíšeme součet prvích čleů vzestupě poté sestupě: s s + Tyto dvě rovice yí sečteme: Pltí: Je tedy: k k k k ( ) + ( + ) ( + ) + ( ) s + k + k kd k + k + (( k) )d kd ( kd ) ( kd ) k + + k Odtud plye, že kždý z sčítců je rove +. Můžeme proto psát: s ( ) s + ( + )

17 Příkld Určete součet prvích deseti čleů ritmetické poslouposti, ve které je,. Řešeí Nejdříve musíme zjistit difereci, potom prví desátý čle poslouposti: 7, + d, d d, + (7 ) d 7, + ( ) d +, , 7, + (0 ) d 7, + 9, Nyí dosdíme do vzorce zjistíme součet prvích deseti čleů poslouposti: Součet prvích deseti čleů je tedy 0. s s s ( 7, + 7,) Cvičeí. Vypište prvích šest čleů ritmetické poslouposti ( ) ), d b), d c) 0,, d, d), d 0. Vypište prvích pět čleů ritmetické poslouposti ( ) ) 8, d b) 8, 9 c), 8 d), 0 7, ve které pltí:, ve které pltí:. Určete prví čle difereci d ritmetické poslouposti ( ), ve které pltí: + 9 ) b) , c) d) Určete součet prvích k čleů ritmetické poslouposti ( ) +.. V ritmetické poslouposti je 8, d. Určete idex prvího čleu této poslouposti, který je kldým číslem. 7

18 . Délky str prvoúhlého trojúhelíku jsou tři po sobě ásledující čley ritmetické poslouposti, délk delší odvěsy je,8 dm. Vypočítejte délky zbývjících str. 7. V tbulce jsou ěkteré údje o ritmetických posloupostech. Překreslete si tbulku doplňte ji: d s , Obvod trojúhelíku je, velikosti str jsou celá čísl tvoří tři z sebou jdoucí čley ritmetické poslouposti. Určete velikosti str tohoto trojúhelík. 9. V ritmetické poslouposti je,8 d 0,. Kolik z sebou jdoucích čleů, počíje prvím, je třeb sečíst, by součet byl větší ež 70? 0. Mezi čísl 7 vložte čísl tk, by s dými čísly tvořil ritmetickou posloupost o součtu. Určete počet vložeých čísel difereci tkto vytvořeé ritmetické poslouposti.. Určete ritmetickou posloupost, ve které pltí: Kolik čleů poslouposti dává součet 8?. Osm čísel tvoří ritmetickou posloupost. Určete ji, víte-li, že součet prostředích čleů + souči krjích 8.. Určete ritmetickou posloupost, ve které s. 8

19 Užití ritmetických posloupostí Příkld Část střechy domu má tvr lichoběžíku je třeb ji pokrýt tškmi. Víme, že do řdy u hřebeu se vejde 8 tšek, do spodí řdy při okpu 0 tšek. Přitom tšky budou srováy do řd tk, že v kždé ásledující řdě bude o jedu tšku více ež v řdě předchozí. Kolik je třeb tšek pokrytí části střechy? Řešeí Počty tšek v řdách směrem od hřebeu k okpu přibývjí vždy o jedu. To zmeá, že počty tšek v jedotlivých řdách tvoří čley ritmetické poslouposti, jejíž diferece d. Nším úkolem je určit počet tšek, které stčí k pokrytí části střechy. K tomuto budeme moci využít vzorec pro součet prvích čleů ritmetické poslouposti. Víme, že 8, 0, ezáme všk ještě (které ozčuje počet řd). K výpočtu ezámého využijeme vzorec pro výpočet -tého čleu poslouposti: Nyí můžeme vypočítt s 8 : ( ) s s (8 + 0) 8 N pokrytí příslušé střechy je tedy potřeb 8 kusů tšek. Cvičeí. Ocelové roury se skládjí do vrstev tk, že roury kždé horí vrstvy zpdjí do mezer dolí vrstvy. Do kolik vrstev se složí 90 rour, jsou-li v ejhořejší vrstvě roury? Kolik rour je v ejspodější vrstvě?. Buduje se hlediště letího ki přibližě pro 00 diváků. Do prví řdy je pláováo 0 seddel, do kždé ásledující řdy postupě o seddl více. Kolik řd seddel bude mít hlediště? 9

20 . Vypočtěte vitří úhly šestiúhelíku, tvoří-li úhly ritmetickou posloupost ejmeší je 70. Součet všech úhlů v šestiúhelíku je 70.. Dělík vyrobí z směu součástek. Kdyby zvyšovl svůj výko deě o jedu součástku, kolik součástek by vyrobil z 8 dí?. Dělík obsluhuje utomtických stvů, z ichž kždý vyrobí z hodiu k metrů látky. Prví stv uvede v chod v 8:00 hod. kždý ásledující zpojí vždy z miut. Kolik metrů látky je vyrobeo, když zpíá posledí stv?. Jká je teplot v šich dolech 0 m pod povrchem, víme-li, že teplot Země přibývá o C m hloubky je-li v hloubce m stálá teplot + 9 C? 7. Jk dlouho by pdl koule do hloubky 9, m, bylo-li zjištěo, že v prví vteřiě proléte dráhu s,90 m v kždé dlší vteřiě o 9,808 m více ež v předchozí? 0

21 Geometrické poslouposti Geometrickou posloupostí rozumíme tkovou číselou posloupost ( ), v íž se podíl libovolých dvou po sobě jdoucích čleů eměí (je kosttí). Teto podíl, tj. +, ozčíme q zveme kvociet geometrické poslouposti. ( ) Obecý -tý čle geometrické poslouposti o kvocietu q je dá vzorcem: q. + Příkld Zpište prvích pět čleů geometrické poslouposti, jejíž prví čle q 0,. Zázorěte je v soustvě souřdic v roviě. 8 kvociet Řešeí Prví čle poslouposti je ze zdáí 8. Dlší čley poslouposti dopočítáme pomocí vzorce: ( 0,) 8 ( 0,) ( ) ( 0,) ( 0,) ( ) 0, Nyí vypočíté čley zobrzíme v soustvě souřdic v roviě (viz Obr. ) Obr.

