J. G. Mendel (* )

Rozměr: px
Začít zobrazení ze stránky:

Download "J. G. Mendel (* )"

Transkript

1 2. Mendelovská genetika. Buňka jako základ života, chromozomální teorie dědičnosti. Johann Gregor Mendel a dědičnost Darwinova teorie představovala velmi silný nástroj pro vysvětlení různorodosti života na zemi. Ovšem některé aspekty zůstaly nevysvětleny a ty se staly terčem kritiky Darwina. 1. Jasné například bylo, že se rodí více potomků a že určité vlastnosti (výhodné) se mohou předat do další generace, ale Darwin nebyl schopen uspokojivě vysvětlit, jak se tyto znaky dědí? (Představa byla, že se vlastnosti rodičů míchají, namixování rodičů do potomků červená x bílá = růžová.) 2. Základem Darwinovi selekce je vedle dědičnosti znaků také variabilita (variation) mezi jedinci v populaci. Otázkou zůstávalo, co je zdrojem této variability? V Darwinově době bylo snahou dědičnost pojmout vcelku, tj. vysvětlit, jak se z určitých rodičů (kteří jsou komplexním souborem vlastností) vyvine potomek. Tudíž se nakládalo s nepřeberným množstvím znaků a to nevedlo k žádnému pokroku ve znalostech o dědičnosti. Mendelův úspěch spočíval v tom, že si vybral jen několik málo konkrétních znaků/vlastností, které studoval. Ačkoliv Mendel publikoval své výsledky již roku 1866, Darwin zemřel v roce 1881, aniž by o této práci měl nejmenší tušení. J. G. Mendel (* ) Narodil se 20. července 1822 v rodině sedláka v obci Hynčice, nyní součástí obce Vražné (okres Nový Jičín) na Moravě. Mateřským jazykem Mendela byla němčina. Po absolvování základní školy v Hynčicích a gymnázia v Opavě se v roce 1840 zapsal na Filozofický ústav Univerzity v Olomouci. V roce 1843 byl přijat jako novic do augustiniánského kláštera sv. Tomáše na Starém Brně. Tehdy obdržel řádové jméno Gregor. Brněnští augustiniánim byli vzdělanci, kteří se tehdy podíleli na univerzitní a gymnaziální výuce na území monarchie. V té době zaujímali významné postavení ve vědeckém a kulturním životě na Moravě. Po dokončení teologických studií v roce 1848 začal navštěvovat přednášky prof. F. Diebla z oboru zemědělských věd na brněnském filozofickém (!) ústavu. V roce 1853 ukončil dvouleté studium na Univerzitě ve Vídni. V roce 1856 Mendel zahájil své experimenty s křížením rostlin (s hrachem) a roku 1862 zahájil meteorologická pozorování pro Meteorologický ústav ve Vídni. Meteorologická pozorování prováděl s velikou přesností až téměř do konce svého života. V roce 1863 ukončil pokusy s hrachem (Pisum) a dne 8. února 1865 přednesl na zasedání Přírodovědného spolku v Brně, devět let po Darwinově knize "O původu druhů", první část své teorie přenosu dědičných jednotek a 8. března druhou část o své klasické práci. V roce 1866 vyšla jeho práce Versuche über Pflanzen-Hybriden. Roku 1868 byl zvolen za opata a preláta augustiniánského kláštera v Brně. Strana 1 / 10

