MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

Rozměr: px
Začít zobrazení ze stránky:

Download "MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3"

Transkript

1 MECHANIKA PRUŽNÉHO TĚLESA Studijní tet pro řešitee O a ostatní zájemce o fyziku Bohumi Vybíra Obsah Předmuva 3 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES Pevnépružnétěeso Napětíadeformace TAHOVÁ A TLAKOVÁ DEORMACE Tahovádeformacetyče,Hookůvzákon Takovádeformacetyče Deformačníenergiepřitahu Eperimentánízkoumánímateriáutahematakem Mírabezpečnostiadovoenénapětí Příkad1 návrhprutovésoustavy Sožitějšíúohyvedoucínatahnebotak Příkad2 rotujícítyč Příkad3 rotujícíprstenec Úohykekapitoe SMYKOVÁ DEORMACE A TORZE Hookůvzákonprodeformacismykem Deformačníenergiepřismyku Dovoenénapětípřismyku Torzerotačníhováce Deformačníenergiepřitorzi Příkad4 hnacíhříde Příkad5 torzníosciátor Příkad6 tuhostšroubovitépružiny Úohykekapitoe

2 4 ELEMENTÁRNÍ TEORIE OHYBU Nosníkzatíženývnějšímisiami Vnitřnístatickéúčinkyunosníků Příkad7 posouvajícísíaaohybovýmoment Napětíadeformacepřiprostémohybu Příkad8 Průřezovécharakteristikyobdéníkaakruhu Deformačníenergiepřiprostémohybu Příčnýohyb Ohybováčáranosníkupřipříčnémohybu Příkad9 Ohybováčárakrakorce Příkad10 Pevnostnívýpočetkrakorce Vzpěrpřímýchprutů Úohykekapitoe ŘEŠENÍ ÚLOH 56 Literatura 62 Příoha 63

3 Předmuva Předožený studijní tet se zabývá mechanikou pevného deformovateného těesa oborem, který studuje mechanická napětí a deformace vyvoané působením vnějších si. Jde tedy o otázky související s pružností a pevností reáného těesa a proto se tento obor v apikované technické formě nazývá pružnost a pevnost, i když ani toto označení pně nevystihuje obsah tohoto technického předmětu. Zabývá se jevy, které vysvětují pevnost např. ptačího křída, kymácejícího se stéba trávy ve větru anebo rotující neutronové hvězdy. Konstruktérovi poskytuje metody potřebné pro návrh různých staveb a strojů. Jejich nedostatečné respektování vede ke katastrofám, se kterými se stáe setkáváme (zřícené budovy, mosty, havarovaná etada atd.). Otázkami pružnosti a pevnosti se zabývay nejvýznamnější osobnosti fyziky, jakými byi G. Gaiei, Jacob Bernoui, E. Mariotte, R. Hooke, L. Euer, Ch. A.Couomb,A.L.Cauchy,G.G.Stokes,G.Green,J.C.Maweaj.Souběžně s rozvojem tohoto oboru se rozvíjey i významné matematické obory, jako teorie diferenciáních rovnic a tenzorový počet. I přes uvedený význam je tento obor mechaniky jen okrajovou součástí současné středoškoské fyziky. Nicméně ve vysokoškoské fyzice má pevné místo v teoretické mechanice jako mechanika pružného kontinua. Zde jde o náročnou partii vyžadující dobrou znaost vyšší matematiky, zejména tenzorového počtu. Pro budoucí techniky na středních a vysokých škoách je pružnost a pevnost obávaným profiujícím předmětem. Inženýr dokáže metodou konečných prvků (numerická diferenční metoda řešení diferenciáních rovnic, které popisují napětí a deformace) provést pevnostní výpočet těesa(součástky, konstrukce) ibovoného tvaru. Předožená pubikace může poskytnout jen stručný fyzikání úvod do mechaniky deformovatených těes. Omezuje se jen na pružné deformace těes jednoduchého tvaru. Popisuje zákadní deformace: tah, tak, smyk, torzi a ohyb. Při fyzikáním popisu vystačíme se zákady diferenciáního a integráního počtu. Stručný fyzikání výkad je iustrován 10 řešenými příkady a čtenáři je předoženo 26 úoh s řešením uvedeným v závěru pubikace. Přiřešenípříkadůaúohsečtenářsetkásmatematikou,kteráseběžně na střední škoe neprobírá. Vhodné dopnění matematiky pro fyziku ze najít v souboru pubikací Kapitoy z matematiky pro řešitee fyzikání oympiády[13]. 3

4 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES 1.1 Pevné pružné těeso V mechanice se setkáváme s ideaizovanými modey pevných těes. Jde-i nám o pohyb těesa jako ceku, používáme mode tuhého těesa. Síy a momenty si působící na těeso vyvoávají u reáného těesa stav napjatosti provázený jeho deformací. V našem tetu se soustředíme na zjednodušený mode pevného těesa, u něhož vznikají jen pružné deformace, tj. po vymizení vnějších si vymizí i deformace a těeso nabývá původního tvaru. U reáného tvárného těesa přejdou při překročení určitého napětí pružné deformace na pastické zákad změny tvaru těesa kováním a isováním. U křehkého těesa tento stav nenastává dochází přímo k omu. Deformace reáných pružných těes působením si je podmíněna jejich mikrostrukturou. Jejím zákadem jsou zpravida ionty, které jsou u krystaických átek rozoženy v krystaových mřížkách. Látka ve formě monokrystau je anizotropní, tj. její vastnosti závisí na směru si vzhedem ke stavbě krystau. Většina technicky významných átek se vyskytuje jako poykrystay. Skádají se z vekého počtu krystaků(zrn), jejichž vzájemná pooha je nahodiá a proto výsedné fyzikání vastnosti těchto átek jíž nejsou závisé na směru; tyto átky jsou izotropní. Izotropií se vyznačuje i druhá skupina pevných átek amorfní átky, které nemají krystaovou strukturu, protože jsou tvořeny částicemi s krátkým dosahem. Patří mezi ně např. pasty, sko, vosk, pryskyřice, asfat a poymery(např. kaučuk, bavna, termopasty aj.). V našem tetu se budeme zabývat deformacemi pevných těes vytvořených z izotropních átek. Mikrostruktura pevných átek výrazně ovivňuje jejich mechanické vastnosti jejich pružnost a pevnost. Pro zkoumání makroskopických deformačních dějů však není nutné přihížet k mikrostruktuře átky, nýbrž pevné těeso ze vyšetřovat jako pružné spojité prostředí pružné kontinuum. Tento mode umožňuje využít matematickou teorii spojitých funkcí jedné nebo více proměnných, přičemž rozpor s nespojitou fyzikání reaitou, projevující se ve vemi maých objemech, překeneme tak, že jednotivým bodům kontinua připíšeme veičiny, které jsou středními hodnotami z dostatečně vekého okoí bodu kontinua.upatňujesezdefenomenoogická( jevová )metoda,přičemžfyzikání vastnosti átky, podmíněné jejich mikrostrukturou, jsou popsány obecně spojitými funkcemi místa v těese. Některé z nich ze považovat za konstanty; nazývají se materiáové konstanty. U izotropních átek jsou tyto konstanty dvě a nazývají se moduy pružnosti: E YoungůvmodupružnostiaG modupružnostivesmyku.uani- 4

5 zotropních átek se nazývají eastické koeficienty a jejich počet závisí na sožitosti krystau(u nejsožitějšího krystau trojkonné soustavy je jich 21). 1.2 Napětí a deformace Nechťnapružnétěesopůsobísoustavavnějšíchsi 1... i... n (obr.1), přičemžjejichvýsednicejenuová: n i=1 i= 0, tj.těesojevestatickérovnováze. Mezi vnější síy patří: 1. objemové síy rozožené v ceém těese, tedy především tíhová sía a setrvačné síy vznikají v neinerciání soustavě spojené s těesem, např. sía odstředivá, 2. pošné síy, působící na povrch těesa především takové síy vyvoané takem kapain a pynů, 3. vazbové síy(reakce) síy a případně momenty si, kterými působí na pružné těeso okoní těesa v místech vazeb(např. ožiska, podpěry, vetknutí). Určují se z podmínek statické rovnováhy těesa(viz např.[10]) n k n Obr. 1 Soustava vnějších si a vnitřních si Působení vnějších si uvnitř těesa zprostředkovávají vnitřní síy. Jsou to síy, které působí jako reakce proti tendenci vnějších si porušit prvek pružného těesa, měnit jeho tvar, odděit jednu jeho část od druhé. Určují se metodou k 5

6 myšenéhořezu. 1 )Těesemvedemevmístě,kdemámesíyurčit,myšenýřez rovinou (obr.1),kterýmtěesorozděímenadvěčásti1,2.označíme-i 21 výsednici vnitřních si spojitě rozožených po poše řezu, kterými působí část 2načást1aanaogicky 12,kterýmipůsobíčást1načást2,musízhediska rovnováhybýt = 0. Vnitřnísíyurčujememetodoumyšenéhořezu tak,žeurčímerovnováhujejíurčitéčásti(1nebo2). V mechanice tuhého těesa jsme pracovai se siou jako vektorem, který je vázánnapřímku nositekusíy ponížjibyomožnoibovoněposunout. V mechanice pružných těes to nepatí, protože posunutím síy po přímce(změnoujejíhopůsobiště)bydošokezměněrozoženívnitřníchsiatímkezměně napjatosti těesa. Rozožení vnitřních si na poše myšeného řezu těesa charakterizujeme veičinou(mechanické) napětí. Nechť na eementární poše S v okoí bodu A pochyřezu(obr.2)působívnitřnísía.pakcekovénapětívtomtobodě je c= im S 0 S =d ds. (1) JednotkounapětívsoustavěSIjeN m 2 =m 1 kg s 2 =Pa(pasca).Protože napětí1pajevemimaé,používásejednotkampa=10 6 Pa=N mm 2. S S n n A α c t t n k Obr.2 Kpojmunapětí 1 )Geniánímetodumyšenéhořezu,hojněpoužívanouvmechanicepružnéhotěesa,zaved Leonard Euer ( ). Řezem se vnitřní sía stává siou vnější a můžeme ji určit z podmínky rovnováhy odděené části. 6

7 Vektornapětí cmádvěvýznamnésožky.sožkanapětívesměrunormáy nkroviněmyšenéhořezusenazývánormáovénapětí,vtechnicképraise značí σ. tohoto souhasný se směrem vnější normáy, hovoříme otahovémnapětí(tentopřípadjeznázorněnnaobr.2).je-isměrnapětí opačný než vnější normáa, hovoříme o takovém napětí. Druhá významná sožkouvektorunapětí cežívtečnéroviněmyšenéhořezu(tedypřímovroviněřezu,kterýjerovinný).nazývásetečnénapětí avtechnicképraise značí τ. Protože toto napětí vyvoává smykovou deformaci, nazývá se rovněž smykové napětí. Rozkadvektorunapětí cvurčitémboděrovinnéhořezuzatíženéhotěesa do sožek můžeme vyjádřit těmito skaárními výrazy: n σ= im S 0 S =d n ds =d ds cosα=σ ccosα, (2) t τ= im S 0 S =d t ds =d ds sinα=σ csinα, (3) kde n, t jsouveikostiprůmětusíy do nat.úhe αvtěchtovýrazech jeodchykasíy odsměruvnějšínormáy naežívintervau 0, p.zvýrazu (2)tedyvypývá σ >0 protahovénapětí,kdy α 0, p/2) a σ <0 pro takovénapětí,kdy α (p/2, p.tečné(smykové)napětíje τ > 0,neboť vznikápro α (0, p). Cekové napětí(1) je závisé na dvou vektorových veičinách na vektoru vnitřních si v místě eementu pochy S a na směru vnější normáy pochy myšenéhořezuvmístě,vněmžeement Seží.Napětí cjetedyveičina, která je charakterizována dvěma směry, což se v jeho sožkách obecně vyjadřuje připojením dvou indeů. Takové veičiny se vyskytují jak ve fyzice, tak v geometrii, nazývají se tenzory a zabývá se jimi matematická discipína tenzorový počet. 2 ) 2 )Vdanémpřípadějdeotenzordruhéhořádu.Vtrojrozměrnémprostorumá3 2 =9 kartézských sožek, které ze uspořádat do matice ( σ, σ y, σ z ) σ y, σ yy, σ yz. σ z, σ zy, σ zz Tři sožky v havní diagonáe matice mají dva stejné indey a popisují normáová napětí ve směru přísušných os, y, z. Šest zbývajících sožek popisuje tečná napětí v rovinách yz, zay.jsouvindeechsymetrické(např. σ y = σ y)atedynezáviséjsoujentři. V mechanice tuhého těesa se setkáváme s podobným tenzorem tenzorem setrvačnosti(viz např.[11]). Vektory ze považovat za tenzory prvního řádu(v trojrozměrném prostoru mají 3 1 =3sožky)askaáryzatenzorynutéhořádu(3 0 =1sožka).Ovektorechatenzorechve fyzice systematicky pojednává[12]. 7

