Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic.

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Cílem kapitoly je zavedení význačných pojmů pro matice, jejichž znalost je nutná, mimo jiné, pro řešení soustav lineárních rovnic."

Transkript

1 Mtemtik I část I Cíle Cílem kpitoly je zvedeí výzčýh pojmů pro mtie jejihž zlost je utá mimo jié pro řešeí soustv lieáríh rovi Předpokládé zlosti Předpokldem dorého zvládutí látky je zejmé zlost opere ásoeí mti Defiie Iverzí mtií k čtverové mtii řádu rozumíme tkovou čtverovou mtii - řádu pro kterou pltí: - - E kde E je jedotková mtie řádu Defiie Čtverová mtie řádu jejíž ermit se zývá regulárí V opčém přípdě jí říkáme sigulárí Vět Nehť je regulárí mtie řádu je mtie utvořeá z lgerikýh doplňků ik prvků ik Pk pltí T Mtii T zýváme djugovou mtií k mtii zčíme ji ~ tedy ~ -

2 Mtemtik I část I Důkz : ~ E Odoě dokážeme - E Řešeé úlohy Příkld Určeme iverzí mtii k mtii Řešeí: je mtie regulárí -

3 Mtemtik I část I ~ T Příkld Řešme rovii pro ezámou mtii : Řešeí: můžeme dou mtiovou rovii zpst ve tvru B C Protože B - jsou mtie B regulárí můžeme vypočíst iverzí mtie - B - B Vyásoíme-li rovii zlev mtií - zprv mtií B - dosteme: - B B - - C B - E E - C B - - C B - Dosdíme: -

4 Mtemtik I část I Zkoušku provedeme doszeím do zdáí Příkld Jedoduhý způso odesíláí kódovýh zpráv spočívá v ozčeí písme eedy elými čísly odesláí zprávy jko poslouposti čísel Npříkld zpráv NPIŠ VČS může ýt kódová jko V této zprávě je N reprezetováo je reprezetováo td Bohužel tkto kódové zprávy jsou sdo rozluštitelé yhom učiili dekódováí otížějším můžeme použít ásoeí mti Nehť je mtie jejímiž prvky jsou elá čísl ± pk - ± ~ Ukážeme způso kódováí dekódováí ší zprávy pomoí mtie Kódovou zprávu umístíme do sloupů mtie B Souči B určuje kódovou zprávu kterou odešleme ve tvru Přijímjíí oso může zprávu dekódovt ásoeím zlev mtií - eoť - B E B B -

5 Mtemtik I část I - B B Tto tehik kódováí může mít i složitější vrity Npříkld ehť jsou tři růzé mtie řádu jejihž i ± pro i Vyjádřeme ši zprávu třemi vektory Pk můžeme zprávu kódovt ásoeím Zprávu můžeme odeslt ve tvru T T T Tkto odeslou zprávu můžeme dekódovt ásoeím zlev Defiie Nehť ij je mtie typu m Povžujme řádky z ritmetiké vektory vektorového prostoru V Hodost mtie je r zčíme h r existuje-li r lieárě ezávislýh řádků mtie kždýh r+ řádků je lieárě závislýh -

6 Mtemtik I část I Pozámk Hodost mtie typu m yhom mohli defiovt pomoí sloupovýh vektorů z vektorového prostoru V m Oě defiie vedou k témuž výsledku h r Vět Nehť je liovolá mtie typu m Hodost mtie se ezměí při kterékoliv z ásledujííh elemetáríh úprv: záměě pořdí řádků sloupů ásoeí jedotlivýh řádků sloupů čísly k i přičteí k ěkterému řádku sloupi lieárí komie zývjííh řádků sloupů vyeháím řádku který je lieárí komií zývjííh řádků Důkz: Žádá z uvedeýh úprv eměí počet lieárě ezávislýh řádků či sloupů Pozámk Dvě mtie B které mjí stejou hodost h hb zýváme ekvivletími zčíme ~ B Řešeé úlohy Příkld Určeme hodost mtie Řešeí: Budeme uprvovt mtii podle věty Ke řádku přičteme - ásoek řádku ke řádku - ásoek řádku -