2 O rok později se mu dostalo jediné pocty za svého života v odborných přírodovědných kruzích: byl zvolen vicepresidentem Přírodovědného spolku v Brně. 9. června 1869 vyložil na půdě tohoto spolku výsledky své druhé práce v oboru křížení rostlin o jestřábnících (Hieracium-Bastarde), téhož roku se stal členem brněnského včelařského spolku. V roce 1883 Mendel vážně onemocněl a dne 9. ledna 1884 zemřel v klášteře a byl pochován na brněnském ústředním hřbitově do hrobky augustiniánů. Rekviem v kostele dirigoval později světoznámý skladatel Leoš Janáček. Mendel objevil, že znaky se dědí v oddělených jednotkách Pro své studium použil hrách a vybral si 7 různých znaků, který se každý objevoval ve dvou odlišných formách. Jednotlivé znaky (např. tvar zralého semene), chápal protikladně, např. na jedné straně kulaté, na druhé hranaté, jako dvě strany jedné mince. Nejdříve vyšlechtil linie, ve kterých existovali všichni jedinci buď v jedné či druhé formě a tyto formy zůstaly stabilní po několik generací ( truebreeding varieties - homozygoti pro daný znak). Po té začal tyto formy mezi sebou křížit. Kromě tohoto samo o sobě geniálního přístupu využil Mendel ještě dalšího, pro biologii té doby naprosto nového přístupu matematické analýzy. Velmi pečlivě zapisoval výsledky svých křížení a počítal poměry potomků jednotlivých forem. První Mendelovo zjištění: AA x aa --> Aa (křížení rodičů kulatý x skrabacený --> generace potomků F1 - všechny kulaté) Samooplození F1 (Aa x Aa) --> některé kulaté (přesně 5474, asi 75%) a některé skrabacené (přesně 1850, asi 25%). Tyto výsledky byly stejné pro všech sedm znaků. (v obrázku je použit tzv. Punnetův čtverec, vyvinutý britským genetikem Reginaldem C. Punnetem na počátku 20. století) Genialita Mendela byla v jeho interpretaci těchto výsledků. Mendel si představil (velmi správně), že každá forma znaku (například právě kulatost versus skrabacenost ) je kontrolováná nějakým určitým dědičným faktorem. Zároveň si uvědomil, že jeho výsledky jsou nejsnáze vysvětlitelné, když by se faktory pro každý jednotlivý znak, který zkoumal, vyskytovaly v každé rostlině v páru. Když se organismy mezi sebou kříží, každý rodič předává potomku jeden ze svých dvou faktorů pro každý znak. Dnešní názvosloví: znak=gen, faktor=alela genu (konkrétní forma genu). Vztah mezi geny a alelami, tak jak vychází z Mendelovy práce, jsou základním konceptem dědičnosti: Pokud jsou obě alely stejné, hovoříme o homozygotovi (AA nebo aa), pokud se lyší, je to heterozygot (Aa). Jedna alela může být dominantní nad tou druhou, takže heterozygot (Aa) vypadá stejně jako homozygot pro dominantní alely (AA; pokud se jedná o úplnou dominanci). Recesivní alela se projeví pouze u recesivního homozygota. Genotyp je skutečné genetické složení (tj. které alely jsou přítomny - genotyp AA je jiný, než Aa nebo aa). Fenotyp je pak projev genotypu navenek (to, co pozorujeme) - při úplné dominanci se heterozygot Aa projeví fenotypově stejně jako homozygot AA, protože dominantní alela A převáží účinek recesivní alely a. Strana 2 / 10