8 S tenzorovým vyjádřením napětí souvisí i tenzorové vyjádření deformace, kterou napětí vyvoává. Tedy úpný a obecný popis napjatosti těesa vyžaduje popis pomocí tenzorové agebry a anaýzy. V našem výkadu se tomuto obecnému popisu vyhneme, aniž bychom omezovai správnost řešení, neboť se budeme zabývat jen jednoduchými(i když fundamentáními) případy pružnosti těesa. Budeme tedy nadáe pracovat se sožkami napětí σ a τ jako se skaárními veičinami. Účinkem vnitřních si vzniká v těese jeho deformace. Budeme uvažovat jen pružnou deformaci, tj. takové změny tvaru a rozměrů, které vymizí, přestanou-i působit vnější síy. Nyní zavedeme veičiny, kterými budeme popisovat deformaci. Představme si body A, B, C nedeformovaného těesa(obr. 3). Vzdáenost bodů A, B označíme ; úsečky AB, BC spou svírají úhe α. Působenímsíy setěesodeformujeabodypřejdoudopooh A, B, C.Orientované úsečky AA, BB, CC senazývajívektorypřemístění,přičemžjezerozožit na přemístění ineární posunutí a přemístění úhové pootočení. U ohybu nosníku(viz kap. 4) se posunutí nazývá průhyb v určitém bodě. S pootočením sesetkámeutorze(vizkap.3),kterésezdeoznačujeúhezkroucení. A A + B α B α C C Obr.3 Kpojmudeformace Současně s přemístěním vzniká u těesa na obr. 3 přetvoření charakterizovanézměnoudéekúsečekazměnouúhumezinimi.nechťúsečka ABzmění déku popřemístěnído A B na +.Tutozměnucharakterizujemereativním(poměrným) prodoužením ε=. (4) Je to bezrozměrná veičina, která udává prodoužení úsečky jednotkové déky. Vyjde-i εzáporné,jdeozkráceníúsečkydéky o. 8

9 Vede ineárního přetvoření vzniká úhové přetvoření, které se v našem případěprojevízměnouúhu αna α.zvoíme-ibodya, B, Ctak,že α=p/2, nazývá se přísušná změna úhu zkos γ= p/2 α. (5) Obecně síy a momenty si způsobují sožité deformace těes. Ve zváštních případech dochází k zákadním deformacím těes, jak je vyznačeno na obr. 4. Jsou to: 1. tah(tahová deformace) a tak(taková deformace) projevuje se u namáhání an, prutů v příhradových konstrukcích, soupů, řetězů, 2. smyk(smyková deformace) projevuje se u namáhání šroubů, nýtů, svárů, čepů, 3. torze(krut) projevuje se u namáhání hřídeů, pružin, torzních váken, 4. ohyb projevuje se u namáhání všech druhů nosníků, např. hřídeů, překadů, mostovek, bakonových nosníků(krakorců). a) b) c) d) 2 e) Obr.4 Zákadnídruhydeformací:a)tah,b)tak,c)smyk,d)torze,e)ohyb 9

10 2 TAHOVÁ A TLAKOVÁ DEORMACE 2.1 Tahová deformace tyče, Hookův zákon Napřímoutyčkonstantníhoprůřezuopošnémobsahu Snechťpůsobívose stáá sía (obr. 5). Normáové napětí v ibovoném místě komého průřezu nosníku určíme metodou myšeného řezu rovinou vedenou komo k jeho ose (obr.5a).zpodmínkyrovnováhyodděenéčásti σs =0pyne σ= S. (6) a) b) b b b S σ + Obr. 5 Tahová deformace: a) určení napětí metodou myšeného řezu, b) změna rozměrůtyčepřitahu Působením vnější siy se tyč prodouží o. Výsedky eperimentů, které r pubikova Robert Hooke, vedou k jednoduchému závěru, že prodoužení je přímo úměrné veikosti působící síy, pokud její veikost nepřekročí jistou mez. Prodoužení tyče je dáe přímo úměrné její déce a nepřímo úměrné pošnému obsahu S příčného řezu pode vztahu = ES = σ E, (7) kde Ejekoeficientúměrnosti,kterýjeprourčitýmateriátyčeajehotepotu konstanta.veičinu Ezavedteprver.1807,tedyaž129etpozveřejněníHookova poznatku, Thomas Young. Na jeho počest se nazývá Youngův modu (anebo také modu pružnosti v tahu). Zavedením reativního prodoužení(4) a normáového napětí(6) můžeme vztah(7) psát v obecnějším tvaru σ= Eε, (8) který se nazývá Hookův zákon pro jednoosou napjatost(tah/tak). Z tohoto vztahu je zřejmý fyzikání význam Youngova moduu. Je to napětí, které 10

11 byvtyčivznikopři ε=1(tj. =),kdyžbychompřijaipatnostzákona (8) bez omezení. Ve skutečnosti u většiny technických materiáů vzniká již při ε <0,01pastickádeformace.Výjimkutvoříjenpryž.Vtab.Ivpříozejsou uvedeny hodnoty Youngova moduu pro běžné technické materiáy. Protože / = ES/, nazývá se veičina ES/ tuhost tyče v tahu jako sía, která by způsobia prodoužení tyče o jednotkovou déku. S prodoužením tyče se současně zmenšují její příčné rozměry. Např. šířka tyče bsezmenšína b b(obr.5b).reativnízúženípříčnýchrozměrů η = b/b je přímo úměrné reativnímu prodoužení ε pode vztahu η= b b = µε=µ σ E, (9) kde konstanta úměrnosti µ se nazývá Poissonovo číso. U běžných technických materiáůje µ (0,25 0,5) viztab.i. 2.2 Taková deformace tyče Poznatky, které jsme uvedi pro pružnou tahovou deformaci, patí do jisté míry iprotakovoudeformaci,přičemž σ <0 ε <0(zápornéreativníprodoužení = zkrácení), η < 0(záporné reativní zúžení = rozšíření). U takové deformace však přistupují i otázky stabiity a tak reativně štíhé přímé tyče namáhané natakjenutnékontroovatnavzpěr(vizč.4.7). 2.3 Deformační energie při tahu Protože se tyč nachází ve statické rovnováze, projeví se práce vykonaná vnějšími siami při její deformaci přírůstkem její potenciání energie; v tomto případě deformační energie při tahu. Vypočtěme tedy deformační práci ze stavu bez deformace(=0)dostavusdeformací = (obr.6).vobecnépooze(při protažení )mávnějšísiaveikost = ES/ apřiprotaženíodékud vykoná eementární práci dw= d= ES d. Ceková deformační práce při protažení o je W= ES 0 d= ES [ 2 2 ] 0 = ES 2 ( )2 = 1 2 = 2 2ES. (10) 11

12 + S B dw O d C Obr. 6 K výpočtu deformační energie při tahu Zde jsme práci vyjádřii ještě užitím koncové veikosti síy a prodoužení podevztahu(7).zobr.6jezřejmé,žepráce(10)jeúměrnápošetrojúheníka OBC. Zavedeme-i do(10) reativní prodoužení ε a napětí σ, dostaneme pro deformační práci a tudíž i pro deformační energii U výraz W= U= ε2 E σ2 S= S. (11) 2 2E Protože S = V je objem tyče, můžeme snadno vypočítat hustotu deformační energie při tahu u t = U V = ε2 E 2 = σε 2 = σ2 2E. (12) Přiznaostideformačníenergie U přiobecnémprotaženíomůžemenaopakurčitveikost vnějšísíypřitomtoprodoužení.zevztahu(10)pro obecnou poohu nahradíme veičinou a dostaneme U = W = ES 2 2 = du d = ES. (13) 2.4 Eperimentání zkoumání materiáu tahem a takem Mechanické vastnosti materiáu ze spoehivě určit jen eperimentáně, přičemž zákadní statickou zkouškou je zkouška tahem. Tyč se napíná v hydrauickém trhacím stroji pozvoně rostoucí siou, až dojde k jejímu přetržení. Přitom se měří veikost síy a odpovídající prodoužení. Zkouška musí probíhat za přesně stanovených podmínek(daných závaznou normou). Zkušební tyče jsou normaizovány; mívají zpravida kruhový průřez(obr. 7). Pracovní déka tyče, vyznačená ryskami, je kratší než její vácová část. 12

13 Obr. 7 Zkušební tyč pro statickou zkoušku tahem Graf závisosti veikosti zatěžující síy na prodoužení, resp. závisosti napětí σ na reativním prodoužení ε se nazývá pracovní diagram, jehož příkadjenaobr.8. σ σ pt σ kt σ e σ u O α K 0 K E U σ P X 0 X X ε Obr. 8 Pracovní diagram pro houževnatou oce. Napětí σ je definováno podíem zatěžující síy a pošného obsahu původního(nedeformovaného) průřezu; jde osmuvnínapětí,skutečnénapětí σ je větší, protože se pocha průřezu deformací zmenšuje. Poznámka: Pro napětí v pracovním diagramu se nově pode ČSN přijaa tato označení: σ k = R e, σ pt = R m Pracovní diagram má někoik význačných bodů: σ u napětínameziúměrnosti(u mezúměrnosti)vymezujeobast (přibižné)inearity,tedyobast,vnížjespněnhookůvzákon σ=eε.je zřejmé,žesměrniceúsečky OU(tg α)jerovnayougovumoduu E. σ e napětí na mezi úměrnosti(e mezpružnosti)vymezujebod, při jehož překročení vznikají trvaé deformace.(norma vymezuje, že trvaé prodoužení musí být větší než 0,005%.) σ k napětínamezikuzu(k mezkuzu)jenapětí,přiněmžsečástečně poruší strukturání vazba v krystaické mřížce. Vzniká výrazná pastická deformace(materiá teče ).Tentobodsenevyskytujeukřehkýchmateriáů. σ pt napětínamezipevnostivtahu,(p mezpevnosti),přijehož dosaženídojdektrvaémuporušenímateriáu(bod P).Materiádáe teče a přetržení nastane v bodě X při menším smuvním napětí.(skutečné napětí je větší bod X.)Bod X 0 popisujedékupřetrženétyče. Při statické zkoušce na tak se použije zkušební těísko tvaru kryche nebo nízkého váce. Jde-i o houževnatý materiá(většina oceí), chová se do meze 13

14 úměrnosti stejně jako při tahu. Při překročení meze kuzu nabude zkušební těísko tvaru soudku. U křehkých materiáů(itina, beton, kámen) je pevnost vtakuvýrazněvětší,přičemžněkteréznich(např.čistýbeton,tj.bezoceové armatury) neze vůbec namáhat na tah. Na mezi pevnosti v taku nastává rozdrcení zkušebního těíska. Porovnání úpných pracovních diagramů houževnatých a křehkých materiáů je na obr. 9. Pracovní diagramy pro křehké materiáy nemají zpravida ineární úseky, proto Hookův zákon pro ně patí jen přibižně. Mechanické pevnostní charakteristiky některých konstrukčních oceí akřehkýchmateriáůjsouuvedenyvpříozevtabukáchiiaiii.ukřehkých materiáů se uvádí i eperimentání hodnota pevnosti v ohybu. a) oce σ b) šedá itina σ σ kt tah σ pt tah O ε O ε tak σ kd tak σ pd Obr. 9 Úpné pracovní diagramy: a) houževnaté materiáy(oce), b) křehké materiáy (šedá itina) 2.5 Míra bezpečnosti a dovoené napětí Tvar a veikost namáhaných těes(např. součástí strojů) se odchyuje od tvaru zkušebních tyčí. Jde zejména o změny průřezu(otvory, osazení, zápichy, závity tvořískupinutzv. vrupů ).Rovněžsíynebývajístatické,naopakčastovemi dynamické, např. u spaovacích motorů. Provozní tepoty také ovivňují pevnost, jsou-i vysoké anebo naopak vemi nízké. Zejména dynamické namáhání může způsobit tzv. únavové omy v místě vrupů, z nichž se šíří mikroskopické trhiny. Konstruktér se musí při návrhu také pojistit proti nenadáému nestandardnímu zatížení, které se může při provozu ojediněe vyskytnout a ohrozit ceistvostsoučástiatímčinnostceéhozařízení.zavádíseprotokoeficient k >1 14