7 Mtemtik I část I ~ ~ řádek můžeme vyeht dle odu věty Je vidět že v uprveé mtii jsou dv lieárě ezávislé řádky tz že hodost mtie je dvě h Kotrolí otázky Pro iverzí mtii k čtverové mtii pltí + + E E E E kde E je jedotková mtie Čtverová mtie jejíž ermit se zývá sigulárí ulová regulárí Iverzí mtie k mtii existuje když je sigulárí mtie vždy když je čtverová mtie když je regulárí mtie djugová mtie je vytvořeá T z lgerikýh doplňků prvků mtie tj mtie trspoová k původí mtii ze suermitů prvků mtie z lgerikýh doplňků prvků mtie Hodost mtie je číslo r které udává mximálí počet lieárě závislýh řádků sloupů mtie mximálí počet lieárě ezávislýh řádků sloupů mtie -

8 Mtemtik I část I hodotu ermitu dé mtie Dvě mtie zveme ekvivletí když B mjí stejou hodost jsou stejého typu se rovjí hodoty jejih ermitů Při vyásoeí liovolého řádku sloupe mtie číslem k k k se hodost mtie k krát zvětší k krát zmeší ezměí Odpovědi kotrolí otázky ; ; ; ; ; Úlohy k smosttému řešeí Vypočítejte iverzí mtii - k mtii proveďte zkoušku: d f e g i h j -

9 Mtemtik I část I Řešte rovii pro ezámou mtii : d e f Řešte rovii pro ezámou mtii : Vypočtěte hodost mtie: C B d D f e F M Pro která x má mtie hodost h? x x -

10 Mtemtik I část I Proveďte diskusi hodosti mtie vzhledem k prmetru p p V gliky psé zprávě je mezer ozče písmeo ozčeo B ozčeo C ozčeo td podle gliké eedy Zpráv yl kódová ásoeím zlev mtií odeslá ve tvru Dekódujte zprávu Výsledky úloh k smosttému řešeí - d - eexistuje e - f - g - i h -

11 Mtemtik I část I j - d e f h hb hc d hd e hm f hf x h pro p h pro p Do your homework Kotrolí test Zjistěte zd mtie je sigulárí: o e Zjistěte zd mtie B je regulárí: B o e K dé mtii vytvořte mtii djugovou : -

12 Mtemtik I část I K dé mtii vytvořte mtii iverzí : K dé mtii vytvořte mtii iverzí Řešte rovii pro ezámou mtii : emá řešeí Vypočtěte hodost mtie : h h Vypočtěte hodost mtie B : : -

13 Mtemtik I část I B h B h B Výsledky testu ; ; ; ; ; ; ; Průvode studiem Pokud jste správě odpověděli ejméě v přípdeh pokrčujte dlší kpitolou V opčém přípdě je tře prostudovt kpitolu zovu -

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor

1. LINEÁRNÍ ALGEBRA. , x = opačný vektor . LINEÁRNÍ LGEBR Vektorový prostor.. Defiice Nechť V e moži které sou defiováy operce sčítáí + : t. zobrzeí V V V ásobeí i : t zobrzeí R V V. Možiu V zýváme vektorovým prostorem, sou-li splěy ásleduící

Více

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o

KKKKKKKKKKKKKK. (i = 1,..., m; j = 1,..., n) jsou reálná čísla a x j jsou neznámé, se nazývá soustava m lineárních rovnic o SOUSTAVY LINEÁRNÍCH ROVNIC Zákldí pojmy Defiice Soustv rovic m m m b b b m kde ij bi (i m; j jsou reálá čísl j jsou ezámé se zývá soustv m lieárích rovic o ezámých stručě soustv lieárích rovic Čísl ij

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic.

Cílem kapitoly je zvládnutí řešení determinantů čtvercových matic. temtk I část I Determty mtc řádu Determty mtc řádu Cíle Cílem ktoly je zvládutí řešeí ermtů čtvercových mtc Defce Determtem (řádu ) čtvercové mtce řádu jejímž rvky j jsou reálá (oř komlexí) čísl zýváme

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uiverzit Krlov v Prze Pedgogiká fklt SEMINÁRNÍ PRÁCE Z LGERY ELEMENTY LINEÁRNÍ LGERY 999/ CIFRIK PŘEHLED DEFINIC POJMŮ iárí rele R iárí rele R mezi možimi moži Pro dv prvky b (prvek) je v reli R s (prvkem)

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů

1.8.1 Mnohočleny, sčítání a odčítání mnohočlenů .8. Mohočley, sčítáí odčítáí mohočleů Předpokldy: 7 Mohočle = zvláští typ výrzů. Jk je pozáme? Mohočley obshují pouze přirozeé mociy ezámých (jedé ebo více) kostty. Př. : Rozhodi, které z ásledujících

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0).