3 Poměr fenotypů v F2 generaci 3:1 odpovídá poměru genotypů 1:2:1. Z toho Mendel správně rozpoznal, že heterozygotní rodiče předají se stejnou pravděpodobností jednu ze dvou svých různých alel. Pokud by to tak nebylo, poměr by nebyl zachován. Toto je obsahem Mendelova zákona o segregaci alel, který formálně říká, že rodiče předávají potomkovi jen jednu ze svých alel a to, která to bude, je náhodné. Toto se týká dědičnosti jen jednoho znaku. Ovšem organismy jsou kombinací mnoha různých znaků. Mendel tedy zkusil simultánní kombinace s dvěma různými znaky ze sedmi, které testoval, a zjistil, že se tyto znaky vždy dědí nezávisle na sobě. Toto zjištění dnes známe jako Mendelův zákon o nezávislé kombinovatelnosti alelrůzných alelových párů alely jednoho genu jsou předávány potomkům nezávisle na alelách jiného genu. Dnes samozřejmě víme, že toto neplatí vždy, ovšem Mendel neměl ponětí o tom, že geny se nachází na chromozomech a že tudíž mohou být ve vazbě. Toto ovšem nevyvrací Mendelovi poznatky, jen je dále prohlubuje s tím, jak jsme získávali další znalosti. V případě sedmi znaků, které kombinoval Mendel u hrachu, byly vždy poměry dihybridního křížení blízké štěpnému poměru 9:3:3:1, který znamená nezávislou dědičnost dvou znaků (Mendel měl v tomto velké štěstí, pokud by některé z jím pozorovaných znaků byly ve vazbě, komplikovalo by to jeho výsledky a těžko by došel ke svým interpretacím). SHRNUTÍ MENDELOVO PRÁCE: Mendelovi se podařilo ustanovit zcela nové pojetí dědičnosti: znaky se dědí v oddělených jednotkách, dnes zvaných geny. 1. Dědičné vlastnosti se z rodičů předávají na potomky jako jednotky. Tyto základní jednotky dědičnosti dnes nazýváme geny. Různé formy genů se nazývají alely. Mendlův výraz dědičný faktor odpovídá právě alele. 2. Jedinci mají dvě alely pro každý gen. Pokud jsou dvě alely pro určitý gen stejné, je daný jedinec homozygotní pro tento gen. Pokud se ty dvě alely liší, je heterozygotní. 3. Před sexuálním rozmnožováním, pár alel se rozdělí tak, že každá pohlavní buňka, zvaná gameta, nese pouze jednu alelu. Při oplození dvě gamety splývají, každá tak přináší do potomka jednu alelu daného znaku/genu. 4. Některé alely vykazují dominanci, kdy u heterozygotního jedince se projeví pouze tato dominantní alela, zatímco druhá, recesivní, zůstane maskována. Tím pádem fenotyp, tj. viditelný projev genů, nemusí jednoznačně udávat genotyp, skutečné alelické složení. 5. Mendlův zákon o segregaci alel říká, že alely jsou do gamet rozdělovány náhodně, tj. je stejně pravděpodobné, že gameta bude obsahovat tu nebo onu alelu. Další experimenty Mendelovo principy doplňují. Pro většinu biologů Darwinovy a Mendelovy doby byla Mendelova práce nepochopitelná (zejména matematická analýza byla pro většinu příliš nová). Mendel zemřel roku 1884, aniž by jeho práce byla rozeznána. Až na začátku 20. století byla znovu objevena a začal být její dopad rozeznáván. Další vědci se chopili rozšiřujících experimentů. Neúplná dominance Carl Correns se pustil do ověřovacích experimentů s jinou rostlinou Nocenka (Mirabilis, anglicky zvaná four-o clock ). Na první pohled jeho experimenty spíše odpovídaly představám Darwina o míchání rodičů červená a bílá varieta produkovala růžové potomstvo. Kdyby se Correns zastavil v této fázi, dal by za pravdu Darwinovi. Ovšem on pokračoval v křížení jako Mendel a zjistil, že v F2 generaci (po křížení dvou F1 růžových rodičů) se opět objevují všechny tři barvy a poměry teď plně odpovídají genotypům kvůli neúplné dominanci (i heterozygot je fenotypově rozpoznatelný). Letalita Francouzský genetik Lucien Cuenot v roce 1904 prováděl experimenty s křížením myší s různou barvou srsti: žlutá dominantní (Yy) nad divokou hnědavou barvou zvanou aguti (yy). YY je letální. To dávalo fenotypový poměr 2:1 (žlutá:hnědá), ač dle Mendela by se měl objevovat poměr 3:1. Cuenot záhy objevil, že YY embrya umírají v časném vývoji. Strana 3 / 10

4 Pozor: Y je dominantní nad y (co se barvy týče), ale letální je pouze pro homozygota YY (tedy vlastně recesivně; zde je třeba oddělit barvu srsti a letalitu) to umožňuje, že se taková alela v populaci udrží, protože málokdy se objeví YY homozygot podstata mnoha dědičných onemocnění. Může být alela letální dominantně? Zabije svého nositele, i když je přítomna jen jedna alela (Dd) samozřejmě takováto alela se v populaci nerozšíří, až na vyjímky, kdy svého nositele zabijí až v pozdějším věku, kdy má šanci se normálně rozmnožit a až pak umírá např. Huntington a řada onkogenů. Polygenní a monogenní dědičnost Mendel se zabýval monogenní dědičností. Ovšem mnoho vlastností (např. výška) je polygenní záležitostí (vlastnost je ovlivněn mnoha geny). Tato problematika také způsobila to, že Darwinova teorie a Mendelovo vysvětlení dědičnosti nebyly po dlouhou dobu spojovány biologové měli problém s vysvětlením přírodního výběru, který operuje právě většinou na polygenní úrovni kontinuální fenotypy s jemným graduálním přechodem ( Life is polygenic while death is monogenic Sydney Brenner). Mnozí tvrdili, že tyto dva koncepty nejsou slučitelné, až do 30. let, kdy se začíná ustanovovat populační genetika s novými matematickými modely. Strana 4 / 10