15 zvanýmírabezpečnosti,pomocíněhožsepočítádovoenénapětí σ dt pro namáhání tahem pode vztahu σ dt = σ kt k, (14) kde σ kt jenapětínamezikuzuurčenéstatickouzkouškou. Zmateriáů,kterénemajímezkuzu,sedovoenénapětíurčíznapětína mezi pevnosti pode vztahu σ dt = σ pt k, (15) kde k > k.vobamírybezpečnosti k, k jepředevšímotázkouempiriezískané provozem a zkušenosti konstruktéra. Při jeho vobě rozhodují současně otázky spoehivosti a ekonomiky, které jsou vzájemně protichůdné. Často přistupují i otázky hmotnosti ceého zařízení, např. u etade. Materiá k, k Oce k=1,2 2 Ocekaená k =2,5 4 Šedáitina k =4 5 Hiníkitý k =8 10 Dřevo k =6 12 Beton k =4 8 Tab.IV Mírabezpečnosti Pevnostní podmínka, kterou je vázán konstruktér při návrhu, určuje, že pro vypočtené napětí musí patit σ σ dt k nebo σ σ pt k. (16) Zaokrouhení vypočteného rozměru součásti, které nakonec konstruktér provede, je dáno např. ceým čísem, které vypývá z normované řady pro řešený případ(např. normované řady šroubů, nýtů, ožisek). Zváštní pozornost je třeba věnovat cykicky namáhaným součástkám, u kterýchmůžepřiprovozudojítkúnavovýmomům.jetodánonapř.jejichkmitáním(u opatek turbín, anebo istů vrtue), nebo rotací(u hřídeů, čepů ko automobiů) a jejichž om může způsobit katastrofu. Zde je proto nutné statickou zkoušku dopnit zkouškou meze únavy při střídavém tahu taku anebo 15

16 při souměrně střídavém ohybu, kdy jsou krajní vákna střídavě namáhána na tahatak.zjišťujesezávisostcykickéhonapětí σ c napočtu Ncyků,které zkušebnítyčvydržídovznikuúnavovéhoomu.srostoucím N se σ c uocei asymptotickyzmenšujekhodnotě σ 0c,kterájenapětímnameziúnavy.Při zkoušcesevycházízpoznatku,ženerozruší-isevzorekdo cyků,vydrží praktickyneomezenýpočetcyků.přísušnýgraf σ c (N)senazýváWöherůvdiagram(obr.10).Prooceipatípřibižnýpoznatek σ 0c =(0,4 0,6)σ pt.unežeezných kovů, zejména u ehkých sitin, se neobjevuje zřetená mez únavy. Wöherova křivka má stáe sestupný průběh, a proto je nutné součásti z těchto kovůnavrhovatpročasovoumezúnavy σ N proočekávanýpočet Ncykůdo konce životnosti zařízení. Přinávrhucykickynamáhanýchsoučástísedovoenénapětí σ dt vpevnostní podmínce(16) určí anaogicky vztahu(14), tedy σ dt = σ 0c k resp. σ dt = σ N k. σ c σ c σ pt σ c1 σ c2 oce nežeezné kovy pevnost časovaná trvaá σ 0c σ 0c 0 N 1 N N og N Obr.10 Závisostcykickéhonapětí σ cnapočtucyků N(Wöherůvdiagram)vgrafu ineárním(a) a semiogaritmickém(b) pro oce Příkad 1 návrh prutové soustavy Navrhněte průměry tyčí staticky namáhané prutové soustavy pode obr. 11 pro =10,0kN, α 1 = α 2 = α=30.voteoce10370(σ kt =200MPa)amíru bezpečnosti k = 2,0. 16

17 α 1 α Obr. 11 Prutová soustava Řešení Z podmínky statické rovnováhy pyne Pevnostní podmínka(16): 1 = 2 = 2cosα = 3. σ= 1 S = 2 pd 2 cosα σ dt= σ kt k. (17) 2k Odtud d pσ kt cosα =8, m. Voíme d=10mm. Zevztahu(17)pakdostanemeskutečnénapětívtyči σ=73,5mpa <100MPa. 2.6 Sožitější úohy vedoucí na tah nebo tak K nejvýznamnějším úohám, které vedou k Hookovu zákonu pro tah/tak patří namáhánívohybu.tentopřípadjetakvýznamnýasožitý,žemuvěnujeme samostatnou kapitou 4. K úohám na tah/tak vede i řada staticky neurčitýchúoh,tj.úoh,kdykurčenísiamomentůsinestačípodmínkystatické rovnováhy = 0, M=0 akřešenímusípřistoupitještědeformační rovnice, vyjadřující pode dané situace deformační podmínku soustavy, její rozměrovou kompatibiitu. Těchto rovnic je někdy nutno sestavit více; pak hovoříme o tom, koikrát je soustava staticky neurčitá. Důežitým případem je tepené pnutí. Uvažujme jedenkrát staticky neurčitousoustavu,kteroujetyčvoženápřitepotě t 1 donehybnýchopor(např. mezičeistisvěráku)bezpředpětí(obr.12).pozahřátíztepoty t 1 na t 2 se 17

18 tyč bude snažit prodoužit a bude rozpínat opory. Protože jsou nehybné, budoupůsobitnatyčreakcemi R,kterévyvoajívtyčinapětí σ.tovypočteme zrovnice t + R =0, kde t = α(t 2 t 1 ), R = R ES = σ E, kde α je tepotní součinite dékové roztažnosti. Odtud σ= αe(t 2 t 1 ). (18) Např.uoceovétyče(α=1, K 1 )vznikápřizvýšenítepotyo10 C takovénapětí σ= 30MPa, E=2, Pa. R S R Obr.12 Tepenépnutívtyči Jiný příkad jedenkrát staticky neurčité soustavy je na obr. 13. Předpokádáme,ženosníkjedokonaetuhýapruty1,2jsoupružné.Soustavaby bya staticky určitá, kdyby neobsahovaa prut 2. Pak bychom mohi jednoduše určitsíupůsobícívprutu1ireakci Rzávěsu.Vdanémpřípaděobouprutů bude řešení poměrně jednoduché, budou-i pruty přesně stejně douhé a jejich montáž bude provedena s nuovým předpětím(obr. 13b). Jiná situace nastane, kdyžnapř.prut2budevdůsedkuvýrobnínepřesnostioδkratší(obr.13c). Pakpřimontážibudenutnéprut1stačitodéku 10 aprut2odéku 20 natáhnout.musítedybýtspněnadeformačnírovnice δ= , kde 10 <0jetakovádeformaceprutu1převedenádoprutu2.Přimontážitedy vzniknouvprutechpočátečnísíy 10 <0, 20 >0,ikdyž =0.Popřipojení vnější síy dostaneme výsedné zatížení superpozicí si z řešení situací na obr. 13ba13c. Přerozděení si v naší soustavě by nastao i v případě montáže bez předpětí (obr.13b),jestižebychompotézměniitepoty t 1, t 2 prutů1,2(předpokádejmerovnoměrněpoceéjejichdéce),např. t 2 < t 1. Vsoustavěopětvznikne tepotnípnutíipro =0.Podobnépnutívznikátakénapř.přiochazování itinového nebo skeněného oditku a může vést k jeho popraskání. K apikaci Hookova zákona pro tah vedou i některé daší sožitější úohy, jak je uvedeno vpříkadech2a3avúoháchvč

19 a) O 1 2 a a a b) O R c) O δ 10 Příkad2 rotujícítyč R Obr. 13 Staticky neurčitá prutová soustava Uvažujte pružnou tyč o déce, hustotě a konstantním obsahu S příčného průřezu, která rotuje konstantní úhovou rychosti ω koem osy komé k podéné ose tyče(obr. 14). Vypočtěte a)napětí σ vobecněvedenémkomémřezu Xtyče, b) prodoužení úseku tyče o déce a prodoužení ceé tyče. Při řešení pro jednoduchost předpokádejte, že změna rozměrů tyče je maá, což dobře spňují technické materiáy s výjimkou pryže. Řešení a)vevzdáenosti odkoncetyčeprovedememyšenýřez X(obr.14).Vnitřní síyvtomtořezumusíbýtvrovnovázesvýsednicí odstředivýchsimyšené odděené části. Na eement dξ působí eement odstředivé síy o veikosti d = Sω 2 ( ξ)dξ. 19

20 Pronapětívřezu Xpakpatí σ = S = ω2 0 ( ( ξ)dξ= ω 2 ). 2 b) K výpočtu prodoužení úseku tyče o déce určíme nejprve prodoužení jejího eementu dξ, které označíme (dξ) a tato prodoužení sečteme pro všechna ξ.vyjdemezhookovazákona,přičemžnapětí σ ξ vmístěeementuurčímez výše uvedeného vztahu, nahradíme-i ξ za. Pro prodoužení eementu dξ tedy apikací vztahu(7) dostaneme (dξ)= σ ξ ω2 dξ= E E ) (ξ ξ2 dξ. 2 Prodoužení úseku tyče déky dostaneme integrací od 0 do : = ω2 E 0 (ξ )dξ= ξ2 ω2 2 ( ). 2 2E 3 Prodoužení ceé rotující tyče dostaneme dosazením = : = ω2 3 3E (patípro ). ω X dξ ξ S σ Obr. 14 Rotující tyč Příkad 3 rotující prstenec Prstenecovnitřnímpooměru r,toušťce h r,šířce bahustotě rotuje úhovou rychostí ω okoo rotační osy souměrnosti. Vypočtěte a) napětí v prstenci, b) zvětšení pooměru v důsedku rotace, c) deformační energii a porovnejte ji s kinetickou energií. 20

21 Řešení a)úohavedenaprostýtah.zprstencevyjmemeeement(obr.15),nakterý působí eementární odstředivá sía o veikosti ( d o = ω 2 r+ h ) dm ω 2 r 2 bhdα. 2 Aby myšeně vyjmutý eement by v rovnováze, musí účinek odstředivé síy d o vyrovnávatdvěvnitřníobvodovésíy, stejnéveikostipodeobr.15b. Protože tyto tři síy jsou v rovnováze, je siový trojúheník uzavřený(obr. 15c). Proveikosteementárnísíyd o musítedysoučasněpatit d o = dα. Porovnánímobouvýrazůprod o dostanemeveikost vnitřnísíyatahové napětí, které sía v prstenci vyvoá: = ω 2 r 2 bh, σ= bh = ω2 r 2. (19) b a) b) c) h r O ω dα dα d o d o Obr. 15 K výpočtu napětí v rotujícím prstenci dα = = b) Působením odstředivých si se obvod prstence zvětší, přičemž pode Hookova zákona pro jeho reativní prodoužení patí ε= 2p(r+ r) 2pr 2pr = r r = σ E = ω2 E r2. Odtud dostaneme zvětšení pooměru prstence r= ω2 E r3. 21

22 Vzhedemktomu,žehodnota Ejevemiveikávesrovnánísnapětím σ,je r vemi maé ve srovnání s pooměrem r. c) Pode(12) je hustota deformační energie prstence u t = σ2 2E = ω4 r 4 2 2E. Deformační energii ceého prstence dostaneme vynásobením objemem V: U= u t V= u t m = mω4 r 4 2E. Kinetickáenergie Tprstence 3 )omomentusetrvačnosti J= mr 2 je T= 1 2 Jω2 = 1 2 mω2 r 2. Podí obou energií je U T = ω2 r 2 E = σ E, kde σ je napětí(19), které v prstenci při rotaci vzniká. Protože z pevnostních důvodůmůžebýtprooce σ ma 200MPaaE Pa,jepotenciání deformační energie prstence nejméně 1000krát menší než jeho energie kinetická. Lze ji tedy zanedbat. 2.7 Úohykekapitoe2 1. Řetěz Řetězkezvedáníbřemendohmotnosti2500kgmábýtzhotovenzocei11370 (σ kt =200MPa).Navrhnětepotřebnýprůměr dčánku.mírubezpečnostivote k=2,0.omeztesejennanamáhánítahovýmisiamivevětvíchčánku. d Obr. 16 Čánek řetězu 3 )Prokinetickouenergiiužijememístosymbou E k symbo T běžnývteoretickémechanice, abychom odstranii koizi se značkou E pro Youngův modu. 22