nazveme číselným vektorem. Čísla a Definice. Vektor, jehož všechny složky se rovnají nule, se nazývá nulový vektor o r = (0, 0, 0,, 0). ČÍSELNÉ VEKTORY Defce Uspořádou -tc čísel = (,,, ) zveme číselým vektoem Čísl,,, jsou složky ebol souřdce vektou Přozeé číslo zýváme ozměem ebo tké dmezí vektou Defce Vekto, jehož všechy složky se ovjí

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

Řešení soustav lineárních rovnic

Řešení soustav lineárních rovnic Řešeí sousv lieáríc rovic Sousv lieáríc rovic Sousvou m lieáríc rovic o ezámýc rozumíme sousvu : Kde ij i R M m m Čísl ij zýváme koeficiey sousvy čísl i soluí čley Uvedeou sousvu udeme zči Sm m M m Homogeí

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

4.4.3 Kosinová věta. Předpoklady:

4.4.3 Kosinová věta. Předpoklady: 443 Kosinová vět Předpokldy 44 Př Rozhodni zd dokážeme spočítt zývjíí strny úhly u všeh trojúhelníků zdnýh pomoí trojie prvků (délek strn velikostí úhlů) V sinové větě vystupují dvě dvojie strn-protější

Více

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507

{ } ( ) ( ) 2.5.8 Vztahy mezi kořeny a koeficienty kvadratické rovnice. Předpoklady: 2301, 2508, 2507 58 Vzth mezi kořen koefiient kvdrtiké rovnie Předpokld:, 58, 57 Pedgogiká poznámk: Náplň zřejmě přeshuje možnost jedné vučoví hodin, příkld 8 9 zůstvjí n vičení neo polovinu hodin při píseme + + - zákldní

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

MATEMATIKA PRO EKONOMY

MATEMATIKA PRO EKONOMY VYSOKÁ ŠKOLA POLYECHNICKÁ JIHLAVA Ktedr mtemtik MAEMAIKA PRO EKONOMY Rdek Stolí 8 Recezovl: doc RNDr Ev Věčková CSc Mgr Adre Kubišová Z jzkovou věcou správost obshu díl odpovídá utor et eprošel jzkovou

Více

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26

1. ČÍSELNÉ OBORY 10. Kontrolní otázky 24. Úlohy k samostatnému řešení 25. Výsledky úloh k samostatnému řešení 25. Klíč k řešení úloh 26 Zákld mtemtik Číselé oor ČÍSELNÉ OBORY 0 Některé pojm z mtemtické logik 0 Výroková logik 0 Moži vzth mezi imi Možiové operce Grfické zázorěí moži Číselé oor Čísl ázv jejich chrkteristik Chrkteristik číselých

Více

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e

M a t i c e v e s t ř e d o š k o l s k é m a t e m a t i c e M t i c e v e s t ř e d o š k o l s k é m t e m t i c e P t r i k K v e c k ý M e d e l o v o g y m á z i u m v O p v ě S t u d i j í m t e r i á l - M t i c e v e s t ř e d o š k o l s k é m t e m t i

Více

1.2. MOCNINA A ODMOCNINA

1.2. MOCNINA A ODMOCNINA .. MOCNINA A ODMOCNINA V této kpitole se dozvíte: jk je defiová oci s přirozeý, celý, rcioálí oecý reálý epoete jké jsou její vlstosti; jk je defiová přirozeá odoci, jké jsou její vlstosti jk se dá vyjádřit

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivezit lov v Pze Pedgogiká fkult SEMINÁRNÍ PRÁCE Z POLYNOMICÉ ALGEBRY ZVOLENÝ POLYNOM / CIFRI Zdáí: Zvol olyom f ( x) stuě 6 tkový y 6 f ( ) { 87868}. Uči všehy kořey s ásoostí. Vyováí: Zdáí vyhovuje

Více

9. Racionální lomená funkce

9. Racionální lomená funkce @ 9. Rcioálí loeá fukce Defiice: Nechť P je poloická fukce -tého stupě... ) ( P kde R... A echť Q je poloická fukce -tého stupě... ) ( Q kde R... Rcioálí loeá fukce R je dá podíle ) ( ) ( ) ( Q P R pro

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více

8.2.6 Geometrická posloupnost

8.2.6 Geometrická posloupnost 8.. Geometricá posloupost Předpoldy: 80, 80, 80, 807 Pedgogicá pozám: V hodiě rozdělím třídu dvě supiy ždá z ich dělá jede z prvích dvou příldů. Př. : Poločs rozpdu (dob z terou se rozpde polovi existujícího

Více

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online.