5 Mendel položil základ vztahu alela - gen, který je velmi důležitý i na molekulární úrovni pro fungování buňky a kterému je třeba dobře rozumět (panel 1 představuje jednu z nezbytných základních znalostí v rámci kurzu): Je třeba si uvědomit, že pro Mendela (a dlouhou dobu ještě i po něm) byly jeho dědičné faktory pouhou teoretickou entitou. Mendel nebyl schopen tyto faktory zviditelnit, nebyl schopen sledovat, jak je rodiče fyzicky předávají svými gametami potomkům. Otázkou tedy i dál zůstávalo, co jsou tyto záhadné dědičné faktory zač, co je jejich fyzikální podstatou, jak se kopírují, předávají a exprimují? Ještě dlouho trvalo, než byly tyto otázky zodpovězeny. V rámci cesty za odpovědí se musíme dostat k buněčné teorii a posléze k chromozomální teorii dědičnosti... Buněčná teorie Objev buněk byl založen na technologickém pokroku buňky byly objeveny až s prvním mikroskopem. Angličan Robert Hooke si v roce 1662 nechal postavit první primitivní mikroskop, pomocí něhož pozoroval mnoho různorodých vzorků, mezi nimi také korek. Všiml si, že ten se skládá z mnoha malých komůrek, které mu připomínaly komory, v nichž pobývali mniši (anglicky cells buňky). Hooke si neuvědomoval, že buňky jsou základem života, ale důležité mu připadaly pro vlastnosti korku. Své poznatky publikoval roku 1665 ve své knize Micrographia a termín buňka se od té doby uchytil. Strana 5 / 10

6 Anton van Leeuwenhoek sestrojil již více a lepších mikroskopů. V roce 1675 náhodou pozoroval ve svém mikroskopu kalnou vodu ze svého jezírka a zpozoroval velké množství živých malinkatých objektů, které nazval animalcules. Ty posléze nacházel skoro všude. Ačkoliv objev malinkých stvoření, neviditelných okem, vyvolal velký rozruch ve vědecké komunitě, dalších sto let se celkem nic nedělo. Až v 19. století bylo čím dál zřejmější, že z buněk jsou tvořeny veškeré živé bytosti a byla formulována buněčná teorie, která je připisována zejména dvěma německým vědcům, Matthiasu Schleidenovi a Theodoru Schwannovi. Schleiden jako botanik studoval růst rostlinných tkání, zatímco Schwann studoval tkáně živočichů a zejména nervové buňky tvořící míchu. Jemu se také podařilo ukázat, že embryo vzniká z jedné buňky dělením. Společně pak v roce 1839 zformulovali roztříštěné poznatky, nasbírané od dob animalculů, do sjednocující buněčné teorie: Buněčná teorie 1. Všechny organismy jsou tvořeny jednou nebo více buňkami 2. Buňka je základní jednotkou života nejmenší jednotkou, která splňuje všechny charakteristiky života. 3. Buňky vznikají z již existujících buněk (tento bod byl přidán až dodatečně!). Strana 6 / 10