23 2. Ladění housové struny Uvažujmeoceovouhousovoue-strunuodéce =325mm(úsekodkobyky nakonechmatníku)aprůměru2r=0,250mm,kterámábýtnaaděnana tón e 1 ofrekvenci f=654hz.jedántepotnísoučinitedékovéroztažnosti α=1, K 1, E=2, Pa, =7, kg m 3.Jeznámvztah mezirychostízvukuvestruně canapínajícísiou: c 2 S=.Vypočtěte a)veikost napínajícísíyanapětí σvestruně, b) prodoužení struny při adění z nenapjatého stavu. 3. Vychýení housové struny Strunuzúohy2vjejímstředupříčněvychýímeoδ =4mm.Jakébude přídavnénapětí σ p ajakécekovénapětí σ c = σ+ σ p,kde σjenapětístruny po jejím naadění? 4. Oceový drát při změně tepoty Mezidvěmapevnýmibody,např.mezidvěmadomy,byzatepoty t=35 C napnutoceovýdrátoprůměru2r=2,00mmsiouoveikosti =30,0N. Vypočtěte a)napětí σvdrátu, b)napětí σ aveikost napínajícísíy,kesne-itepotana t = 5 C. Tepotnísoučinitedékovéroztažnosti α=1, K 1, E=2, Pa. 5. Tahová zkouška Přitahovézkoušceoceovétyčeoprůměru d=20,0mmadéce =200mm byopřizatížení =5, Nzměřenoprodoužení =0,172mmapříčné zúžení d =4, mm.tytohodnotybyyurčenyzastavupodmezí pružnosti. Určete napětí, Youngův modu a Poissonovo číso zkoumané ocei. 6. Podpěrný soup Ve stavební konstrukci je třeba navrhnout reativně krátký soup z šedé itiny, jehožprůřezmátvarmezikružíovnějšímprůměru d=100mm.nasoup připadátíhovásíaveikosti2, N.Vypočtěteminimánítoušťkustěny soupu,jestiže σ pd =500MPa.Vote k =5,0. 7. Důní ano Důníanoodéce =1000m,pošnémobsahupříčnéhořezuvšechdrátů S=500mm 2,dékovéhustotě µ=3,95kg m 1 ayoungověmoduu E= 23

24 =8, Pa 4 )jesvisezavěšeno.vypočtěte a)prodoužení 0 vdůsedkuvastnítíhyana, b)prodoužení anejvětšínapětívaněpozavěšenítěžníkeceohmotnosti m=3000kg. 8. Naisovaný kroužek Navrhněte stavěcí kroužek, který po naisování na hříde o pooměru r = =25,0mmmázachytitosovousíuoveikosti a =2000N.Kroužekošířce b=6,00mmbudevyrobenzocei12050(σ pt =650MPa),mírubezpečnosti vote k =3,0,koeficienttřenívestykovépoše f=0,10.vypočtětetoušťku hkroužku,potřebnýminimánípřesahpooměru r min aohřátíkroužkupro snadnoumontážnahřídeotepotě25 C.tepotnísoučinitedékovéroztažnosti α=1, K 1, E=2, Pa. 9. Padající závaží(princip bucharu) Vypočtětepooměrsviséoceovétyčeodéce =2,00m(obr.17)namáhané rázemzávažíohmotnosti m=20,0kgpřipáduzvýšky h=1,60mnazarážku. Vote σ d =200MPa.Porovnejtenapětípřitomtodynamickémúčinkuzávaží s jeho statickým účinkem(a pochopíte princip kadiva resp. bucharu při kování). E=2, Pa. 2r h 10. Drát jako staticky neurčitá soustava Obr. 17 Padající závaží Na oceový drát vodorovně napnutý mezi pevnými body vzdáenými 2 = = 5,00 m siou = 30,0 N zavěsíme do jeho středu závaží o hmotnosti m=4,00kg.jedánpooměrdrátu r=1,00mm, E=2, Pa.Vypočtěte 4 )HodnotaYoungovamoduujevýrazněmenšínežuoceovétyče,protožeanojespeteno z vekého množství jednotivých drátů. 24

25 a)síu 0,okterouvzrostenapínajícísíavdrátu, b)cekovénapětí σ c vdrátu, c)déku,okterouseposunestředdrátupozavěšenízávaží. Návod: Řešení úkou a) vede na rovnici třetího stupně, kterou však ze zjednodušitpředpokadem,že Rozadění piana a)oceovástrunapiananaaděnánazákadnítón a 1 ofrekvenci f=440hz má déku 40 cm. Určete normáové napětí struny. Víme, že fázová rychost příčného vnění na struně je určena vztahem σ v=, kde σjenormáovénapětístrunya =7900kg m 3 jehustotamateriáu, ze kterého je struna vyrobena. b) Struny piana jsou napnuty na masivním itinovém rámu. Přeneseme-i piano ze studeného prostředí do vyhřáté místnosti, dojde k jeho rozadění, protože tenké struny se ryche zahřejí na tepotu místnosti, zatímco rám se bude ohřívat jen zvona. Jak se změní frekvence zákadního tónu struny z úohy a), zvýší-isejejítepotao10katepotarámusenezmění?tepotnísoučinite dékovéroztažnostiocei α = 1, K 1,Youngůvmodupružnosti E=2, Pa. 25

26 3 SMYKOVÁ DEORMACE A TORZE 3.1 Hookův zákon pro deformaci smykem Nechťnakvádrorozměrech a, b, cpůsobívestěně bcvesměruhrany bsía. Protiehá stěna bc nechť je upevněna(obr. 18). Pak nastane zkosení hranou, přičemž posunutí horní stěny označíme s. Toto posunutí je přímo úměrné působící síe, déce hrany a a nepřímo úměrné pošnému obsahu S = bc: s= a GS (20) Zde Gjemodupružnostivesmyku.Vztah(20)jeanaogickývztahu(7) pro výpočet prodoužení při tahu a nazývá se Hookův zákon pro smyk. s C C a γ A b B c Obr. 18 Kvádr deformovaný smykem Vztah(20)dáeupravíme.Zobr.18jezřejmé,žepromaédeformacemůžeme psát s =tg γ γ, (21) a kde γjezkos.tutoveičinujsmezavedivčánku1.2jakoúhovépřetvoření vpřípaděpodeobr.18vyjadřujeúhe,okterýpřideformacivzrosteúhe p/2 meziúsečkami BA, BC.Dáejezřejmé,ževevýrazu(20)je /S= τ tečné napětí. Pak můžeme Hookův zákon pro smyk psát v jednoduchém tvaru τ= Gγ, (22) který je anaogický vztahu σ = Eε (Hookův zákon pro tah/tak). Ke dvěma materiáovým konstantám E, µ, které pružnou átku charakterizují při tahové/takové deformaci, přistupuje u smykové deformace konstanta G modu pružnosti ve smyku. Mechanika pružného kontinua(viz např.[1], [3],[7]) ukazuje, že mezi těmito konstantami eistuje jednoznačný vztah G= E 2(1+µ), (23) 26

27 takže nezávisé jsou jen dvě konstanty. Eperimentáně se snadněji určují E a G.Poissonovočísosevypočtez(23). Mechanika pružného kontinua rovněž ukazuje(viz např.[3],[7]), že napjatost vznikající v určitém eementu těesa namáhaného prostým smykem je dvojosá(rovinná). Jestiže při jednoosé napjatosti by stav popsán jedním(havním)napětím σ,pakudvojosénapjatostijsoutatonapětídvě(σ 1, σ 2 ).Užitím podmínky statické rovnováhy pro eement těesa ve tvaru kryche o stěnách pošnéhoobsahu Surčímevztahmezi σ 1, σ 2 atečnýmnapětím τpůsobícímve stěnách tohoto eementu(obr. 19a). a) b) τ d) τ σ 2 τ σ 1 σ 1 S 2S S τ τ S S 2S σ 2 γ τ c) 4 τ σ 1 τ σ e) 5 2 Obr. 19 Napjatost při smyku 6 Krychi nejprve rozděíme myšeným úhopříčným řezem o pošném obsahu S 2,jehožnormáamásměrhavníhonapětí σ 1 (obr.19b).abyvnitřnísíy oveikostech 1 = σ 1 S 2, 3 = 4 = τs působícívestěnáchtéto půkryche byyvrovnováze,musítvořituzavřenýpravoúhýsiovýtrojúheník (obr. 19c). Musí tedy patit 2 1 = , neboi (σ 1S 2) 2 =2(τS) 2, resp. σ 2 1 = τ2. Rovnice má dva kořeny stejné veikosti a opačného znaménka, z nichž fyzikání význammákořen σ 1 = τ, neboť σ 1 >0jetahovénapětí. Provedeme nyní myšený úhopříčný řez eementární kryche rovinou komou k rovině v předcházejícím případě(obr. 19d). Na stěnách působí vnitřní síy oveikostech 2 = σ 1 S 2, 5 = 6 = τs.prostatickourovnováhumusí anaogickypatit 2 2 = ; podosazenídostaneme σ2 2 = τ2. yzikání význammákořen σ 2 = τ, neboťnapětí σ 2 <0jetakové. Shrnuto: prostý smyk představuje dvojosou napjatost charakterizovanou havníminapětími σ 1 = τ, σ 2 = τ. 27

28 3.2 Deformační energie při smyku Anaogicky výpočtu deformační energie při tahu(č. 2.3, výraz(10)) určíme deformační energii při smyku: U= W= 1 2 s= 2 a 2GS = τ2 2G as, kdejsmevyužiivztahu(20),přičemž as= V jeobjemkvádru.prohustotu deformační energie při smyku dostaneme který je zcea anaogický vztahu(12). 3.3 Dovoené napětí při smyku u s = U V = τ2 2G = γτ 2 = γ2 G 2, (24) Při namáhání ve smyku jde o zváštní případ dvojosé napjatosti, kdežto pevnostní zkouška se provádí pro jednoosou napjatost. Eistuje někoik pevnostních hypotéz(viz např.[3],[4],[7]), které(s omezenou spoehivostí v závisosti na tom, zda jde o materiá houževnatý či křehký) stanoví jisté jednoosé napětí k posouzení víceosé napjatosti. My se zde na vemi omezené poše tetu nemůžeme tímto probémem podrobněji zabývat; jen uvedeme tyto typické případy pevnostních podmínek: Pro houževnaté(tvárné) materiáy musí pode hypotézy deformační energie změny tvaru pro skutečné tečné napětí patit τ τ d = σ dt 3 0,57σ dt, (25) kde σ dt jedovoenénapětí(14)projednoosounapjatost. Pro křehké materiáy(např. pro itinu) musí pode hypotézy maimáního normáového napětí patit τ τ d = σ dt, (26) kde σ dt jedánovztahem(15). 3.4 Torze rotačního váce Teorii krutu rotačního váce vypracova Ch. A. Couomb( ) a uved ji v první souborné práci o mechanice pružných těes, která bya pubikována 28

29 r Práce obsahuje všechny zákadní případy deformace těes včetně eementární teorie ohybu nosníku. Couomb využi svých poznatků o torzi k sestrojení prvních torzních vah r. 1784, které mu umožniy r objevit zákon o siovém působení eektrických nábojů, dnes známý jako Couombův zákon. Při krutu(torzi) váce s kruhovým průřezem na jednom konci upevněném a na druhém konci namáhaném vnější siovou dvojicí dochází ke vzájemnému stáčení průřezů komých k podéné ose váce. Eperimentáně ze ověřit, že u rotačního váce zůstávají kruhové průřezy i po deformaci rovinné a radiání úsečky přímé. Průřezy se tedy otáčejí koem osy váce, aniž se deformují. Cekové otočení horního kruhového průřezu váce oproti spodnímu vetknutému průřezu označíme ϕ. Nazývá se úhe zkroucení. Moment dvojice vnějších si senazývákroutící moment;jehoveikostoznačíme M k.jezřejmé,žepři krutu váce vzniká smykové napětí τ. Nyní si odvodíme vztahy mezi veičinami M k, τ, ϕ. U pravoúhého eementu vymezeného na povrchu váce dvěma soumeznými površkami a dvěma soumeznými kružnicemi(obr. 20a) se po deformaci krutem změní jen úhy, déky jeho stran zůstanou prakticky nezměněny. Eement je namáhán prostým smykem. a) b) M k r ϕ M k dy y γ dr r dy r dϕ γ dα τ τ τ τ Obr.20 Kpopisudeformacepřitorzi Pro výpočet napětí vytkneme z váce o déce eementární trubici o výšce dy,pooměru r atoušťcedr podeobr.20b.ztétotrubicevyjmemehranoek, který se při deformaci zkosí. Pro jeho zkos zřejmě patí γ= r dϕ dy = r ϑ, (27) 29