22 V geometrické poslouposti vzorec: ( ) s kvocietem q pltí pro kždé N rekuretí + q. Příkld ( ) V geometrické poslouposti b jsou dáy její čley b, b 8. Určete kvociet této poslouposti čley b, b, b b. Řešeí Kvociet q vypočítáme pomocí vzorce: 8 q q q q Nyí víme, že kvociet q můžeme spočítt čley b, b, b b. b b b b ( ) ( ) ( ) 8 q b 8 ( ) b ( ) ( ) V geometrické poslouposti ( ) s kvocietem q pltí pro všech r, s N vzorec: s r s r q. Příkld V geometrické poslouposti Řešeí ( b ) Kvociet q vypočítáme pomocí vzorce: jsou dáy její čley b b q b b. Určete q b.

23 Po doszeí čleů ze zdáí do tohoto vzorce dostáváme: q q q q Tedy kvociet q. A yí spočítáme prví čle poslouposti b : Tedy prví čle poslouposti je. b b b b q ( ) Součtem s prvích čleů geometrické poslouposti ( ) rozumíme součet prvích čleů poslouposti, tj Součet s lze vypočítt vzorci: ) s pro q ; b) q s pro q. q Důkz vzorců: ) Pro kždé N je, tedy: s b) Nejdříve píšeme součet prvích čleů ásledě jej vyásobíme kvocietem q: s q s + q q q q Tyto dvě rovice odečteme po úprvě dostáváme: s ( q ) q. + q

24 Vzhledem k tomu, že q, můžeme obě stry rovice vydělit číslem (q ) dosteme hledý vzorec. Příkld ( 0 ) Vypočítejte součet prvích osmi čleů geometrické poslouposti, ( ) Řešeí Nejdříve si vypočítáme prví druhý čle poslouposti: 0, 0, ( ) 0, ( ) ( ) 0, Již záme prví dv čley poslouposti tk můžeme vypočítt kvociet q: q. A yí můžeme spočítt součet prvích osmi čleů podle vzorce: s s s q q ( ) ( ) 8 ( ) 8 Tedy součet prvích osmi čleů poslouposti je 8.. Cvičeí. Vypište prvích šest čleů geometrické poslouposti ( ) ) 0,, q b), q 0, c),, q d),, q. V geometrické poslouposti ( ), ve které pltí: jsou dáy její čley, 8. Určete kvociet q této poslouposti čley,,.. Určete prví čle kvociet geometrické poslouposti, v íž pltí:

25 . V geometrické poslouposti ( ) c jsou dáy její čley c, c. Určete q c.. Vypište prvích pět čleů geometrické poslouposti ( ), ve které pltí: ), q b), 0 c) 0, 9 0. Zjistěte, která z čísel 8,,, 0, 8 jsou čley geometrické poslouposti ( ) 7, q. 7. Určete prví čle kvociet geometrické poslouposti ( ) + ) b) + + c) + +, ve které pltí: d) + + 0, v íž je 8. Mezi čísl 8 7 vložte pět tkových čísel, by spolu s dvěm dými tvořil prvích sedm čleů geometrické poslouposti. ( ) 9. Vypočítejte součet prvích osmi čleů geometrické poslouposti ( ) 0. Kolik čleů geometrické poslouposti ( 0 ) ež? 0,., musíme sečíst, by součet byl větší. Součet prvích čtyř čleů geometrické poslouposti je s 80. Určete je, víte-li, že pltí 9.. Vyroste-li z rok z jedoho zr průměrě zr, jké možství zr vyroste z jedoho zr z let?. Určete počet prvích čleů geometrické poslouposti ( ) ( 9) 7,, s. +, záte-li

26 Užití geometrických posloupostí Příkld Bk poskytl podikteli počátkem roku 000 úvěr ve výši ,- Kč, to dobu tří let s ročí úrokovou mírou % (úrokovcí období je rok). Podiktel spltí půjčku ve třech stejých ročích splátkách, prví po jedom roce od poskytutí úvěru. Kolik koru bude čiit jed splátk? (Jedá se o složeé úrokováí). Řešeí Nezámou je výše jedé splátky, ozčme ji k Kč. Dluh podiktele koci roku 000 (bk si připsl úroky): Dluh počátku roku 00 (po prví splátce): [ 0 ( 0) ] +, Kč. [ 0 ( 0) ] +, k Kč. Dluh počátku roku 00 (po připsáí úroků z dluhu z rok 00 po druhé splátce): [ k] Kč [( 0 ( + 0,) k) ( + 0,) k] Kč 0 ( + 0,) k( 0,) Dluh počátku roku 00 (po třetí splátce): [( 0 ( + 0, ) k( 0, ) k)( + 0, ) k] 0 ( + 0, ) k( 0, ) k( 0, ) k Kč [ ]Kč Úvěr počátku roku 00 bude splce je tedy: 0 0 ( + 0, ) k( 0, ) k( 0, ) ( + 0, ) k ( 0, ) + ( 0, ) k 0 ( + ) 0 S využitím vzorce pro součet prvích čleů geometrické poslouposti dosteme: Odtud je: 0 Jed splátk čií 0 7 Kč. ( + 0) ( + 0, ) ( + 0, ), k 0. 0 k ( + 0,) ( + 0,) k 07. 0,.