7 Několik let po Schwannovi přišel další německý biolog, Rudolf Virchow, s odvážným tvrzením o tvoření nových buněk, které popíralo jejich spontánní tvorbu: Kde existuje buňka, tam musela existovat buňka i před ní, stejně jako zvíře vzniká z jiného zvířete a rostlina z jiné rostliny Pro své tvrzení ovšem neměl jednoznačný důkaz. Ten přišel a s brilantními experimenty francouzského chemika Louise Pasteura. Pasteur byl od mládí bojovník, který se nebál postavit tvrzením i mnohem známějších vědců, než bylo on. V roce 1854 se začal zajímat o proces fermentace. Většinou se v tanku tímto procesem vytvářel kvalitní alkoholický nápoj, ale čas od času se v tanku něco zkazilo a vše se muselo vyhodit. Pasteur zjistil, že při zdravém procesu se v tanku nachází pouze buňky kvasinek, zatímco při zkažení se tam objevují podstatně menší podlouhlé buňky, které před tím neviděl. Pasteur se ptal, kde se tam berou. V té době si všichni mysleli, že se tu a tam tyto organismy spontánně v tanku objeví. Ale proč jen v některém a jiném ne. Pasteur přišel s nápadem, že spóry těchto organismů se do tanku občas dostanou otevřeným otvorem ze vzduchu. Izoloval tedy tanky a zjistil, že tím zabránil zkažení. Okamžitě si uvědomil, co tento objev znamená pro teorii spontánního tvoření buněk. Vytvořil proto přesvědčivý experiment, kdy medium v baňce zahřál plamenem tak, že zabil veškeré živé organismy. Pokud ovšem toto medium nechal stát několik dní se snadným přístupem vzduchu, začali v něm růst organismy nové. Pokud ovšem přístup vzduchu zkomplikoval trubicí ve tvaru S tak, aby se při ochlazování média kondenzující voda ze vzduchu zachytila v prohlubni trubice (a s ní i vnikající mikroorganismy), zůstalo médium čisté (viz. obrázek). Pokud je buňka základní jednotkou života, kde se v ní nachází geny? Prvním vodítkem k zodpovězení této otázky byla práce německého anatoma Walthera Flemminga kolem roku 1880, který měl k dispozici jeden z nejlepších mikroskopů té doby. Pomocí imerzního oleje byl schopen zvětšovat až 1000x. Navíc začal buněčné preparáty barvit různými barvičkami, které značily různorodé struktury v buňkách. Publikoval velmi kvalitní obrázky dělících se buněk se strukturami, které se objevovaly jen u právě se dělících buněk. Protože byly barveny, nazval je chromatinem. Dokonce popsal podrobně celý proces dělení buněk, který nazval mitóza. Další detailní zkoumání těchto struktur ukázalo, že chromozomy vykazují určité specifické tvary a velikosti, že se v každé buňce dají najít znovu a znovu stejné chromozomy v sadě s různými charakteristikami a že počet chromozomů je charakteristický pro každý určitý druh. Dalším velmi důležitým poznatkem bylo, že u většiny druhů rostlin a živočichů se tyto struktury nacházejí v párech, které si jsou velice podobné. To velice dobře zapadalo do Mendelových poznatků o dědičnosti znaků v párech a tak se konečně po 40 letech cytologie integrovala do Mendelovi genetiky a zrodil se nový obor cytogenetika. Myšlenka, že Mendelovi zákony dědičnosti jsou přímým důsledkem organizace a chování chromozomů v dělících se buňkách, se zrodila najednou v hlavách nejméně 4 cytogenetiků Strana 7 / 10