PRACOVNÍ SEŠIT ČÍSELNÉ OBORY. 1. tematický okruh: Připrav se na státní maturitní zkoušku z MATEMATIKY důkladně, z pohodlí domova a online. Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT. temtický okruh: ČÍSELNÉ OBORY vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z mtemtiky školí rok 204/205

Více

8. Elementární funkce

8. Elementární funkce Moderí techologie ve studiu plikové fzik CZ.1.07/2.2.00/07.0018 8. Elemetárí fukce Historie přírodích věd potvrzuje, že většiu reálě eistujících dějů lze reprezetovt mtemtickými model, které jsou popsá

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu.

Při výpočtu složitějších integrálů používáme i u určitých integrálů metodu per partes a substituční metodu. Mtmtik II.. Mtod pr prts pro určité intgrály.. Mtod pr prts pro určité intgrály Cíl Sznámít s s použitím mtody pr prts při výpočtu určitých intgrálů. Zákldní typy intgrálů, ktré lz touto mtodou vypočítt

Více

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení.

Půjdu do kina Bude pršet Zajímavý film. Jedině poslední řádek tabulky vyhovuje splnění podmínky úvodního tvrzení. 4. Booleov lger Booleov lger yl nvržen v polovině 9. století mtemtikem Georgem Boolem, tehdy nikoliv k návrhu digitálníh ovodů, nýrž jko mtemtikou disiplínu k formuli logikého myšlení. Jko příkld použijeme

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více

Integrály definované za těchto předpokladů nazýváme vlastní integrály.

Integrály definované za těchto předpokladů nazýváme vlastní integrály. Mtemtik II.5. Nevlstní integrály.5. Nevlstní integrály Cíle V této kpitole poněkud rozšíříme definii Riemnnov určitého integrálu i n přípdy, kdy je integrční oor neohrničený (tj. (, >,

Více

ANALYTICKÁ GEOMETRIE V PROSTORU

ANALYTICKÁ GEOMETRIE V PROSTORU ANALYTICKÁ GEOMETRIE V PROSTORU 3. přednášk Vektorová lger Prvoúhlé souřdnice odu v prostoru Poloh odu v prostoru je vzhledem ke třem osám k soě kolmým určen třemi souřdnicemi, které tvoří uspořádnou trojici

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K.

Digitální učební materiál. III/2 Inovace a zkvalitnění výuky prostřednictvím ICT Příjemce podpory Gymnázium, Jevíčko, A. K. Digitálí učeí mteriál Číslo projektu CZ.1.07/1.5.00/34.080 Název projektu Zkvlitěí výuk prostředictvím ICT Číslo ázev šlo klíčové ktivit III/ Iovce zkvlitěí výuk prostředictvím ICT Příjemce podpor Gmázium,

Více

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících.

4.4.1 Sinová věta. Předpoklady: Trigonometrie: řešení úloh o trojúhelnících. 4.4. Sinová vět Předpokldy Trigonometrie řešení úloh o trojúhelnííh. Prktiké využití změřování měření vzdáleností, tringulční síť Tringulční síť je prolém měřit vzdálenosti dvou odů v krjině změříme velmi

Více

4.2.1 Goniometrické funkce ostrého úhlu

4.2.1 Goniometrické funkce ostrého úhlu .. Goniometriké funke ostrého úhlu Předpokldy: 7 Dnešní látku opkujeme už potřetí (poprvé n zčátku mtemtiky, podruhé ve fyzie) je to oprvdu důležité. C C C C C C Všehny prvoúhlé trojúhelníky s úhlem α

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA

STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ 30, p. o. MATEMATIKA STŘEDNÍ ŠKOLA ELEKTROTECHNICKÁ, OSTRAVA, NA JÍZDÁRNĚ, p. o. MATEMATIKA Ig. Rudolf PŠENICA 6 OBSAH:. SHRNUTÍ A PROHLOUBENÍ UČIVA... 5.. Zákldí možiové pojmy... 5.. Číselé možiy... 6.. Itervly... 6.. Absolutí

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

KVADRATICKÁ FUNKCE (vlastnosti, grafy)

KVADRATICKÁ FUNKCE (vlastnosti, grafy) KVADRATICKÁ FUNKCE (vlstnosti, gr) Teorie Kvdrtikou unkí se nzývá kždá unke dná předpisem ; R,, R; D( ) je proměnná z příslušného deiničního ooru unke (nejčstěji množin R),, jsou koeiient kvdrtiké unke,