27 Cvičeí. Kupec chtěl koupit koě. S prodvčem se dohodl tkto: koě doste zdrmo, zpltí pouze hřebíky v jeho podkovách. Kždá podkov je přibit šesti hřebíky, celkem jich tedy je. Z prví hřebík zpltí groš, z druhý groše, z kždý dlší zpltí dvkrát tolik co z předchozí. Kolik grošů by měl kupec zpltit?. Určete velikost ejmešího vitřího úhlu prvoúhlého trojúhelíku, víte-li, že velikosti jeho úhlů tvoří tři po sobě jdoucí čley geometrické poslouposti.. V roce 97 bylo v ší republice 7 počítčů. Určete, ve kterém roce byl u ás použit prví počítč, jestliže od zvedeí počítčů ž do roku 97 čiil ročí přírůstek %.. Drát má průměr mm. Jedím protžeím se průměr drátu zmeší o 0 %. ) Jký bude průměr drátu po deseti protžeích? b) Po kolik protžeích bude průměr drátu meší ež mm?. Kvádr, jehož hry tvoří geometrickou posloupost, má povrch S 78 součet hr, které procházejí jedím vrcholem, je. Vypočtěte objem V kvádru.. Světelý pprsek ztrácí při průchodu skleěou deskou své jsosti. Jká je jsost pprsku po průchodu pěti stejými deskmi? 7. Kolik je uto ukládt počátkem kždého roku po dobu deseti let, chceme-li mít kocem desátého roku střádáo 0 000,- Kč při % složitém úrokováí. 8. Jistý druh bktérií se rozmožuje v přízivých podmíkách tk, že kždá bkterie se z půl hodiy rozdělí dvě. Kolik bkterií vzike tkto z hodi? 9. Kuřák prokouří ročě přibližě 000,- Kč. Kolik by ušetřil z 0 let, jestliže by tuto částku ukládl kocem kždého roku vkldí kížku s % úrokováím? 0. Vkldtel uložil počátku roku do bky 000,- Kč termíový vkld rok s ročí úrokovou mírou 9 %. Úrokovcí období je rok. Jkou celkovou částku bude mít termíovém vkldu koci roku. Úroky z vkldu jsou zdňováy %.. Vkldtel uložil počátku roku termíový vkld roky částku 000,- Kč. Ročí úroková mír je 9, %. Jk vysokou částku bude mít koci druhého roku, jestliže si v průběhu celé doby evybírl úroky je-li úrokovcí období čtvrt roku. 7

28 Vlstosti ritmetických geometrických posloupostí Aritmetické geometrické poslouposti mjí stejé vlstosti jko všechy poslouposti, tj. mohou být rostoucí, klesjící, erostoucí, eklesjící, mootóí; zdol ebo shor omezeé, omezeé. Příkld Rozhoděte, zd posloupost ( ), kde, d, je rostoucí ebo klesjící, omezeá. Řešeí Nejdříve si črteme grf (Obr. ): Obr. Posloupost ( ) je zřejmě rostoucí: Pro kždé N je + + tedy < +. Posloupost. ( ) je omezeá zdol číslem, protože pro všech přirozeá čísl je Zjistíme, zd je tto posloupost shor omezeá. Ptáme se tedy, zd existuje ějké číslo h R tkové, že pro všech N je h, čili: ( ) h + Tto posledí erovost všk pltí je pro tková přirozeá čísl, pro ěž je kždé > h + je > h. Posloupost ( ) eí shor omezeá eí tedy omezeá. h +. Pro ( ) Aritmetická posloupost s diferecí d je rostoucí pro d > 0 klesjící pro d < 0. 8

29 Pro ritmetickou posloupost s diferecí d pltí: ) Je-li d > 0, pk je zdol omezeá, le eí shor omezeá; b) Je-li d < 0, pk je shor omezeá, le eí zdol omezeá; c) Je-li d 0, pk je shor omezeá i zdol omezeá. Geometrická posloupost ( ) s kvocietem q je: ) Rostoucí pro q >, > 0 ebo 0 < q <, < 0; b) Klesjící pro 0 < q <, > 0 ebo q <, < 0. Geometrická posloupost ( ) s kvocietem q je: ) Omezeá, právě když q ebo 0; b) Zdol omezeá, le eí shor omezeá, právě když > 0, q > ; c) Shor omezeá, le eí zdol omezeá, právě když < 0, q > ; d) Neí omezeá i shor i zdol, právě když 0, q <. Cvičeí. Uveďte příkldy ritmetických posloupostí, které jsou rostoucí; klesjící; ejsou i rostoucí i klesjící.. Vyjádřete vzorcem pro -tý čle geometrickou posloupost ( ), ve které je c 0,, q 0,. Rozhoděte pk, zd je tto posloupost rostoucí či klesjící; shor omezeá či zdol omezeá.. Uveďte příkldy geometrických posloupostí, které jsou rostoucí; klesjící; ejsou i rostoucí i klesjící. 9

30 Limity poslouposti Řekeme, že posloupost ( ) je kovergetí, právě když existuje tkové číslo R, že pltí: Ke kždému ε > 0 existuje 0 N tk, že pro všech přirozeá čísl 0 je < ε. Číslo se pk zývá limit poslouposti ( ) Skutečost, že posloupost ( ). má limitu rovu číslu, zpisujeme: lim čteme limit pro jdoucí k ekoeču je rov ebo stručěji limit je. Poslouposti, které ejsou kovergetí, se zývjí divergetí. Příkld Je dá posloupost + kterého počíje pltí < 0, 0.. Zjistěte, zd existuje tkový čle této poslouposti, od Řešeí Určíme všech N, pro která pltí + < 00. Protože zlomek dostáváme: + je kldý pro všech N, pltí < + 00 >, Počíje čleem pltí pro všechy čley poslouposti < 0, odtud 0

31 Příkld Zázorěte v krtézské soustvě souřdic ěkolik prvích čleů poslouposti ( ) zjistěte ke kterému číslu posloupost koverguje. Řešeí Čley dé poslouposti jsou čísl,,,,,,... Grfické zázorěí prvích šesti čleů poslouposti je obrázku (Obr. ). Je zřejmé, že obrzy všech čleů dé poslouposti lze umístit do pásu určeého rovoběžkmi s osou x, které procházejí př. body [0, ] [0, ]. 0,8 0, 0, 0, 0-0, -0, -0,8 - A A -0, 0 A A A A Obr. Vidíme, že čley této poslouposti se s rostoucím eomezeě blíží k číslu 0, tz. že tto posloupost koverguje k 0. Přitom všk pro žádé epltí, že ( ) 0. Příkld ( b ) Dokžte, že posloupost, b je kovergetí. + Řešeí Obrázek (Obr. 7) ás vede k hypotéze, že čley této poslouposti se s rostoucím eomezeě blíží k číslu, čili lim. +