8 během roku 1902 a Nejlépe ji ovšem dokázal formulovat mladý americký PhD student Walter Sutton ve své chromosomální teorii dědičnosti, která říká, že Mendelovy faktory geny se nachází na chromozomech. Sutton pracoval s chromozomy velkého amerického koníka Brachystola magna a ukázal na nich, že chromozomy se nacházejí v párech, které se oddělují při meioze (Sutton, W. S On the morphology of the chromosome group in Brachystola magna. Biological Bulletin, 4:24-39). Ve své další práci velmi detailně rozvinul hypotézu, která obsahovala i myšlenku o tom, že chromozomový pár se na dělícím vřeténku orientuje náhodně, což by vysvětlovalo Mendelův princip o nezávislé segregaci alel (Sutton, W. S The chromosomes in heredity. Biological Bulletin, 4: ). PROBLÉMY S PŘIJETÍM CHROMOZOMOVÉ TEORIE DĚDIČNOSTI 1. Nikdo nepozoroval, že by vybraný znak cestoval společně s vybraným chromozomem. 2. Je mnoho genů, mnohem víc, než chromozomů jak to, že se míchají, jak to že necestují společně s celým chromozomem? Mendel měl štěstí, když vybral znaky z různých chromozomů. Odpověď přišla s prací původně velkého kritika chromozomální teorie dědičnosti Thomase Hunta Morgana. Thomas Hunt Morgan ( ) Na obrázku je Morgan ve své dnes již světoznámé laboratoři na Columbia University, která je spíše známa jako FLYROOM Ještě v roce 1909, Morgan ostře kritizuje velké nadšení z chromozomální teorie dědičnosti a nabádá k velké opatrnosti při nakládání s termíny jako dědičný faktor: Morgan, T. H., What are Factors in Mendelian Explanations? American Breeders Association Reports, 5: "In the modern interpretation of Mendelism, facts are being transformed into factors at a rapid rate. If one factor will not explain the facts, then two are invoked; if two prove insufficient, three will sometimes work out. The superior jugglery sometimes necessary to account for the result, may blind us, if taken too naïvely, to the common-place that the results are often so excellently explained because the explanation was invented to explain them. We work backwards from the facts to the factors, and then, presto! explain the facts by the very factors that we invented to account for them. I am not unappreciative of the distinct advantages that this method has in handling the facts. I realize how valuable it has been to us to be able to marshal our results under a few simple assumptions, yet I cannot but fear that we are rapidly developing a sort of Mendelian ritual by which to explain the extraordinary facts of alternative inheritance. So long as we do not lose sight of the purely arbitrary and formal nature of our formulae, little harm will be done; and it is only fair to state that those who are doing the actual work of progress along Mendelian lines are aware of the hypothetical nature of the factor-assumption. But those who know the results at second hand and hear the explanations given, almost invariably in terms of factors, are likely to exaggerate the importance of the interpretations and to minimize the importance of the facts." Morgan začal pracovat s octomilkou (Drosophila melanogaster) v roce 1907 s cílem nalézt mutanta, který by vypadal jinak, než normální moucha, který by měl nějaký snadno rozeznatelný znak. O dva roky později, stále bez mutanta, si prý stěžoval návštěvě své laboratoře: "Two years work wasted, I have been breeding those flies for all that time and I've got nothing out of it." Když to již málem vzdal, přišel velký průlom - jeden z jeho studentů při likvidaci kultur octomilek náhle objevil bělookého samečka (normální octomilka má oči červené). Naštěstí se jim podařilo samečka odchytit a rozmnožit. Strana 8 / 10

9 Nastal snad nejprůlomovější objev genetiky vůbec! Mutanta nazvali white (protože mutace způsobovala bílou barvu očí namísto normální červené; pojmenování je dnes trochu matoucí, protože mutace se nalézá v genu - taktéž pojmenovaném White - který je normálně - tedy když funguje, jak má - zapotřebí právě pro červenou barvu očí). Morgan okamžitě kříží tohoto samečka s normální samičkou s červenýma očima (P generace) a dostává generaci F1, kde mají všechny mouchy oči červené očekávaný výsledek, pokud by mutace měla být recesivní. V F2 generaci dostává opět zdánlivě očekávaný výsledek, štěpný poměr 3:1, kdy se bílé oči objevují pouze v 25% much. Ale pozor, něco nehrálo. Bílé oči se v F2 generaci neobjevují u žádných samiček, ale pouze u samců. Mutace white, je nějakým způsobem vázána na pohlaví! Morgan si byl v té době již vědom, že octomilky mají 4 chromozomy a jeden z nich chromozom X nějak souvisí s pohlavím samičky měly vždy dva chromozomy X, zatímco samci pouze jeden a k tomu chromozom Y, který se nikdy v samičkách neobjevoval. Způsob, jakým se předával chromozom X do dalších generací přesně seděl se způsobem, jakým se předávala i nově nalezená mutace pro bílé oči: Ve své práci (Morgan, T. H Sex-limited inheritance in Drosophila, Science, 32: ) přesvědčivě demonstruje nalezení prvního hmatatelného dědičného znaku, který je spojen s konkrétním chromozomem, a okamžitě se stává obrovským zastáncem chromozomální teorie dědičnosti a mendelismu. Strana 9 / 10