Více

Podobnosti trojúhelníků, goniometrické funkce

Podobnosti trojúhelníků, goniometrické funkce 1116 Podonosti trojúhelníků, goniometriké funke Předpokldy: 010104, úhel Pedgogiká poznámk: Zčátek zryhlit α γ β K α' l M γ' m k β' L Trojúhelníky KLM n nšem orázku mjí stejný tvr (vypdjí stejně), le liší

Více

2 Základní poznatky o číselných oborech

2 Základní poznatky o číselných oborech Zákldí poztky o číselých oorech Mozí lidé jsou evědoí je proto, že vycházejí z pojů, které jsou podle tetických ěřítek epřesé (Sokrtes). Přirozeá čísl Přirozeá čísl ozčují počet prvků koečých oži. Kždé

Více

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru

3 Algebraické výrazy. 3.1 Mnohočleny Mnohočleny jsou zvláštním případem výrazů. Mnohočlen (polynom) proměnné je výraz tvaru Algerické výrz V knize přírod může číst jen ten, kdo zná jzk, ve kterém je npsán. Jejím jzkem je mtemtik jejím písmem jsou mtemtické vzorce. (Glileo Glilei) Algerickým výrzem rozumíme zápis, ve kterém

Více

13. Soustava lineárních rovnic a matice

13. Soustava lineárních rovnic a matice @9. Soustv lineárních rovnic mtice Definice: Mtice je tbulk reálných čísel. U mtice rozlišujeme řádky (i=,..n), sloupce (j=,..m) říkáme, že mtice je typu (n x m). Oznčíme-li mtici písmenem A, její prvky

Více

m n. Matice typu m n má

m n. Matice typu m n má MATE ZS KONZ B Mtice, hodnost mtice, Gussův tvr Mtice uspořádné schém reálných čísel: m m n n mn Toto schém se nzývá mtice typu m řádků n sloupců. m n. Mtice typu m n má Oznčujeme ji A, B,někdy používáme

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU

LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU LINEÁRNÍ DIFERENCIÁLNÍ ROVNICE 2.ŘÁDU ZDENĚK ŠIBRAVA 1. Obecné řešení lin. dif. rovnice 2.řádu s konstntními koeficienty 1.1. Vrice konstnt. Příkld 1.1. Njděme obecné řešení diferenciální rovnice (1) y

Více

3. APLIKACE URČITÉHO INTEGRÁLU

3. APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU APLIKACE URČITÉHO INTEGRÁLU V mtemtice, le zejmén v přírodních technických vědách, eistuje nepřeerné množství prolémů, při jejichž řešení je nutno tím či oním způsoem použít

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

POSLOUPNOSTI A ŘADY,

POSLOUPNOSTI A ŘADY, POSLOUPNOSTI A ŘADY, ÚVOD DO INTEGRÁLNÍHO POČTU Obsh Poslouposti řdy. Poslouposti reálých čísel................................ Aritmetická geometrická posloupost........................ 4.3 Nekoečé číselé

Více

x + F F x F (x, f(x)).

x + F F x F (x, f(x)). I. Funkce dvou více reálných proměnných 8. Implicitně dné funkce. Budeme se zbývt úlohou, kdy funkce není zdná přímo předpisem, který vyjdřuje závislost její hodnoty n hodnotách proměnných. Jeden z možných

Více

1. LINEÁRNÍ ALGEBRA 1.1. Matice

1. LINEÁRNÍ ALGEBRA 1.1. Matice Lineární lgebr LINEÁRNÍ LGEBR Mtice Zákldní pojmy Mticí typu m/n nzýváme schém mn prvků, které jsou uspořádány do m řádků n sloupců: n n m/n = = = ( ij ) m m mn V tomto schémtu pro řádky sloupce užíváme

Více

Tangens a kotangens

Tangens a kotangens 4.3.12 Tngens kotngens Předpokldy: 040311 Př. 1: Úhel, pod kterým je možné ze pozorovt vrhol věže ze vzdálenosti 19 m od její pty, yl změřen n 53 od vodorovné roviny. Jk je věž vysoká? h 53 19 m Z orázku

Více

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra

Matice. a B =...,...,...,...,..., prvků z tělesa T (tímto. Definice: Soubor A = ( a. ...,..., ra Definice: Soubor A ( i j ) Mtice 11 12 1n 21 22 2n m 1 m2 prvků z těles T (tímto tělesem T bude v nší prxi nejčstěji těleso reálných čísel R resp těleso rcionálních čísel Q či těleso komplexních čísel

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,

Více

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce.