30 kde ϑ= dϕ dy = ϕ (28) je poměrné zkroucení neboi zkrut váce. Je to úhe zkroucení připadající na jednotkovou déku váce(tyče). Po dosazení(27) do Hookova zákona(22) dostaneme τ= Gϕ r. (29) Tečnénapětípode(29)jeúměrnévzdáenosti r eementuodosyváce.eement ežící v ose váce není tedy namáhán, kdežto eement ežící u povrchu váce je namáhán nejvíce(obr. 21). Vnějšíkroutícímoment M k musíbýtvrovnovázescekovýmmomentem vnitřních tečných si v rovině řezu: M k = S r τds= Gϕ S r 2 ds= Gϕ J p, (30) kde J p jepoárníkvadratickýmomentpochyprůřezukoseváce: J p = r 2 ds. (31) S y τ ma τ τds O r r dr dα α O r dr r Obr. 21 Napětí při torzi Obr. 22 K výpočtu poárního kvadratického momentu kruhu Poární kvadratický moment je jednou z důežitých geometrických charakteristik(s dašími se setkáme u ohybu v násedující kapitoe). Nyní vypočítáme poární kvadratický moment kruhu o pooměru r k bodu O(obr. 22). Z kruhu sivytknemeeementpochyvetvarumezikružíoobsahu ds=2pr dr adostaneme r J p =2p 0 r 3 dr = pr4 2 = pd4 32, (32) 30

31 kde d=2r jeprůměrkruhu.častosemůžemesetkatskrutemtrubky,která máprůřeztvarumezikruží.paksezměníjenmezena r 1, r 2 adostaneme J p = p 2 ( r 4 2 r1) 4 p ( = d d 4 ) 1. (33) Pro úhe zkroucení ϕ váce na jeho voném konci dostaneme z(30) výraz ϕ= M k GJ p. (34) S přihédnutím k(32) bude pro úhe zkroucení rotačního váce patit ϕ= 2M k Gpr 4. (35) Jezřejmé,žetentoúhejevemicitivýnaveikostpooměru r.je-ivemimaý (řádově10 5 m),dosáhnemevekýchúhů ϕpromaé M k,cožsevyužívánapř. pro měření gravitačních si na torzních vahách(viz úohu 17). Je-i naopak reativněveký(řádově10 2 m),projevujesevýrazněvětšítuhost,cožsevyužívá např. pro odpružení automobiů a tanků(viz úohu 15). Vraťme se nyní k výpočtu tečného napětí. Dosadíme-i z výrazu(30) do (29), dostaneme τ= M k J p r. (36) Maimáníveikosttečnéhonapětíbudenaobvoduprůřezu(r ma = r): τ ma = M k J p r= M k W k, kde W k = J p r (37) jeprůřezovýmoduvkrutu 5 ).Prokruhovýprůřezopooměru r=d/2je W k = pr3 2 = pd3 16. (38) Napětí ve váci namáhaném na krut nesmí překročit největší dovoené napětí vesmyku τ d,tj.přitorzimusíbýtspněnapevnostnípodmínka τ ma = M k W k τ d. (39) 5 )Tatoveičinazjednodušujevýpočetsmykovéhonapětípřikrutuusožitějšíchprofiů; podobnějetomuiuohybu(č.4.3). 31

32 Dovoenénapětívesmykubyozmíněnovč.3.3.Závisípředevšímnatom,zda použitý materiá je houževnatý(viz výraz(25)) nebo křehký(viz výraz(26)). O tom, jaký druh napětí rozhoduje o porušení krouceného váce se můžeme přesvědčit jednoduchými eperimenty. Křehký materiá(např. itina) se při kroucení poruší přetržením v šikmých řezech, v nichž působí největší tahové napětí(obr.23a).oitiněvíme,žemápevnostvtahuasičtyřikrátmenšínež v taku. O charakteru omu křehkého materiáu při kroucení se můžeme snadno přesvědčit např. kroucením sané tyčinky nebo škoní křídy. a) b) c) Obr. 23 Porušení váce při torzi materiáu a) křehkého, b) houževnatého, c) dřeva (převzatoz[7]) U houževnatých materiáů je rozhodující největší tečné napětí. Proto se vzorek z tvárného materiáu namáhaný krutem usmýkne v rovině komé k ose tyče (obr. 23b). Přesvědčíme se o tom eperimentem při kroucení např. měděného nebo žeezného drátu anebo jednoduše na rohíku ve druhém dni po jeho upečení. Dřevo je materiá anizotropní. Jeho pevnost ve směru váken je mnohem většínežnapříčapevnostvesmykupodévákenjemaá.protopřikroucení vznikají trhiny(obr. 23c). U některých krutem namáhaných součástí je z funkčních důvodů nutné dát přednost deformační podmínce, tj. zkrut ϑ nesmí překročit určitou dovoenouhodnotu ϑ d,tj.musípatit ϑ= ϕ = M k GJ p ϑ d. Např. u hřídeů, u nichž nemá vzniknout torzní kmitání rotujících hmot, se připouští ϑ (0,25 0,75) /m. 32

33 3.5 Deformační energie při torzi Výpočet provedeme dvojím způsobem. Nejprve vyjdeme z deformační práce kroutícího momentu s využitím výsedku(30). Pro eement této práce patí dw=du= M k dϕ= GJ p ϕdϕ. Cekovou deformační energii dostaneme integrací pro úhe zkroucení od 0 do ϕ. S využitím vztahu(35) po integraci dostaneme U= GJ p ϕ 0 ϕdϕ= GJ p ϕ 2 = M2 k = M2 k 2 2GJ p pgr 4. (40) Protože u torze jde o sožený smyk, můžeme ke stejnému výsedku dospět využitím hustoty deformační energie(24). Uvažujme eement zkroucené tyče, kterýmápodstavudsavýškudy(vizobr.20),tedyobjemdv=ds dy.vněm je tedy obsažena deformační energie, pro kterou vzhedem k(36) dostaneme du= u s dv= τ2 2G ds dy= M2 k 2GJp 2 r 2 ds dy. Nyníprovedemeintegracipřesceýobjem,tedypro yod0do apřesceý pošný obsah S příčného řezu. Deformační energie je U= M2 k 2GJp 2 0 r 2 ds S dz= M2 k 2GJ p, neboťvýrazvhranatézávorcejepoárnímomentsetrvačnostiprůřezu J p. Příkad4 hnacíhříde Vypočtěte průměr spojovacího koubového hřídee mezi převodovkou a rozvodovkounazadnínápravěautomobiu.motormánejvětšívýkon P=65,0kW přifrekvenciotáčení n 0 = 4200min 1.Největšípřevodvpřevodovce(při 1.převodovémstupni)je z 1 = 3,77. Dovoenénapětívote τ d = 70MPa. Proveďtekontroutuhostihřídee. G=8, Pa. 33

34 Řešení Pro daný výkon bude mít kroutící moment největší veikost při největším převodovémstupni z 1,tj.přifrekvenciotáčení n 1 = n 0 /z 1.Tomubudeodpovídat maimání kroutící moment Pevnostní podmínka je M k = P ω 1 = 30P pn 1 = 30Pz 1 pn 0 =557N m. τ ma = M k W k = 16M k pd 3 τ d ; odtud průměr hřídee d 3 16M k pτ d =34,3mm; voíme d=35mm. Kontroa tuhosti se provede výpočtem největšího zkrutu s využitím(34) a(35): ϑ= ϕ = M k GJ p = 32M k pgd 4 =4, rad m 1 =2,71 /m. Tento zkrut(předpokádá se, že v provozu bude mezní) je ještě vyhovující. Výhodnější konstrukčním řešením by by dutý hříde, který by sice mě větší průměr(např.42mm),avšakbybyehčíatužší. Příkad 5 torzní osciátor Vypočtěteúhovéfrekvence ω 0, ω 1, ω 2 vastníchkmitůtorzníchosciátorůpode obr.24,kterésestávajíztěesaomomentusetrvačnosti Jatorznítyčeopooměru r,aktivnídéce amoduupružnostivesmyku G.Vpřípaděa)jetěeso navonémkoncityče,vpřípadechb),c)jsouobakoncetyčeupevněnyatěeso jebuďuprostředtyčenebovjednétřetinějejídéky.úhovéfrekvence ω 1, ω 2 vyjádřetepomocíúhovéfrekvence ω 0. Řešení a)otočíme-itěesookooosytyčeoúhe ϕ,budeprotivýchycepůsobitmomentsíy M k = k t ϕ, kdetorznítuhost k t určímepoužitímvztahu(35): k t = M k ϕ = pgr4. (41) 2 34

35 a) b) c) 2r 2r 2 3 J J ω 2 ω 1 2 2r 2 3 ω 0 J Obr. 24 Torzní osciátory s různou poohou kmitajícího těesa Pohybovárovnicevychýenéhotěesaje J d2 ϕ dt 2 = M k,neboi d 2 ϕ dt 2 + k t J ϕ=0. Jak se můžeme přesvědčit zpětným dosazením, rovnici vyhovuje funkce ϕ=ϕ m sinω 0 t,kde ϕ m jeúhováampitudaaω 0 hedanáúhováfrekvence. d Porovnáním rovnic pro ni a její druhou derivaci 2 ϕ dt 2 = ω0 2ϕ msinω 0 t dostaneme k t ω 0 = J = pgr 4 2J. (42) b)soustavynaobr.b),c)jsousožené majídvěparaeněřazenétorznípružiny(obecněotuhostech k t1, k t2 ).Otočíme-itěesooúhe ϕ,budenaně působitvratnýmomentsíy M k = (k t1 + k t2 )ϕ= k t ϕ, kde k t = k t1 + k t2 (43) je výsedná tuhost soustavy. Při výpočtu úhové frekvence tedy obecně píšeme k t ω= J = k t1 + k t2. J Vpřípaděpodeobr.b)je k t1 = k t2 = pgr4 a úhová frekvence je 2pGr 4 ω 1 = =2ω J 0. 35

36 c)vsoustavěnaobr.c)je k t = pgr4 2 ( ) = 9 pgr 4, 2 4 ω 2 = 3 pgr J =3 2 ω 0= ω 1. Příkad 6 tuhost šroubovité pružiny Uvažujme šroubovitou vácovou tažnou pružinu (obr. 25). Pružina má střední pooměr vinutí R, pooměr drátu r a počet závitů n. Předpokádejme, že pružinajehustěvinutáažejejídeformacejemaá. Proto můžeme stoupání šroubovice, která je osovou křivkou svinutého drátu, zanedbat. Vypočtěte tuhost pružiny. Řešení Pružinu zatíženou siou rozděíme myšeným řezem nadvěčásti(obr.25).vmístěřezumusímepřipojit vnitřní síy, abychom obnovii rovnováhu. To provedemetak,žesíu přenesemedoosydrátujakosíu =. Tímmusímepřipojitsiovoudvojici, omomentu M k = R,kterýzkrucujedrát. Sía namáhádrátnaprostýsmyk.jaksiukážeme na závěr, její viv je zanedbatený. Podstatný je viv torze drátu pružiny, který jednoduše vypočteme užitím deformační energie při zkrucování závitů pružiny. Užijeme vztah(40), do něhož dosadíme M k = R, =2pRn(dékanedeformovanéhodrátu pružiny). Deformační energie pružiny se rovná práci napínající síy, která se ineárně zvětšuje a produžuje pružinu do konečné hodnoty y. Musí tedy patit(srovnej s výpočtem pode(10)): M k R 2r Obr. 25 Šroubovitá pružina U= 22 R 3 n Gr 4 = 1 2 y. Proprodouženípružinyvivemtorzepatí y= 4R3 n Gr 4. 36