32 0,8 0, 0, 0, Obr. 7 Nším úkolem je tedy dokázt, že ke kždému ε > 0 existuje 0 N tk, že pro všech přirozeá čísl 0 je b < ε, čili < ε. + Tuto erovici s ezámou N. Nejprve uprvíme výrz, který tvoří levou stru této erovice: Doszeím do původí erovice můžeme yí přejít k ásledující erovici tu vyřešíme: < ε + + > ε > ε Řešeím erovice jsou všech přirozeá čísl >, čili pro všech tto pltí ε b < ε. Z 0 můžeme vzít př. celé číslo z itervlu, + ε ε. ( b ) Posloupost, b je tedy kovergetí její limitou je číslo : + lim b.

33 Říkáme, že posloupost ( ) má evlstí limitu plus ekoečo, právě když pro kždé reálé číslo K existuje tkové 0 N, že pro všech přirozeá čísl 0 je > K. Zpisujeme: lim +. Říkáme, že posloupost ( ) má evlstí limitu míus ekoečo, právě když pro kždé reálé číslo L existuje tkové 0 N, že pro všech přirozeá čísl 0 je < L. Zpisujeme: lim. Příkld Zjistěte limitu poslouposti (, 0, ). Řešeí Nejdříve si zázoríme prvích ěkolik čleů v soustvě souřdic (Obr. 8):,, 0, 0-0, , - Obr. 8 Vidíme, že posloupost s rostoucím stále klesá (diverguje k ). To le musíme dokázt. Ať zvolíme jkkoli mlé reálé číslo L, vždy existuje 0 N tkové, že pro všech 0 je b < L. Číslo 0 můžeme zjistit zákldě řešeí erovice:,, < L L -, > 0, Z 0 lze vzít jkékoli přirozeé číslo, které je větší ež, 0, ) posloupost ( má evlstí limitu zpíšeme: (, 0, ) lim. L -, 0,. Tudíž řekeme, že

34 Věty o limitách posloupostí ( ) ( ) Jsou-li poslouposti, b kovergetí přitom lim, lim b, b + pk jsou kovergetí i poslouposti ( ) ( ), ( ) b ( ) b,, c b kde c je libovolé reálé číslo. Přitom pltí: lim lim lim ( + b ) ( b ) ( b ) lim ( c ) lim lim lim, + lim b limb limb c lim + b; b; b; c. Jsou-li poslouposti, ( ) ( b ) kovergetí, lim, lim b přitom b b 0 b 0 pro všech N, pk je kovergetí i posloupost pltí: b lim lim. b limb b Kždá geometrická posloupost ( ) kovergetí lim 0., pro jejíž kvociet q pltí q <, je Příkld Rozhoděte, zd posloupost Řešeí je kovergetí, pk vypočtěte její limitu.. Poslouposti (), jsou kovergetí proto je i kovergetí posloupost. Pltí: lim lim lim lim

35 Cvičeí. Je dá posloupost ( ) c, + c. ) Vypočítejte prvích deset čleů této poslouposti zázorěte je v soustvě souřdic v roviě. b) Rozhoděte, zd je ( ) c) Je-li ( ) c kovergetí ebo divergetí svůj závěr zdůvoděte. c kovergetí, zpište její limitu.. Rozhoděte, které z ásledujících posloupostí jsou kovergetí které z ich mjí limitu rovu číslu 7: ) ( 7) b) c) 7 + d). Dokžte, že pltí: + ) lim b) ( e) 7 + ( ) f) 7 ( ) ( + ) lim 0 ) ( 7) ( 7) c) + 7 lim + 7 c. Pro která c, d R je posloupost d. Rozhoděte, které z uvedeých posloupostí jsou kovergetí: ( ) + + ) b) 0 0 c) 0, ( ) (, ) (, ) kovergetí určete její limitu.. Rozhoděte, které z ásledujících posloupostí jsou kovergetí, mjí evlstí limitu + ebo, jsou divergetí emjí vlstí limitu: ) ( ) b) ( ) c) ( ) ) d) 7. Rozhoděte, které z ásledujících posloupostí jsou kovergetí, mjí evlstí limitu + ebo, jsou divergetí emjí vlstí limitu: ( ) ) log0 b) ( log ) c) 0, ( cos( π ) ) d) ( si ( π ) )

36 ( ) + 8. Posloupost koverguje k. Dokžte zázorěte grficky Ukžte, že posloupost 0. Vypočítejte limitu: ( + )! lim.! ( + )! je kovergetí vypočítejte její limitu.

37 Výsledky ávody k řešeí úloh Pojem poslouposti.! :,,,, 0, 70, 00, 00 si π :, 0,, 0,, 0,. ),,,, ; b) 0,,,, 0; c) 0,, 0,, 0; d),, 8,, 8. ),,,,, ; b),,,,, 8; c),, 8,,, ; d) 0, 8, 0,, 0, 8; e) 0,, 0, 8, 0,.. ), 0,, -,, 0; b). 0, 0,, 0,,,, 0,,. ) ; b) + ; c) + 7. ) () ; b) ( ) ,,, 0,, 0,, 0,, 0 9., o, e., + ( ), 0. ( ) ( ) ), ; d) tg.0 ; e) log( ). ( ) ( ) 8 + ; c) ( ) ; d) ( ) ( ). ) ; b) ; c) ( ), 0,,, ),,,, (Obrázek ); b), 0,, 8, (Obrázek ); c),,,, 8 (Obrázek ) Obrázek 7