Jsou to rovnice, které obsahují neznámou nebo výraz s neznámou jako argument logaritmické funkce. Logritmické rovnice Jsou to rovnice, které oshují neznámou neo výrz s neznámou jko rgument ritmické funkce. Zákldní rovnice, 0 řešíme pomocí vzthu. Složitější uprvit n f g potom f g (protože ritmická funkce

Více

7.2.10 Skalární součin IV

7.2.10 Skalární součin IV 7.2.10 Sklární sočin IV Předpokld: 7209 Pedgogiká poznámk: Tto hodin je kontet čebnie zláštní. Obshje d důkz jeden příkld z klsiké čebnie. Všehn tři zdání jso znčně obtížná ždjí nápd, proto je řeším normálně

Více

8.2.4 Užití aritmetických posloupností

8.2.4 Užití aritmetických posloupností 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jká by byl

Více

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice

Střední škola obchodu, řemesel, služeb a Základní škola, Ústí nad Labem, příspěvková organizace Vzdělávací středisko Trmice Střední škol ohodu, řemesel, služe Zákldní škol, Ústí nd Lem, příspěvková orgnize Vzděláví středisko Trmie MATURITNÍ TÉMATA Předmět: Mtemtik Oor vzdělání: Ekonomik podnikání Školní rok: 0/06 Tříd: EKP

Více

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz

Petriho sítě PES 2007/2008. ceska@fit.vutbr.cz. Doc. Ing. Tomáš Vojnar, Ph.D. vojnar@fit.vutbr.cz PES Petriho sítě p. 1/34 Petriho sítě PES 2007/2008 Prof. RNDr. Miln Češk, CS. esk@fit.vutr.z Do. Ing. Tomáš Vojnr, Ph.D. vojnr@fit.vutr.z Sz: Ing. Petr Novosd, Do. Ing. Tomáš Vojnr, Ph.D. (verze 06.04.2010)

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

Důkazy Ackermannova vzorce

Důkazy Ackermannova vzorce Důkazy Akermaova vzore Rady studetům: Důkaz je trohu zdlouhavý, ale přirozeý. Tak byste při odvozeí postupovali, kdybyste vzore předem ezali. Důkaz je krátký, ale je založe a triku, a který byste předem

Více

2.2.9 Grafické řešení rovnic a nerovnic

2.2.9 Grafické řešení rovnic a nerovnic ..9 Grfické řešení rovnic nerovnic Předpokldy: 0, 06 Př. : Řeš početně i grficky rovnici x + = x. Početně: Už umíme. x + = x x = x = K = { } Grficky: Kždá ze strn rovnice je výrzem pro lineární funkci

Více

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a

(1) přičemž všechny veličiny uvažujeme absolutně. Její úpravou získáme vztah + =, (2) Přímé zvětšení Z je dáno vztahem Z = =, a a Úloh č. 3 Měření ohniskové vzdálenosti tenkých čoček 1) Pomůcky: optická lvice, předmět s průhledným milimetrovým měřítkem, milimetrové měřítko, stínítko, tenká spojk, tenká rozptylk, zdroj světl. ) Teorie:

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ Název zpracovaného celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ Předmět: Ročík: Vytvořil: Dtum: MATEMATIKA TŘETÍ MGR JÜTTNEROVÁ Název zprcového celku: GEOMETRICKÁ POSLOUPNOST A JEJÍ UŽITÍ GEOMETRICKÁ POSLOUPNOST Defiice: Poloupot e zývá geometrická právě tehdy, když

Více

ú ú ů ů ú š š ú é ů ů ž ů ž ž ů é ú ž ž ů ů š é ú ů ů ů ů ů ů š ú ž ú ň Ň ú ú é ú ž š é ú ů ú ň ž ú é é ž é ů ů é É é ú é žň é š é š ú ú é žň Ý ž é ú é ú Č é ú é Č é Ň ů ů š é š é ú š ů Ň š š é ň ů š ů

Více

M - Příprava na 3. zápočtový test pro třídu 2D

M - Příprava na 3. zápočtový test pro třídu 2D M - Příprv n. ápočtový test pro třídu D Autor: Mgr. Jromír JUŘEK Kopírování jkékoliv dlší využití výukového mteriálu je povoleno poue s uvedením odku n www.jrjurek.c. VARIACE 1 Tento dokument byl kompletně

Více

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět

ZPG Křivky. Hermitova interpolace. Fergusonovy křivky (3) Cíl Po prostudování této kapitoly budete umět ZPG Křivk. Hermitov iterpolce. Fergusoov křivk (). KŘIVKY A PLOCHY Cíl Po prostudováí této kpitol budete umět defiovt iterpolčí proximčí křivk pro dé bod defiovt ploch z dých prvků plikovt křivk ploch

Více

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2.