37 Prodouženípružinyvivemsmykuoznačíme y s.vypočtemejeužitímhookovazákonaprosmyk γ= τ G, kde γ= y s = y s 2pRn a τ = S = pr 2. Dosazením dostaneme y s = 2Rn Gr 2, neboi y s y = r2 2R 2 1. Vivsmykujetedyzanedbatený.Bude-inapř. r =1,0mm, R=10mm dostaneme že prodoužení vivem smyku činí jen 0,5 % prodoužení vivem torze. Tuhost pružiny můžeme určit z výrazu k= y = Gr4 4R 3 n (=konst.). (44) Naúozejezajímavéto,žepružinajakoceekjenamáhánanatah,kdežto vastnídrátnakrutanepatrněinasmyk.protuhosttačnépružinypatí stejný výraz(44). 3.6 Úohykekapitoe3 12. Závěs Navrhněterozměry hadzávěsupodeobr.26.závěsjezatížensiouoveikosti = 2, Namábýtvyrobenzocei11500(σ kt = 260 MPa, τ d = = σ kt /(k 3)).Mírubezpečnostivote k=2,0. h d R d 13. Spojka Obr. 26 K návrhu závěsu Obr. 27 Spojka s pojistným koíkem Vypočtěteprůměr dpojistnéhokoíkunapooměru R=40mmspojky(obr.27), kterýsemápřestřihnoutpřipřekročenínejvětšíhovýkonu P ma =8,0kWpři 37

38 frekvenciotáčení n=500min 1.Pevnostnavrženéoceije σ pt =330MPa. Předpokádejte,žeocejehouževnatáatedypropevnostvesmykupatí τ p = = σ pt / Hříde Hřídepřenášívýkon P = 20 kw přifrekvenciotáčení n = 1200min 1. Navrhnětejehoprůměrpři τ d =40MPa. 15. Setrvačník Setrvačníkomomentusetrvačnosti J=150kg m 2 jepevněspojenshřídeem, najehožkonci Ajebrzda(obr.28).Přijakénejvětšífrekvenciotáčenízekonec hřídee A zastavit, aniž by došo k překročení dovoeného namáhání hřídee? Je dáno:pooměrhřídee r=25,0mm, jehodéka =1,80m, G=8, Pa adovoenétečnénapětí τ d =80MPa. ϕ 2r A 2r R Obr. 28 Setrvačník na hřídei Obr. 29 Torzní tyč k pérování 16. Torzní pérování V tanku je každé z deseti pojezdových ko odpruženo samostatnou torzní tyčí (obr.29).odpruženáhmotnostje m=28,0t; předpokádejte,ženakaždé pojezdové koo připadá stejný dí této hmotnosti. Rozměry tyčí jsou: = 1,80 m, 2r=56,0mm, R=250mm, G=8, Pa.Vypočtěte a) úhe zkroucení ϕ torzní tyče po jejím statickém zatížení vastní tíhou odpružené hmotnosti, b) maimání tečné napětí v tyči při jejím zatížení. 17. Torzní dynamometr K měření výkonu ze užít torzní dynamometr, jehož zákadem je torzní tyč (obr. 30). Určete výkon spaovacího motoru na brzdě, jestiže se měrná torzní tyčoprůměru d=18mm adéce =600mm zkroutiao ϕ=6 30 při frekvenciotáčení f=53,3s 1. Vypočtětenapětívtyči. G=7, Pa. 38

39 18. Torzní váhy Pro ověření Newtonova gravitačního zákona a k určení gravitační konstanty sestroji H. Cavendish r torzní váhy, jejichž schéma je na obr. 31. Použi oověnékoueohmotnosti m 1 =158kg aoověnékuičkyohmotnosti m 2 = =0,730kguchycenénaehkémvahadesroztečí L=1820mm.Vahadobyo zavěšenonaoceovémdrátěsotočnýmzávěsem.dékadrátu =1600mm průměr 2r = 0,15 mm. Cavendish změři na těchto vahách gravitační konstantu sobdivuhodnoupřesností1%: κ=6, m 3 kg s 2. Přiměřenínastavikouekekuičkámdovzdáenosti R=210mm (pooha I). Zrcátkovou metodou zjisti úhovou poohu vahada. Pak přemísti koue do poohy II tak, aby vzdáenost mezi kouemi a kuičkami bya stejná jako v pooze I. Vypočtěte úhovou změnu ϕ vahada mezi oběma poohami kouí. Modupružnostidrátuvesmyku G=8, Pa. (Poznámka některézde uvedené rozměry jsou rekonstruovány z vyobrazení přístroje.) motor d brzda,r m 1 I m 2 II R m 2 I m 1 L Z II Obr. 30 Torzní dynamometr Obr. 31 Cavendishovy torzní gravitační váhy 39

MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3

MECHANIKA PRUŽNÉHO TĚLESA. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Předmluva 3 MECHANIKA PRUŽNÉHO TĚLESA Studijní tet pro řešitee O a ostatní zájemce o fyziku Bohumi Vybíra Obsah Předmuva 3 1 ZÁKLADNÍ POZNATKY O PRUŽNOSTI TĚLES 4 1.1 Pevnépružnétěeso........................ 4 1.2

Více

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral.

Obsah MECHANIKA PRUŽNÉHO TĚLESA. Tabulka III. Studijní text pro řešitele FO a ostatní zájemce o fyziku. Bohumil Vybíral. Tabuka III Mechanické vastnosti některých křehkých konstrukčních materiáů Pevnost v tahu Pevnost v taku Pevnost v ohybu Materiá σ pt/mpa σ pd /MPa σ po/mpa Šedá itina 4 4 1 10 500 80 Šedá itina 4 4 4 40

Více

Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) - staticky určité úlohy

Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) - staticky určité úlohy Pružnost a pasticita, 2.ročník bakaářského studia ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) - staticky určité úohy Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného

Více

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem)

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) Pružnost a pasticita, 2.ročník bakaářského studia Téma 4 ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného prutu

Více

1. Stanovení modulu pružnosti v tahu přímou metodou

1. Stanovení modulu pružnosti v tahu přímou metodou . Stanovení moduu pružnost v tahu přímou metodou.. Zadání úohy. Určte modu pružnost v tahu přímou metodou pro dva vzorky různých materáů a výsedky porovnejte s tabukovým hodnotam.. Z naměřených hodnot

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

Mechanické vlastnosti materiálů.

Mechanické vlastnosti materiálů. Mechancké vastnost materáů. Obsah přednášky : tahová zkouška, zákadní mechancké vastnost materáu, prodoužení př tahu nebo taku, potencání energe, řešení statcky neurčtých úoh Doba studa : as hodna Cí přednášky

Více

Linearní teplotní gradient

Linearní teplotní gradient Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz

Více

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku

Řešení úloh 1. kola 49. ročníku fyzikální olympiády. Kategorie D. Dosazením do rovnice(1) a úpravou dostaneme délku vlaku Řešení úoh koa 49 ročníku fyzikání oympiády Kategorie D Autořiúoh:JJírů(,3,4,5,6,),TDenkstein(), a) Všechny uvažované časy jsou měřené od začátku rovnoměrně zrychené pohybu vaku a spňují rovnice = at,

Více

1 ROZMĚRY STĚN. 1.1 Délka vnější stěny. 1.2 Výška vnější stěny

1 ROZMĚRY STĚN. 1.1 Délka vnější stěny. 1.2 Výška vnější stěny 1 ROZMĚRY STĚN Důežitými kritérii pro zhotovení cihených stěn o větších rozměrech (déce a výšce) je rozděení stěn na diatační ceky z hediska zatížení tepotou a statického posouzení stěny na zatížení větrem.

Více

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání

Inovace předmětů studijních programů strojního inženýrství v oblasti teplotního namáhání Grantový projekt FRVŠ MŠMT č.97/7/f/a Inovace předmětů studijních programů strojního inženýrství v obasti tepotního namáhání Některé apikace a ukázky konkrétních řešení tepeného namáhání těes. Autorky:

Více

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov

3.2 Základy pevnosti materiálu. Ing. Pavel Bělov 3.2 Základy pevnosti materiálu Ing. Pavel Bělov 23.5.2018 Normálové napětí představuje vazbu, která brání částicím tělesa k sobě přiblížit nebo se od sebe oddálit je kolmé na rovinu řezu v případě že je

Více

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti

Vlastnosti a zkoušení materiálů. Přednáška č.4 Úvod do pružnosti a pevnosti Vlastnosti a zkoušení materiálů Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze

Více

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191

Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art.

FYZIKA I. Kyvadlový pohyb. Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D. Doc. Ing. Irena Hlaváčová, Ph.D. Mgr. Art. VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STRONÍ FYZIKA I Kyvadový pohyb Prof. RNDr. Viém Mádr, CSc. Prof. Ing. Libor Haváč, Ph.D. Doc. Ing. Irena Haváčová, Ph.D. Mgr. Art. Dagmar Mádrová

Více

Přednáška 12 Obecná deformační metoda, nelineární úlohy u prutových soustav

Přednáška 12 Obecná deformační metoda, nelineární úlohy u prutových soustav Statika stavebních konstrukcí II., 3.ročník bakaářského studia Přednáška Obecná deformační metoda, neineární úohy u prutových soustav Fyzikáně neineární úoha Geometricky neineární úoha Konstrukčně neineární

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M. 3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Přednáška 10, modely podloží

Přednáška 10, modely podloží Statika stavebních konstrukcí II.,.ročník kaářského studia Přednáška, modey podoží Úvod Winkerův mode podoží Pasternakův mode podoží Nosník na pružném Winkerově podoží, řešení OD atedra stavební mechaniky

Více

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6)

Řešení úloh 1. kola 60. ročníku fyzikální olympiády. Kategorie B Autoři úloh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) Řešení úoh 1. koa 60. ročníku fyzikání oympiády. Kategorie B Autoři úoh: J. Thomas (1, 2, 3, 4, 5, 7), M. Jarešová (6) h 1.a) Protože vzdáenost bodů K a O je cos α, je doba etu kuičky z bodu K do bodu

Více

7 Mezní stavy použitelnosti

7 Mezní stavy použitelnosti 7 Mezní stavy použitenosti Cekové užitné vastnosti konstrukcí mají spňovat dva zákadní požadavky. Prvním požadavkem je bezpečnost, která je zpravida vyjádřena únosností. Druhým požadavkem je použitenost,

Více

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA

1.5. DYNAMIKA OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA .5. OTÁČIVÉHO A SLOŽENÉHO POHYBU TĚLESA.5. ZÁKLADNÍ ROVNICE DYNAMIKY PRO ROTAČNÍ POHYB Fz F Z výsednce zrychujících s F m.a n m a t a n r z F Zrychující moment M F. r F. r z z z m.a t r6,5cm ρ r ω,ε r

Více

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011

OTÁZKY VSTUPNÍHO TESTU PP I LS 2010/2011 OTÁZKY VSTUPNÍHO TESTU PP I LS 010/011 Pomocí Thumovy definice, s využitím vrubové citlivosti q je definován vztah mezi součiniteli vrubu a tvaru jako: Součinitel tvaru α je podle obrázku definován jako:

Více

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška

KONSTITUČNÍ VZTAHY. 1. Tahová zkouška 1. Tahová zkouška Tahová zkouška se provádí dle ČSN EN ISO 6892-1 (aktualizována v roce 2010) Je nejčastější mechanickou zkouškou kovových materiálů. Zkoušky se realizují na trhacích strojích, kde se zkušební

Více

Modelování kmitavých soustav s jedním stupněm volnosti

Modelování kmitavých soustav s jedním stupněm volnosti Modeování kmitavých soustav s jedním stupněm vonosti Zpracova Doc. RNDr. Zdeněk Haváč, CSc 1. Zákadní mode Zákadním modeem kmitavé soustavy s jedním stupněm vonosti je tzv. diskrétní podéně kmitající mode,

Více

Téma 2 Napětí a přetvoření

Téma 2 Napětí a přetvoření Pružnost a plasticita, 2.ročník bakalářského studia Téma 2 Napětí a přetvoření Deformace a posun v tělese Fzikální vztah mezi napětími a deformacemi, Hookeův zákon, fzikální konstant a pracovní diagram

Více

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1.

Z toho se η využije na zajištění funkcí automobilu a na překonání odporu vzduchu. l 100 km. 2 body b) Hledáme minimum funkce θ = 1. Řešení úoh. koa 59. ročníku fyzikání oympiády. Kategorie A Autor úoh: J. Thomas.a) Na dráze vt bude zapotřebí objem paiva V θ θv t. Při jeho spáení se získá tepo Q mh ρv H ρθvh t. Z toho se η využije na

Více

Stav napjatosti materiálu.