38 Obrázek,, 0,7 0, 0, -0, 0-0, -0,7 -, - 0 Obrázek. ) ; b) žádý Rekuretí určeí poslouposti. ) 0, 9, 7, 7,, 89, 77; b) 0,, 0,, 0,, 0; c),,,,,, ; d) 0 -, 0,, 0, 0, 0, 0.. ),,,,, 7, 8; b),, 8,,,, 8; c),,,,,, ; d),,,,, ), + +, + + ( + ) ; b), + + ; c) + +, + +, ), 7 ; b), ( + ) +, ( + ) 8

39 . ), + ( + ) + ; b),, Některé vlstosti posloupostí. rostoucí.. ) klesjící; b) rostoucí; c) klesjící; d) i rostoucí i klesjící; e) klesjící.. eklesjící.. ) e (rostoucí); b) e (rostoucí); c) o; d) e (i rostoucí i klesjící).. ) x > 0; b) x < 0; c) x 0.. ) omezeá; b) zdol omezeá; c) shor omezeá; d) omezeá 7. b) zdol omezeá; c) log ; + log + Aritmetické poslouposti. ),,, 8, 0, ; b),,, 8,, ; c) 0,,,,,,,, 8; d),,,,,.. ),, 8,, ; b),, 8,, 0; c), 0,,, 8; d) 7,, 9,,.. ), d ; b) 9,7, d, ; c) 0, d 0 ; d) dvě řešeí, 7; 9, d 7 [Řešíme kvdrtickou rovici ].. k ( k + 7).,., dm, dm. [Řešíme rovici (,8 d ) +,8 (, 8 + d ) s ezámou d R]. 7. d s 0, , 7, 0, Máme čtyři možosti: {8, 8, 8}, {7, 8, 9}, {, 8, 0}, {, 8, } d,, vkládám 0 čísel (7, 0,,, 9,,, 8,, )., d 7, sečteme sedm prvích čleů.. Jsou dvě možosti: buď 8, d ebo, d. 8, d Užití ritmetických posloupostí. vrstev, rour. 7. d 0, α 70, α 90,, α 70. součástek. 0 metrů. 8 C 7. si 0 vteři 9

40 Geometrické poslouposti. ) 0,; 0,; 0,; 0,8; ;,; b) 0; ;,;,; 0,; 0,; c),;,;,;,;,;,; d),;,;,;,;,;,. q ; ; 8; ;., q. q ; c. ), 8,,, ; b),,, 8, ; c) dvě možosti:,,,, 0;,,,, 0., 8 o, zbytek e 7. ) Dvě možosti:, q ;, q [Přejdeme k soustvě rovic (+q), q (q+) (q ); je-li q, pk q + řešíme rovici q + q (q+) (q-) ; pro q bychom v prví rovici dé soustvy rovic dostli 0 ]; b) dvě možosti:, q 0, ;, q ; c), q ; [ + ( + ) q]; d) dvě možosti:, q 0;, q [ + q (q+) 0, právě když 0 ebo q 0 ebo q ; vyšetříme všechy tyto přípdy] 8. 8 ; ; ; ; 8; 9 ; Součet libovolého počtu čleů poslouposti je vždy meší ež..,, 8,. si 8 zr [Prví čle poslouposti kvociet q ]. Užití geometrických posloupostí. 777 grošů. α 8 0'. v roce 98 [Předpokládejte, že prví počítč byl použit let před rokem 97 kvociet bude +0,].. ),7 mm; b) si po protžeích. V 7. Jsost pprsku je 7. Je uté ukládt 80,0 Kč ,- Kč 0. 7,0 Kč 9,. 7 8,0 Kč [ 000 ( + 0,8 00 ) 8 ] Vlstosti ritmetických geometrických posloupostí. c 0,, klesjící, shor i zdol omezeá. 0

41 Limity posloupostí. ),,,,,, 7, 8, 9, 0, Obrázek ; b) kovergetí [Dokážeme že ke kždému ε > 0 existuje 0 N tk, že pro všech přirozeá čísl 0 je c < ε čili + < ε.]; c) lim c,9,8,7,,,,,, Obrázek. ), b), c) kovergetí, limit je 7; d) kovergetí, limit je ; e) divergetí; f) kovergetí, limit je +. [) + + ; b) ( )( + ) ; c) ]. Kovergetí pro tyto přípdy: d 0; d 0 zároveň c 0. V prvím přípdě je limit c, ve druhém přípdě 0. (Je-li d 0 c 0 pk je posloupost divergetí). d., b) kovergetí; c) eí kovergetí. ) + ; b) ; c) divergetí, emá evlstí limitu; d) kovergetí 7. ) + ; b) ; c) divergetí, emá evlstí limitu; d) kovergetí, 0 8. Posloupost je zázorě obrázku (Obrázek ).,, 0,8 0, 0, 0, limit je Obrázek 0.

42 Litertur [] Bed P., Dňková B., Skál J.: Sbírk mturitích příkldů z mtemtiky, Státí pedgogické kldtelství Prh 9 [] Bušek I.: Řešeé mturití úlohy z mtemtiky, Státí pedgogické kldtelství Prh 98 [] Bydžovský B., Vojtěch J.: Mthemtik pro ejvyšší třídu reálek, JČM Prh 9 [] Delvethl K. M. kol.: Kompedium mtemtiky, Kiží klub Prh 00 [] Jrík J.: Poslouposti řdy, Mldá frot Prh 979 [] Kubát J.: Sbírk úloh z mtemtiky pro příprvu k přijímcím zkouškám vysoké školy, Státí pedgogické kldtelství Prh 988 [7] Odvárko O.: Mtemtik pro gymázi Poslouposti řdy, Prometheus Prh 99 [8] Odvárko O.: Sbírk úloh z mtemtiky pro gymázi Poslouposti řdy, Prometheus Prh 000 [9] Polák J.: Přehled středoškolské mtemtiky, Prometheus Prh 000 [0] Smid J., Odvárko O.: Mtemtik pro III. ročík gymázií Poslouposti řdy reálých čísel, Státí pedgogické kldtelství Prh 989 [] Vyší J.: O ekoečých řdách, Jedot českosloveských mtemtiků fysiků Prh 98