Komplexní čísla tedy násobíme jako dvojčleny s tím, že použijeme vztah i 2 = 1. = (a 1 + ia 2 )(b 1 ib 2 ) b 2 1 + b2 2. 7 Komplexní čísl 71 Komplexní číslo je uspořádná dvojice reálných čísel Komplexní číslo = 1, ) zprvidl zpisujeme v tzv lgebrickém tvru = 1 + i, kde i je imginární jednotk, pro kterou pltí i = 1 Číslo 1

Více

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p.

Zkoušku snadno provedeme tak, že do soustavy (1), která je ekvivalentní dané soustavě rovnic, dosadíme příslušné hodnoty s a p. 1. V oboru reálných čísel řešte soustvu rovnic x 2 xy + y 2 = 7, x 2 y + xy 2 = 2. (J. Földes) Řešení. Protože druhou rovnici můžeme uprvit n tvr xy(x + y) = 2, uprvme podobně i první rovnici: (x + y)

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uivrzit Krlov v Prz Pdgogická fkult SEMINÁRNÍ PRÁCE Z MATEMATICKÉ ANALÝZY KONVERGENCE ŘAD. přprcové vydáí / Cifrik, M-ZT Zdáí: Vyštřt kovrgci řdy, jstliž. ( ).!.. l ( ). 7.!. ( ). 8..! 4. 9. cos.. Vyprcováí:

Více

Úlohy domácího kola kategorie A

Úlohy domácího kola kategorie A 5. ročík Mtemtické olympiády Úlohy domácího kol ktegorie. Je-li S obsh trojúhelíku o strách, b, c T obsh trojúhelíku o strách +b, b + c, c +, pk pltí T 4S. Dokžte zjistěte, kdy ste rovost. Řešeí. Vyjádřeí

Více

Výfučtení: Goniometrické funkce

Výfučtení: Goniometrické funkce Výfučtení: Goniometriké funke Tentokrát se seriál ude zývt spíše mtemtikým než fyzikálním témtem. Pokud počítáte nějkou úlohu, ve které vystupují síly, tk je potřeujete dost čsto rozložit n součet dopočítt

Více

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic

Logické rovnice. 1 Úvod. 2 Soustavy logických rovnic Logické rovice J Bborák, Gyáziu Česká Líp, bbork@sez.cz Ev Svobodová, Krlíské gyáziu, evsvobo@gil.co Doiik Tělupil, Gyáziu Bro, dtelupil@gil.co Abstrkt Záklde šeho iiproektu e počítáí poocí Booleovy lgebry

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t

( ) ( ) ( ) Exponenciální rovnice. 17.3. Řeš v R rovnici: 3 + 9 + 27 = ŘEŠENÍ: Postup z předešlého výpočtu doplníme využitím dalšího vztahu: ( ) t s t 7. EXPONENCIÁLNÍ ROVNICE 7.. Řeš v R rovnice: ) 5 b) + c) 7 0 d) ( ) 0,5 ) 5 7 5 7 K { } c) 7 0 K d) ( ) b) + 0 + 0 K ( ) 5 0 5, 7 K { 5;7} Strtegie: potřebujeme zíkt tkový tvr rovnice, kd je n obou trnách

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

Opakovací test. Posloupnosti A, B

Opakovací test. Posloupnosti A, B VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,

Více

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254

Tento materiál vznikl díky Operačnímu programu Praha Adaptabilita CZ.2.17/3.1.00/33254 Evropský socálí fod Prh & EU: Ivestuee do vší udoucost eto terál vkl díky Operčíu progru Prh dptlt CZ..7/3..00/3354 Mžerské kvtttví etody II - předášk č. - eore her eore her 96 vo Neu, Morgester kldtelé

Více

Jednotlivé snímky lze použít jako studijní materiál.

Jednotlivé snímky lze použít jako studijní materiál. Číslo projektu Číslo mteriálu CZ..7/../.9 VY Iovce_8_MA_._ Využití geometrické poslouposti prcoví list Název školy Středí odborá škol Středí odboré učiliště, Hustopeče, Msrykovo ám. Autor Temtický celek

Více

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku

Nosné stavební konstrukce Výpočet reakcí Výpočet vnitřních sil přímého nosníku Stveí sttik.ročík klářského studi osá stveí kostruke osé stveí kostruke ýpočet rekí ýpočet vitříh sil přímého osíku osá stveí kostruke slouží k přeosu ztížeí ojektu do horiového msívu ěmž je ojekt zlože.