Stav napjatosti materiálu. tav napjatosti materiáu. Zákad mechanik, 9. přednáška Obsah přednášk : jednoosý a dvojosý stav napjatosti, stav napjatosti ohýbaného nosníku, deformace ohýbaného nosníku, řešení statick neurčitých úoh

Více

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6

OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 OTÁZKY K PROCVIČOVÁNÍ PRUŽNOST A PLASTICITA II - DD6 POSUZOVÁNÍ KONSTRUKCÍ PODLE EUROKÓDŮ 1. Jaké mezní stavy rozlišujeme při posuzování konstrukcí podle EN? 2. Jaké problémy řeší mezní stav únosnosti

Více

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak.

Definujte poměrné protažení (schematicky nakreslete a uved te jednotky) Napište hlavní kroky postupu při posouzení prutu na vzpěrný tlak. 00001 Definujte mechanické napětí a uved te jednotky. 00002 Definujte normálové napětí a uved te jednotky. 00003 Definujte tečné (tangenciální, smykové) napětí a uved te jednotky. 00004 Definujte absolutní

Více

STRUKTURA A VLASTNOSTI KAPALIN

STRUKTURA A VLASTNOSTI KAPALIN I N V E S T I C E D O O Z V O J E V Z D Ě L Á V Á N Í STUKTUA A VLASTNOSTI KAPALIN. Povrchové napětí a) yzikání jev Povrch kapain se chová jako napjatá pružná membrána (důkaz vodoměrka, maé kapičky koue)

Více

Cvičení 7 (Matematická teorie pružnosti)

Cvičení 7 (Matematická teorie pružnosti) VŠB Technická univerzita Ostrava Fakulta strojní Katedra pružnosti a pevnosti (339) Pružnost a pevnost v energetice (Návo do cvičení) Cvičení 7 (Matematická teorie pružnosti) Autor: Jaroslav Rojíček Verze:

Více

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY

BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY BIOMECHANIKA DYNAMIKA NEWTONOVY POHYBOVÉ ZÁKONY, VNITŘNÍ A VNĚJŠÍ SÍLY ČASOVÝ A DRÁHOVÝ ÚČINEK SÍLY ROTAČNÍ POHYB TĚLESA, MOMENT SÍLY, MOMENT SETRVAČNOSTI DYNAMIKA Na rozdíl od kinematiky, která se zabývala

Více

NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU

NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU NOVÁ METODA NÁVRHU PRŮMYSLOVÝCH PODLAH Z VLÁKNOBETONU Jan Loško, Lukáš Vrábík, Jaromír Jaroš Úvod Nejrozšířenějším příkadem využití váknobetonu v současné době jsou zřejmě podahové a zákadové desky. Při

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 013 Použitá literatura: Technická

Více

BETONOVÉ KONSTRUKCE B03C +B03K ŠTÍHLÉ BETONOVÉ KONSTRUKCE. Betonové konstrukce B03C + B03K. Betonové konstrukce B03C +6B03K

BETONOVÉ KONSTRUKCE B03C +B03K ŠTÍHLÉ BETONOVÉ KONSTRUKCE. Betonové konstrukce B03C + B03K. Betonové konstrukce B03C +6B03K BETONOVÉ KONSTRUKCE B03C +B03K ŠTÍHLÉ BETONOVÉ KONSTRUKCE Betonové konstrukce B03C +4B03K Betonové konstrukce B03C +5B03K Betonové konstrukce B03C +6B03K prvky namáhané kombinací [M+N] N M tak (tah) s

Více

Kmitavý pohyb trochu jinak

Kmitavý pohyb trochu jinak Kmitavý pohyb trochu jinak JIŘÍ ESAŘ, PER BAROŠ Katedra fyziky, Pedaoická fakuta, JU České Budějovice Kmitavý pohyb patří mezi zákadní fyzikání děje. Většinou se tato část fyziky redukuje na matematický

Více

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test

Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady. Část 1 - Test Pružnost a pevnost (132PRPE) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových charakteristik, oficiální přehled

Více

Pružnost a pevnost. zimní semestr 2013/14

Pružnost a pevnost. zimní semestr 2013/14 Pružnost a pevnost zimní semestr 2013/14 Organizace předmětu Přednášející: Prof. Milan Jirásek, B322 Konzultace: pondělí 10:00-10:45 nebo dle dohody E-mail: Milan.Jirasek@fsv.cvut.cz Webové stránky předmětu:

Více

Pružnost a plasticita II

Pružnost a plasticita II Pružnost a pasticita II 3. ročník bakaářského studia doc. Ing. artin Krejsa, Ph.D. Katedra stavební echaniky Neineární chování ateriáů, podínky pasticity, ezní pastická únosnost Úvod, zákadní pojy Teorie

Více

PRUŽNOST A PLASTICITA I

PRUŽNOST A PLASTICITA I Otázky k procvičování PRUŽNOST A PLASTICITA I 1. Kdy je materiál homogenní? 2. Kdy je materiál izotropní? 3. Za jakých podmínek můžeme použít princip superpozice účinků? 4. Vysvětlete princip superpozice

Více

Název: Studium kmitání matematického kyvadla

Název: Studium kmitání matematického kyvadla Název: Studium kmitání matematického kyvada Autor: Doc. RNDr. Mian Rojko, CSc. Název škoy: Gymnázium Jana Nerudy, škoa h. města Prahy Předmět, mezipředmětové vztahy: fyzika, biooie Ročník: 3. (1. ročník

Více

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin

Mechanika kontinua. Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin Mechanika kontinua Mechanika elastických těles Mechanika kapalin a plynů Kinematika tekutin Hydrostatika Hydrodynamika Kontinuum Pro vyšetřování

Více

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti

Nauka o materiálu. Přednáška č.4 Úvod do pružnosti a pevnosti Nauka o materiálu Přednáška č.4 Úvod do pružnosti a pevnosti Teoretická a skutečná pevnost kovů Trvalá deformace polykrystalů začíná při vyšším napětí než u monokrystalů, tj. hodnota meze kluzu R e, odpovídající

Více

7 Lineární elasticita

7 Lineární elasticita 7 Lineární elasticita Elasticita je schopnost materiálu pružně se deformovat. Deformace ideálně elastických látek je okamžitá (časově nezávislá) a dokonale vratná. Působí-li na infinitezimální objemový

Více

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky.

písemky (3 příklady) Výsledná známka je stanovena zkoušejícím na základě celkového počtu bodů ze semestru, ze vstupního testu a z písemky. POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky

3.1. Newtonovy zákony jsou základní zákony klasické (Newtonovy) mechaniky 3. ZÁKLADY DYNAMIKY Dynamika zkoumá příčinné souvislosti pohybu a je tedy zdůvodněním zákonů kinematiky. K pojmům používaným v kinematice zavádí pojem hmoty a síly. Statický výpočet Dynamický výpočet -

Více

Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Ústav fyziky a materiálového inženýrství

Univerzita Tomáše Bati ve Zlíně, Fakulta technologická Ústav fyziky a materiálového inženýrství Univerzita Tomáše Bati ve Zíně, Fakuta technoogická Ústav fyziky a materiáového inženýrství Jméno a příjmení Josef Novák Ročník / Skupina x Předmět Laboratorní cvičení z předmětu Datum měření xx. xx. xxxx

Více

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku

A mez úměrnosti B mez pružnosti C mez kluzu (plasticity) P vznik krčku na zkušebním vzorku, smluvní mez pevnosti σ p D přetržení zkušebního vzorku 1. Úlohy a cíle teorie plasticity chopnost tuhých těles deformovat se působením vnějších sil a po odnětí těchto sil nabývat původního tvaru a rozměrů se nazývá pružnost. 1.1 Plasticita, pracovní diagram

Více

Kritéria porušení laminy

Kritéria porušení laminy Kap. 4 Kritéria porušení laminy Inormační a vzdělávací centrum kompozitních technologií & Ústav mechaniky, biomechaniky a mechatroniky S ČVU v Praze.. 007-6.. 007 Úvod omové procesy vyvolané v jednosměrovém

Více

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1

Mechanické vlastnosti technických materiálů a jejich měření. Metody charakterizace nanomateriálů 1 Mechanické vlastnosti technických materiálů a jejich měření Metody charakterizace nanomateriálů 1 Základní rozdělení vlastností ZMV Přednáška č. 1 Nejobvyklejší dělení vlastností materiálů v technické

Více

F7 MOMENT SETRVAČNOSTI

F7 MOMENT SETRVAČNOSTI F7 MOMENT ETRVAČNOTI Evropský sociání fond Praha & EU: Investujeme do vaší budoucnosti F7 MOMENT ETRVAČNOTI V této části si spočteme některé jednoduché příkady na rotační pohyby a seznámíme se s někoika

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVOD DO MODELOVÁNÍ V MECHANICE PRUŽNOST A PEVNOST Přednáška č. 5 Prof. Ing. Vladislav Laš. CSc. MECHANIKA PODDAJNÝCH TĚLES Úkolem PP z inženýrského hlediska je navrhnout součásti nebo konstrukce, které

Více

Téma 4 Výpočet přímého nosníku

Téma 4 Výpočet přímého nosníku Stavební statika, 1.ročník bakaářského studia Téma 4 Výpočet přímého nosníku Výpočet nosníku v osové úoze Výpočet nosníku v příčné úoze ve svisé a vodorovné havní rovině Výpočet nosníku v krutové úoze

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček:

Základem molekulové fyziky je kinetická teorie látek. Vychází ze tří pouček: Molekulová fyzika zkoumá vlastnosti látek na základě jejich vnitřní struktury, pohybu a vzájemného působení částic, ze kterých se látky skládají. Termodynamika se zabývá zákony přeměny různých forem energie

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

4. Napjatost v bodě tělesa

4. Napjatost v bodě tělesa p04 1 4. Napjatost v bodě tělesa Předpokládejme, že bod C je nebezpečným bodem tělesa a pro zabránění vzniku mezních stavů je m.j. třeba zaručit, že napětí v tomto bodě nepřesáhne definované mezní hodnoty.

Více

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření

Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Pružnost a plasticita, 2.ročník kombinovaného studia Téma 1 Úvod do předmětu Pružnost a plasticita, napětí a přetvoření Základní pojmy, výchozí předpoklady Vztahy mezi vnitřními silami a napětími v průřezu

Více

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady.

Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady. Pružnost a pevnost (132PRPE), paralelka J2/1 (ZS 2015/2016) Písemná část závěrečné zkoušky vzorové otázky a příklady Povolené pomůcky: psací a rýsovací potřeby, kalkulačka (nutná), tabulka průřezových

Více

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů

ρ 490 [lb/ft^3] σ D 133 [ksi] τ D 95 [ksi] Výpočet pružin Informace o projektu ? 1.0 Kapitola vstupních parametrů N pružin i?..7 Vhodnost pro dynamické excelentní 6 [ F].. Dodávané průměry drátu,5 -,25 [in].3 - při pracovní teplotě E 2 [ksi].5 - při pracovní teplotě G 75 [ksi].7 Hustota ρ 4 [lb/ft^3]. Mez pevnosti

Více

7. Základní formulace lineární PP

7. Základní formulace lineární PP p07 1 7. Základní formulace lineární PP Podle tvaru závislosti mezi vnějšími silami a deformačně napěťovými parametry tělesa dělíme pružnost a pevnost na lineární a nelineární. Lineární pružnost vyšetřuje

Více

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701

I Stabil. Lepený kombinovaný nosník se stojnou z desky z orientovaných plochých třísek - OSB. Navrhování nosníků na účinky zatížení podle ČSN 73 1701 I Stabi Lepený kombinovaný nosník se stojnou z desky z orientovaných pochých třísek - OSB Navrhování nosníků na účinky zatížení pode ČSN 73 1701 Část A Část B Část C Část D Výchozí předpokady, statické

Více

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda

Vzpěr, mezní stav stability, pevnostní podmínky pro tlak, nepružný a pružný vzpěr Ing. Jaroslav Svoboda Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Vzpěr,

Více

ÚVOD DO MODELOVÁNÍ V MECHANICE

ÚVOD DO MODELOVÁNÍ V MECHANICE ÚVO O MOELOVÁNÍ V MECHNICE MECHNIK KOMPOZITNÍCH MTERIÁLŮ 2 Přednáška č. 7 Robert Zemčík 1 Zebry normální Zebry zdeformované 2 Zebry normální Zebry zdeformované 3 Zebry normální 4 Zebry zdeformované protažené?