43 Sezm zkrtek zček N moži všech přirozeých čísel R moži všech reálých čísel N prvek áleží do možiy všech přirozeých čísel < b prvek je meší ež prvek b > b prvek je větší ež prvek b b prvek je meší ebo rove prvku b b prvek je větší ebo rove prvku b b prvek se erová prvku b hodot prvku je přibližě! fktoriál čísl. Jeho hodot je rov součiu... ( )

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online

PRACOVNÍ SEŠIT ALGEBRAICKÉ VÝRAZY. 2. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ALGEBRAICKÉ VÝRAZY vtvořil: RNDr. Věr Effeberger epertk olie příprvu SMZ z mtemtik školí rok 04/05

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

3.2.11 Obvody a obsahy obrazců I

3.2.11 Obvody a obsahy obrazců I ..11 Obvody obshy obrzců I Předpokldy: S pomocí vzorců v uvedených v tbulkách řeš následující příkldy Př. 1: Urči výšku lichoběžníku o obshu 54cm zákldnách 7cm 5cm. + c Obsh lichoběžníku: S v Výšk lichoběžníku

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

2.9.11 Logaritmus. Předpoklady: 2909

2.9.11 Logaritmus. Předpoklady: 2909 .9. Logritmus Předpokld: 909 Pedgogická poznámk: Následující příkld vždují tk jeden půl vučovcí hodin. V přípdě potřeb všk stčí dojít k příkldu 6 zbtek jen ukázt, což se dá z jednu hodinu stihnout (nedoporučuji).

Více

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0

Komplexní čísla. Pojem komplexní číslo zavedeme při řešení rovnice: x 2 + 1 = 0 Komplexní čísl Pojem komplexní číslo zvedeme př řešení rovnce: x 0 x 0 x - x Odmocnn ze záporného čísl reálně neexstuje. Z toho důvodu se oor reálných čísel rozšíří o dlší číslo : Všechny dlší odmocnny

Více

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ

4 DOPADY ZPŮSOBŮ FINANCOVÁNÍ NA INVESTIČNÍ ROZHODOVÁNÍ 4 DOPADY ZPŮSOBŮ FACOVÁÍ A VESTČÍ ROZHODOVÁÍ 77 4. ČSTÁ SOUČASÁ HODOTA VČETĚ VLVU FLACE, CEOVÝCH ÁRŮSTŮ, DAÍ OPTMALZACE KAPTÁLOVÉ STRUKTURY Čistá současá hodota (et preset value) Jedá se o dyamickou metodu

Více

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín

Projekt OP VK č. CZ.1.07/1.5.00/34.0420. Šablony Mendelova střední škola, Nový Jičín Projekt OP VK č. CZ.1.07/1.5.00/34.0420 Šblony Mendelov střední škol, Nový Jičín NÁZEV MATERIÁLU: Trojúhelník zákldní pozntky Autor: Mgr. Břetislv Mcek Rok vydání: 2014 Tento projekt je spolufinncován

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky.

( ) 2 2 2 ( ) 3 3 2 2 3. Výrazy Výraz je druh matematického zápisu, který obsahuje konstanty, proměnné, symboly matematických operací, závorky. Výrzy Výrz je druh mtemtického zápisu, který obshuje konstnty, proměnné, symboly mtemtických opercí, závorky. Příkldy výrzů: + výrz obshuje pouze konstnty číselný výrz x výrz obshuje konstntu ( proměnnou

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření.

Posluchači provedou odpovídající selekci a syntézu informací a uceleně je uvedou do teoretického základu vlastního měření. Úloh č. 9 je sestven n zákldě odkzu n dv prmeny. Kždý z nich přistupuje k stejnému úkolu částečně odlišnými způsoby. Níže jsou uvedeny ob zdroje v plném znění. V kždém z nich jsou pro posluchče cenné inormce

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem obsahu pláště rotačního tělesa. .4. Obsh pláště otčního těles.4. Obsh pláště otčního těles Cíle Seznámíte se s dlší plikcí učitého integálu výpočtem obshu pláště otčního těles. Předpokládné znlosti Předpokládáme, že jste si postudovli

Více

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT

2 IDENTIFIKACE H-MATICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNOT 2 IDENIFIKACE H-MAICE POPISUJÍCÍ VEDENÍ Z NAMĚŘENÝCH HODNO omáš Novotý ČESKÉ VYSOKÉ UČENÍ ECHNICKÉ V PRAZE Faulta eletrotechicá Katedra eletroeergetiy. Úvod Metody založeé a loalizaci poruch pomocí H-matic

Více

1.1 Numerické integrování

1.1 Numerické integrování 1.1 Numerické integrování 1.1.1 Úvodní úvhy Nším cílem bude přibližný numerický výpočet určitého integrálu I = f(x)dx. (1.1) Je-li znám k integrovné funkci f primitivní funkce F (F (x) = f(x)), můžeme

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa.

Seznámíte se s další aplikací určitého integrálu výpočtem objemu rotačního tělesa. .. Ojem rotčního těles Cíle Seznámíte se s dlší plikcí určitého integrálu výpočtem ojemu rotčního těles. Předpokládné znlosti Předpokládáme, že jste si prostudovli zvedení pojmu určitý integrál (kpitol.).