Více

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A

Souhrn základních výpočetních postupů v Excelu probíraných v AVT 04-05 listopad 2004. r r. . b = A Souhrn zákldních výpočetních postupů v Ecelu probírných v AVT 04-05 listopd 2004. Řešení soustv lineárních rovnic Soustv lineárních rovnic ve tvru r r A. = b tj. npř. pro 3 rovnice o 3 neznámých 2 3 Hodnoty

Více

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17

DIGITÁLNÍ UČEBNÍ MATERIÁL. Název školy SOUpotravinářské, Jílové u Prahy, Šenflukova 220. Název materiálu VY_32_INOVACE / Matematika / 03/01 / 17 DIGITÁLNÍ UČEBNÍ MATERIÁL Číslo projektu CZ07/500/4076 Název školy SOUpotrvinářské, Jílové u Prhy, Šenflukov 0 Název mteriálu VY INOVACE / Mtemtik / 0/0 / 7 Autor Ing Antonín Kučer Oor; předmět, ročník

Více

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x)

v. Úkolem regrese (vyrovnání) argumentu y je nalézt vhodnou regresní funkci Y f (x) 9 REGRESE A KORELACE Slovo regrese oecě zmeá poh zpět ústup ávrt regresví = ustupující Opčým termíem je progrese pokrok postup šířeí růst Pojem regrese l do sttstk zvede kocem 9 století rtským učecem Frcsem

Více

8. Analýza rozptylu.

8. Analýza rozptylu. 8. Aalýza rozptylu. Lieárí model je popis závislosti, který je využívá v řadě disciplí matematické statistiky. Uvedeme jeho popis a tvrzeí, která budeme využívat. Setkáme se s ím jedak v aalýze rozptylu,

Více

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním

Až dosud jsme se zabývali většinou reálnými posloupnostmi, tedy zobrazeními s definičním Limit funkce. Zákldní pojmy Až dosud jsme se zbývli většinou reálnými posloupnostmi, tedy zobrzeními s definičním oborem N. Nyní obrátíme svou pozornost n širší třídu zobrzení. Definice.. Zobrzení f, jehož

Více

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0)

a q provedeme toto nahrazení a dostane soustavu dvou rovnic o dvou neznámých: jsou nenulová čísla (jinak by na pravé straně rovnice byla 0) ..9 Úlohy geometickou poloupotí Předpokldy: 0, 0 Pedgogická pozámk: Při řešeí příkldů potupujeme tk, by Ti ejpomlejší počítli lepoň příkldy,,,. Souh vzoců pvidel po geometickou poloupot: + - pozávcí zmeí

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Definice limit I

Definice limit I 08 Definice limit I Předpokld: 006 Pedgogická poznámk: N úvod je třeb upozornit, že tto hodin je ze strn studentů snd nejvíce sbotovnou látkou z celé studium (podle rekcí 4B009) Jejich ochot brát n vědomí

Více

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi

Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi 2.2. Cíle Cílem této kapitoly je uvedení pojmu matice a jejich speciálních typů. Čtenář se seznámí se základními vlastnostmi matic a s operacemi s maticemi Předpokládané znalosti Předpokladem zvládnutí

Více

a 1 = 2; a n+1 = a n + 2.

a 1 = 2; a n+1 = a n + 2. Vyjářeí poloupoti Poloupot můžeme určit ěkolik růzými způoby. Prvím je protý výčet prvků. Npříkl jeouchá poloupot uých číel by e výčtem l zpt tkto:,, 6,,... Dlší možotí je vzorec pro tý čle. Stejá poloupot

Více

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Geometrie. Mgr. Jarmila Zelená. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Geometrie Mgr. Jrmil Zelená Gymnázium, SOŠ VOŠ Ledeč nd Sázvou Výpočty v prvoúhlém trojúhelníku VY_3_INOVACE_05_3_1_M Gymnázium, SOŠ VOŠ Ledeč nd Sázvou PRAVOÚHLÝ TROJÚHELNÍK 1 Pojmy oznčení:,.odvěsny

Více

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204

3.2.5 Pythagorova věta, Euklidovy věty I. α = = Předpoklady: 1107, 3204 3..5 ythgoro ět, Euklidoy ěty I ředpokldy: 1107, 304 roúhlý trojúhelník = trojúhelník s nitřním úhlem 90 (s prým nitřním úhlem) prý úhel je z nitřníh úhlů nejětší (zýjíí d musí dát dohromdy tké 90 ) strn

Více