Více

Mezní napětí v soudržnosti

Mezní napětí v soudržnosti Mení napětí v soudržnosti Pro žebírkovou výtuž e stanovit návrhovou hodnotu meního napětí v soudržnosti vtahu: = η η ctd kde je η součinite ávisý na kvaitě podmínek v soudržnosti a pooe prutu během betonáže

Více

Pružnost a pevnost I

Pružnost a pevnost I Stránka 1 teoretické otázk 2007 Ing. Tomáš PROFANT, Ph.D. verze 1.1 OBSAH: 1. Tenzor napětí 2. Věta o sdruženosti smkových napětí 3. Saint Venantův princip 4. Tenzor deformace (přetvoření) 5. Geometrická

Více

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N

MAGNETICKÉ POLE. 1. Stacionární magnetické pole I I I I I N S N N MAGETCKÉ POLE 1. Stacionární magnetické poe V E S T C E D O R O Z V O J E V Z D Ě L Á V Á Í je část prostoru, kde se veičiny popisující magnetické poe nemění s časem. Vzniká v bízkosti stacionárních vodičů

Více

POŽADAVKY KE ZKOUŠCE Z PP I

POŽADAVKY KE ZKOUŠCE Z PP I POŽADAVKY KE ZKOUŠCE Z PP I Zkouška úrovně Alfa (pro zájemce o magisterské studium) Zkouška sestává ze o vstupního testu (10 otázek, výběr správné odpovědi ze čtyř možností, rozsah dle sloupečku Požadavky)

Více

12. Struktura a vlastnosti pevných látek

12. Struktura a vlastnosti pevných látek 12. Struktura a vlastnosti pevných látek Osnova: 1. Látky krystalické a amorfní 2. Krystalová mřížka, příklady krystalových mřížek 3. Poruchy krystalových mřížek 4. Druhy vazeb mezi atomy 5. Deformace

Více

Autor: Vladimír Švehla

Autor: Vladimír Švehla Bulletin of Applied Mechanics 1, 55 64 (2005) 55 Využití Castiglianovy věty při výpočtu deformací staticky určité případy zatížení tahem a tlakem Autor: Vladimír Švehla České vysoké učení technické, akulta

Více

Stabilita přímých prutů

Stabilita přímých prutů Kapitoa 1 Stabiita přímých prutů 1.1 Úvod Předpokádejme, že tvar stačovaného přímého prizmatického prutu je ideání. To znamená, že předpokádáme jeho přímý tvar, výsedná sía působí v jeho podéné ose a materiá

Více

1.1 Shrnutí základních poznatků

1.1 Shrnutí základních poznatků 1.1 Shrnutí základních poznatků Pojmem nádoba obvykle označujeme součásti strojů a zařízení, které jsou svým tvarem a charakterem namáhání shodné s dutými tělesy zatíženými vnitřním, popř. i vnějším tlakem.sohledemnatopovažujemezanádobyrůznápotrubíakotlovátělesa,alenapř.i

Více

LOGO. Struktura a vlastnosti pevných látek

LOGO. Struktura a vlastnosti pevných látek Struktura a vlastnosti pevných látek Rozdělení pevných látek (PL): monokrystalické krystalické Pevné látky polykrystalické amorfní Pevné látky Krystalické látky jsou charakterizovány pravidelným uspořádáním

Více

4.1 Shrnutí základních poznatků

4.1 Shrnutí základních poznatků 4.1 Shrnutí zákadních poznatků V případech příčných deformací přímých prutů- nosníků se zabýváme deformací jejich střednice, tj. spojnice těžiště příčných průřezů. Tuto deformovanou křivku nazýváme průhybová

Více

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I

NAUKA O MATERIÁLU I. Zkoušky mechanické. Přednáška č. 04: Zkoušení materiálových vlastností I NAUKA O MATERIÁLU I Přednáška č. 04: Zkoušení materiálových vlastností I Zkoušky mechanické Autor přednášky: Ing. Daniela ODEHNALOVÁ Pracoviště: TUL FS, Katedra materiálu ZKOUŠENÍ mechanických vlastností

Více

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK

STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK STRUKTURA A VLASTNOSTI PEVNÝCH LÁTEK 1. Druhy pevných látek AMORFNÍ nepravidelné uspořádání molekul KRYSTALICKÉ pravidelné uspořádání molekul krystalická mřížka polykrystaly více jader (krystalových zrn),

Více

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)

Více

Namáhání na tah, tlak

Namáhání na tah, tlak Namáhání na tah, tlak Pro namáhání na tah i tlak platí stejné vztahy a rovnice. Velikost normálového napětí v tahu, resp. tlaku vypočítáme ze vztahu: resp. kde je napětí v tahu, je napětí v tlaku (dále

Více

Senzory síly a kroutícího momentu

Senzory síly a kroutícího momentu Senzory síy a kroutícího momentu Zadání 1. Seznamte se s fyzikáními principy a funkčností tenzometrů, inkrementáního optoeektronického senzoru otočení a senzoru FSR. 2. Změřte závisost odporu FSR senzoru

Více

Ing. Jan BRANDA PRUŽNOST A PEVNOST

Ing. Jan BRANDA PRUŽNOST A PEVNOST Ing. Jan BRANDA PRUŽNOST A PEVNOST Výukový text pro učební obor Technik plynových zařízení Vzdělávací oblast RVP Plynová zařízení a Tepelná technika (mechanika) Pardubice 2013 Aktualizováno: 2015 Použitá

Více

VŠB Technická univerzita Ostrava Fakulta stavební Katedra stavební mechaniky. Pružnost a plasticita - příklady. Oldřich Sucharda

VŠB Technická univerzita Ostrava Fakulta stavební Katedra stavební mechaniky. Pružnost a plasticita - příklady. Oldřich Sucharda VŠB Technická univerzita strava Fakuta stavební Katedra stavební mechanik Pružnost a pasticita - příkad dřich Sucharda strava, září 0 bsah. Průřezové charakteristik..... Těžiště omené čár..... Těžiště

Více

FAKULTA STAVEBNÍ. Telefon: WWW:

FAKULTA STAVEBNÍ. Telefon: WWW: VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STAVEBNÍ ZÁKLADY METODY KONEČNÝCH PRVKŮ Jiří Brožovský Kancelář: LP H 406/3 Telefon: 597 321 321 E-mail: jiri.brozovsky@vsb.cz WWW: http://fast10.vsb.cz/brozovsky/

Více

Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1)

Řešení úloh 1. kola 54. ročníku fyzikální olympiády. Kategorie C. s=v 0 t 1 2 at2. (1) Řešení úoh 1. koa 54. ročníku fyzikání oympiády. Kategorie C Autořiúoh:J.Jírů(1),J.Thomas(,3,5),M.Jarešová(4,7),P.Šedivý(6). 1.a) Během brzdění roste dráha s časem pode vzorce s=v 0 t 1 at. (1) Zevzorcepyne

Více

Řešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4)

Řešení úloh celostátního kola 49. ročníku fyzikální olympiády. Autořiúloh:P.Šedivý(1),L.Richterek(2),I.Volf(3)aB.Vybíral(4) Řešení úoh ceostátního ko 49. ročníku fyzikání oympiády. Autořiúoh:.Šedivý(1),L.Richterek(),I.Vof(3)B.Vybír(4) 1.) Oznčme t 1, t, t 3čsyzábesků, v 1, v, v 3přísušnérychostistředukoue, veikost zrychení

Více

Příloha-výpočet motoru

Příloha-výpočet motoru Příloha-výpočet motoru 1.Zadané parametry motoru: vrtání d : 77mm zdvih z: 87mm kompresní poměr ε : 10.6 atmosférický tlak p 1 : 98000Pa teplota nasávaného vzduchu T 1 : 353.15K adiabatický exponent κ

Více

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému

TENSOR NAPĚTÍ A DEFORMACE. Obrázek 1: Volba souřadnicového systému TENSOR NAPĚTÍ A DEFORMACE Obrázek 1: Volba souřadnicového systému Pole posunutí, deformace, napětí v materiálovém bodě {u} = { u v w } T (1) Obecně 9 složek pole napětí lze uspořádat do matice [3x3] -

Více

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT

III/2-1 Inovace a zkvalitnění výuky prostřednictvím ICT Název školy Název projektu Registrační číslo projektu Autor Název šablony Střední průmyslová škola strojírenská a Jazyková škola s právem státní jazykové zkoušky, Kolín IV, Heverova 191 Modernizace výuky

Více

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření

Hlavní body. Teplotní závislosti fyzikálních veličin. Teplota, měření e r i k a Havní body epota, ěření epotní závisosti fyzikáních veičin Kinetická teorie pynů Maxweova rozděovací funkce epo, ěrné tepo, kaorietrie epota Je zákadní veičinou, kterou neze odvodit? Čověk ji

Více

vztažný systém obecné napětí předchozí OBSAH další

vztažný systém obecné napětí předchozí OBSAH další p05 1 5. Deformace těles S deformací jako složkou mechanického pohybu jste se setkali už ve statice. Běžně je chápána jako změna rozměrů a tvaru tělesa. Lze ji popsat změnami vzdáleností různých dvou bodů

Více

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu

1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Měření modulu pružnosti Úkol : 1. Měření hodnoty Youngova modulu pružnosti ocelového drátu v tahu a kovové tyče v ohybu Pomůcky : - Měřící zařízení s indikátorovými hodinkami - Mikrometr - Svinovací metr

Více

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky

2.1 Stáčivost v závislosti na koncentraci opticky aktivní látky 1 Pracovní úkoy 1. Změřte závisost stočení poarizační roviny na koncentraci vodního roztoku gukozy v rozmezí 0 500 g/. Pro jednu zvoenou koncentraci proveďte 5 měření úhu stočení poarizační roviny. Jednu

Více

16. Matematický popis napjatosti

16. Matematický popis napjatosti p16 1 16. Matematický popis napjatosti Napjatost v bodě tělesa jsme definovali jako množinu obecných napětí ve všech řezech, které lze daným bodem tělesa vést. Pro jednoznačný matematický popis napjatosti

Více

Nelineární problémy a MKP

Nelineární problémy a MKP Nelineární problémy a MKP Základní druhy nelinearit v mechanice tuhých těles: 1. materiálová (plasticita, viskoelasticita, viskoplasticita,...) 2. geometrická (velké posuvy a natočení, stabilita konstrukcí)

Více

PRUŽNOST A PLASTICITA

PRUŽNOST A PLASTICITA PRUŽNOST A PLASTICITA Ing. Vladimíra Michalcová LPH 407/1 tel. 59 732 1348 vladimira.michalcova@vsb.cz http://fast10.vsb.cz/michalcova Povinná literatura http://mi21.vsb.cz/modul/pruznost-plasticita Doporučená

Více

OVMT Mechanické zkoušky

OVMT Mechanické zkoušky Mechanické zkoušky Mechanickými zkouškami zjišťujeme chování materiálu za působení vnějších sil, tzn., že zkoumáme jeho mechanické vlastnosti. Některé mechanické vlastnosti materiálu vyjadřují jeho odpor

Více

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c )

OHYB (Napjatost) M A M + qc a + b + c ) M A = 2M qc a + b + c ) 3.3 Řešené příklady Příklad 1: Pro nosník na obrázku vyšetřete a zakreslete reakce, T (x) a M(x). Dále určete M max a proveďte dimenzování pro zadaný průřez. Dáno: a = 0.5 m, b = 0.3 m, c = 0.4 m, d =

Více

Statika soustavy těles.

Statika soustavy těles. Statika soustavy těles Základy mechaniky, 6 přednáška Obsah přednášky : uvolňování soustavy těles, sestavování rovnic rovnováhy a řešení reakcí, statická určitost, neurčitost a pohyblivost, prut a jeho

Více

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL

Předmět: Ročník: Vytvořil: Datum: ŠČERBOVÁ M. PAVELKA V. NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL Předmět: Ročník: Vytvoři: Datum: MECHANIKA DRUHÝ ŠČERBOVÁ M. PAVELKA V. 9. ČERVNA 2013 Název zpracovaného ceku: NAMÁHÁNÍ NA OHYB A) NOSNÍKY NA DVOU PODPORÁCH ZATÍŽENÉ SOUSTAVOU ROVNOBĚŽNÝCH SIL ÚLOHA 1

Více