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

P2 Číselné soustavy, jejich převody a operace v čís. soustavách

P2 Číselné soustavy, jejich převody a operace v čís. soustavách P Číselné soustvy, jejich převody operce v čís. soustvách. Zobrzení čísl v libovolné číselné soustvě Lidé využívjí ve svém životě pro zápis čísel desítkovou soustvu. V této soustvě máme pro zápis čísel

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace

Opakovací test. Klíčová slova: výraz, interval, množina, kvadratický trojčlen, mocnina, exponent, výrok, negace VY_32_INOVACE_MAT_190 Opkovcí test lgebrické výrzy, logik, množiny A, B Mgr. Rdk Mlázovská Období vytvoření: září 2012 Ročník: čtvrtý Temtická oblst: mtemtické vzdělávání Klíčová slov: výrz, intervl, množin,

Více

Základní pojmy kombinatoriky

Základní pojmy kombinatoriky Základí pojy kobiatoriky Začee příklade Příklad Máe rozesadit lidí kole kulatého stolu tak, aby dva z ich, osoby A a B, eseděly vedle sebe Kolika způsoby to lze učiit? Pro získáí odpovědi budee potřebovat

Více

STATISTIKA. Základní pojmy

STATISTIKA. Základní pojmy Statistia /7 STATISTIKA Záladí pojmy Statisticý soubor oečá eprázdá možia M zoumaých objetů schromážděých a záladě toho, že mají jisté společé vlastosti záladí statisticý soubor soubor všech v daé situaci

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49

Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU

SINOVÁ A KOSINOVÁ VĚTA VZORCE PRO OBSAH TROJÚHELNÍKU Projekt ŠLONY N GVM Gymnázium Velké Meziříčí registrační číslo projektu: Z.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol SINOVÁ KOSINOVÁ

Více

ALGEBRA, ROVNICE A NEROVNICE

ALGEBRA, ROVNICE A NEROVNICE ALGEBRA, ROVNICE A NEROVNICE Gymnázium Jiřího Wolker v Prostějově Výukové mteriály z mtemtiky pro nižší gymnázi Autoři projektu Student n prhu 1. století - využití ICT ve vyučování mtemtiky n gymnáziu

Více

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad

Časová hodnota peněz. Metody vyhodnocení efektivnosti investic. Příklad Metody vyhodoceí efektvost vestc Časová hodota peěz Metody vyhodoceí Časová hodota peěz Prostředky, které máme k dspozc v současost mají vyšší hodotu ež prostředky, které budeme mít k dspozc v budoucost.

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

Úvod do analýzy časových řad

Úvod do analýzy časových řad VŠB TU OSTRAVA, FEI, KATEDRA APLIKOVANÉ MATEMATIKY Úvod do lýz čsových řd [Zdeje podiul dokueu.] Mri Lischová Popis čsových řd Čsová řd je uerická proěá, jejíž hodo podsě závisí čse, v ěž bl získá (posloupos

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205

Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Střední průmyslová škola strojnická Olomouc, tř.17. listopadu 49 Výukový materiál zpracovaný v rámci projektu Výuka moderně Registrační číslo projektu: CZ.1.07/1.5.00/34.0205 Šablona: III/2 Přírodovědné

Více

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7

Příklad 1. Řešení 1a. Řešení 1b. Řešení 1c ŘEŠENÉ PŘÍKLADY Z MV2 ČÁST 7 Příklad 1 a) Autobusy městské hromadné dopravy odjíždějí ze zastávky v pravidelných intervalech 5 minut. Cestující může přijít na zastávku v libovolném okamžiku. Určete střední hodnotu a směrodatnou odchylku

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

3.2.7 Příklady řešené pomocí vět pro trojúhelníky

3.2.7 Příklady řešené pomocí vět pro trojúhelníky ..7 Příkldy řešené pomocí ět pro trojúhelníky Předpokldy:, 6 Pedgogická poznámk: U následujících příkldů ( u mnoh dlších příkldů z geometrie) pltí, že nedílnou součástí řešení je nápd (který se tké nemusí

Více

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy: Opakování středoškolské matematiky Slovo úvodem: Tato pomůcka je určena zejména těm studentům presenčního i kombinovaného studia na VŠFS, kteří na středních školách neprošli dostatečnou průpravou z matematiky

Více

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school

Příprava žáků k přijímacím zkouškám z matematiky na střední školu. Preparing students for entrance exams in mathematics at high school Technická univerzit v Liberci FAKULTA PŘÍRODOVĚDNĚHUMANITNÍ A PEDAGOGICKÁ Ktedr: Studijní progrm: Studijní obor: Ktedr mtemtiky didktiky mtemtiky N750 Učitelství pro zákldní školy Učitelství fyziky pro.

Více

Téma 11 Prostorová soustava sil

Téma 11 Prostorová soustava sil Stavebí statka,.ročík bakalářského studa Téma Prostorová soustava sl Prostorový svazek sl Statcký momet síly a dvojce sl v prostoru Obecá prostorová soustava sl Prostorová soustava rovoběžých sl Katedra

Více

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE

TECHNICKÁ UNIVERZITA V LIBERCI. Fakulta přírodovědně-humanitní a pedagogická ZÁVĚREČNÁ PRÁCE TECHNICKÁ UNIVERZITA V LIBERCI Fkult příodovědě-humití pedgogická ZÁVĚREČNÁ PRÁCE LIBEREC 0 Mg. JAROMÍR OSČÁDAL Techická uivezit v Lieci Fkult příodovědě-humití pedgogická Egyptské zlomky Závěečá páce

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY.

OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. OPTIMALIZACE AKTIVIT SYSTÉMU PRO URČENÍ PODÍLU NA VYTÁPĚNÍ A SPOTŘEBĚ VODY. Ig.Karel Hoder, ÚAMT-VUT Bro. 1.Úvod Optimálí rozděleí ákladů a vytápěí bytového domu mezi uživatele bytů v domě stále podléhá

Více

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH

TECHNICKÝ AUDIT VODÁRENSKÝCH DISTRIBUČNÍCH ECHNICKÝ AUDI VODÁRENSKÝCH DISRIBUČNÍCH SYSÉMŮ Ig. Ladislav uhovčák, CSc. 1), Ig. omáš Kučera 1), Ig. Miroslav Svoboda 1), Ig. Miroslav Šebesta 2) 1) 2) Vysoké učeí techické v Brě, Fakulta stavebí, Ústav

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test, varianta C) Přijímací řízeí pro akademický rok 24/ a magisterský studijí program: PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test, variata C) Zde alepte své uiverzití číslo U každé otázky či podotázky v ásledujícím

Více

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů

Kapitola 12: Zpracování dotazů. Základní kroky ve zpracování dotazů - 12.1 - Přehled Ifomace po odhad ákladů Míy po áklady dotazu Opeace výběu Řazeí Opeace spojeí Vyhodocováí výazů Tasfomace elačích výazů Výbě pláu po vyhodoceí Kapitola 12: Zpacováí dotazů Základí koky

Více

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS.

1) Vypočtěte ideální poměr rozdělení brzdných sil na nápravy dvounápravového vozidla bez ABS. Dopraví stroje a zařízeí odborý zálad AR 04/05 Idetifiačí číslo: Počet otáze: 6 Čas : 60 miut Počet bodů Hodoceí OTÁZKY: ) Vypočtěte eálí poměr rozděleí brzdých sil a ápravy dvouápravového vozla bez ABS.

Více

5.4.2 Objemy a povrchy mnohostěnů I

5.4.2 Objemy a povrchy mnohostěnů I 5.. Objemy orchy mnohostěnů I Předokldy: 51 Význm slo objem i orch je intuitině jsný. Mtemtická definice musí být oněkud řesnější. Okoání z lnimetrie: Obsh obrzce je kldné číslo, řiřzené obrzci tk, že

Více

SPS SPRÁVA NEMOVITOSTÍ

SPS SPRÁVA NEMOVITOSTÍ SMLOUVA O REZERVACI POZEMKU A SMLOUVA O BUDOUCÍ SMLOUVĚ O DÍLO Níže uvedeného dne, měsíce roku uzvřeli: 1. EURO DEVELOPMENT JESENICE, s.r.o., IČ 282 44 451, se sídlem Ječná 550/1, Prh 2, PSČ 120 00, zpsná

Více

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test)

PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemný test) Přijímací řízeí pro akademický rok 2007/08 a magisterský studijí program: Zde alepte své uiverzití číslo PODNIKOVÁ EKONOMIKA A MANAGEMENT (2-letý) (písemý test) U každé otázky či podotázky v ásledujícím

Více

Zobrazení čísel v počítači

Zobrazení čísel v počítači Zobraeí ísel v poítai, áklady algoritmiace Ig. Michala Kotlíková Straa 1 (celkem 10) Def.. 1 slabika = 1 byte = 8 bitů 1 bit = 0 ebo 1 (ve dvojkové soustavě) Zobraeí celých ísel Zobraeí ísel v poítai Ke

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10)

Ke schválení technické způsobilosti vozidla je nutné doložit: Musí být doložen PROTOKOL O TECHNICKÉ KONTROLE? ANO NE 10) ÚTAV INIČNÍ A MĚTKÉ DPRAVY.s., Prh 4,Chodovec, Türkov 1001,PČ 149 00 člen skupiny DEKRA www.usmd.cz,/ Přehled zákldních vrint pltných pro dovoz jednotlivých vozidel dle zákon č.56/2001b. ve znění zákon

Více

Makroekonomie cvičení 1

Makroekonomie cvičení 1 Makroekoomie cvičeí 1 D = poptávka. S = Nabídka. Q = Možství. P = Cea. Q* = Rovovážé možství (Q E ). P* = Rovovážá caa (P E ). L = Práce. K = Kapitál. C = Spotřeba domácosti. LR = Dlouhé období. SR = Krátké

Více

Gaussovská prvočísla

Gaussovská prvočísla Středoškolská odborná činnost 2005/2006 Obor 01 mtemtik mtemtická informtik Gussovská rvočísl Autor: Jkub Oršl Gymnázium Brno, tř. Kt. Jroše 14, 658 70 Brno, 4.A Konzultnt ráce: Mgr. Viktor Ježek (Gymnázium

Více

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie

Univerzita Karlova Přírodovědecká fakulta Katedra analytické chemie Uivezit ov Příodovědecká fkut ted ytické chemie Sttitické vyhodoceí výedků Picip: Výedky opkových zkoušek, kteé jou ztížey áhodými chybmi, mjí učité ozděeí (ditibuci). Rozděeím e zde ozumí záviot pvděpodoboti

Více

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy

Fyzikální kabinet GymKT Gymnázium J. Vrchlického, Klatovy Fzikální kbinet GmKT Gmnázium J. Vrchlického, Kltov stženo z http:kbinet.zik.net Optické přístroje Subjektivní optické přístroje - vtvářejí zánlivý (neskutečný) obrz, který pozorujeme okem (subjektivně)

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1

Střední hodnoty. Aritmetický průměr prostý Aleš Drobník strana 1 Středí hodoty. Artmetcký průměr prostý Aleš Drobík straa 0. STŘEDNÍ HODNOTY Př statstckém zjšťováí často zpracováváme statstcké soubory s velkým možstvím statstckých jedotek. Např. soubor pracovíků orgazace,

Více

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013,

NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, EVROPSKÁ KOMISE V Bruselu dne 30.4.2013 C(2013) 2420 finl NAŘÍZENÍ KOMISE V PŘENESENÉ PRAVOMOCI (EU) č. /.. ze dne 30.4.2013, kterým se mění nřízení (ES) č. 809/2004, pokud jde o poždvky n zveřejňování

Více

Stanovení disociační konstanty acidobazického indikátoru. = a

Stanovení disociační konstanty acidobazického indikátoru. = a Stnovení disociční konstnty cidobzického indikátoru Teorie: Slbé kyseliny nebo báze disociují ve vodných roztocích jen omezeně; kvntittivní mírou je hodnot disociční konstnty. Disociční rekci příslušející

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

Základní poznatky z matematiky

Základní poznatky z matematiky Zákldní pozntky z mtemtiky Obsh. Zákldní pozntky z mtemtiky.... Číselné obory..... Celá čísl..... Reálná čísl.... Odmocniny.... Mocniny... 5.. Mocniny se zákldem 0... 5.. Mocniny s přirozeným mocnitelem...

Více

Regulace f v propojených soustavách

Regulace f v propojených soustavách Regulce f v propojených soustvách Zopkování principu primární sekundární regulce f v izolovné soustvě si ukážeme obr.,kde je znázorněn S Slovenské Republiky. Modře jsou vyznčeny bloky, které jsou zřzeny

Více