10 REKOMBINACE Touto průlomovou demonstrací, že geny se skutečně nachází na chromozomech, se ještě více zviditelnil další problém chromozomální teorie - jak to, že více genů, které se nacházejí na jednom chromozomu, necestují společně s celým chromozomem (jsou tedy ve vazbě), tj. jak vysvětlit Mendelovu nezávislou kombinovatelnost alel. V následujících letech se odpověď i na tuto otázku rodila ve Flyroomu Thomase Morgana. Morganova skupina potvrdila, že se geny na stejném chromozomu ne vždy dědí pohromadě, že se více či méně častěji oddělují. Když například sledovali tři mutace yellow (žluté tělíčko, cytologická lokalizace 1A), white (bílé oči, cyto 3B) a miniature (malá křídla, cyto 10E), zjistili, že se všechny nacházely na chromozomu X a tvořily tak vazebnou skupinu. Ovšem pravidelně se v 1% případů mutace pro žluté těličko nedědila spolu s mutací pro bílé oči a v 34% případů necestovala mutace pro žluté tělíčko s mutací pro krátká křídla. Tato porušená vazba (broken linkage, jak to nazýval Morgan) musela být důsledkem nějakého předvídatelného a pravidelného děje při tvoření gamet v meióze, který vytváří nové kombinace alel, i když se nachází na stejném chromozomu. Morgan pro tento jev začal používat termín rekombinace. Viditelný důkaz poskytovaly obrázky belgického cytologa F.A. Janssense, který pozoroval fyzické propojení mezi párujícími se chromozomy během meiózy: Díky práci některých brilantních cytologů a zejména díky flyroomu Thomase Morgana bylo konečně jasné, žegeny jsou skutečnou jednotkou dědičnosti a že se nacházejí na chromozomech. Zbývalo zodpovědět poslední velkou otázku co je jejich chemickou podstatou, která by vysvětlovala veškeré jejich dosud poznané charakteristiky. Strana 10 / 10

Genetika zvířat - MENDELU

Genetika zvířat - MENDELU Genetika zvířat Gregor Mendel a jeho experimenty Gregor Johann Mendel (1822-1884) se narodil v Heinzendorfu, nynějších Hynčicích. Během období, v kterém Mendel vyvíjel svou teorii dědičnosti, byl knězem

Více

GENETIKA 1. Úvod do světa dědičnosti. Historie

GENETIKA 1. Úvod do světa dědičnosti. Historie GENETIKA 1. Úvod do světa dědičnosti Historie Základní informace Genetika = věda zabývající se dědičností a proměnlivostí živých soustav sleduje variabilitu (=rozdílnost) a přenos druhových a dědičných

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Mendelovská genetika - Základy přenosové genetiky Základy genetiky Gregor (Johann)

Více

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ

Genetika BIOLOGICKÉ VĚDY EVA ZÁVODNÁ BIOLOGICKÉ VĚDY EVA ZÁVODNÁ Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století

Více

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje

Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Tento výukový materiál vznikl za přispění Evropské unie, státního rozpočtu ČR a Středočeského kraje Mgr. Siřínková Petra březen 2009 Mendelovy zákony JOHANN GREGOR MENDEL Narodil se 20. července 1822 v

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Nauka o dědičnosti a proměnlivosti

Nauka o dědičnosti a proměnlivosti Nauka o dědičnosti a proměnlivosti Genetika Dědičnost na úrovni nukleových kyselin molekulární buněk organismů populací Předávání vloh z buňky na buňku Předávání vlastností mezi jednotlivci Dědičnost znaků

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetika Základní pracovní metodou je křížení křížení = vzájemné oplozování organizmů s různými genotypy Základní pojmy Gen úsek DNA se specifickou funkcí. Strukturní gen úsek DNA nesoucí

Více

Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny

Základní škola a Mateřská škola G.A.Lindnera Rožďalovice. Za vše mohou geny Základní škola a Mateřská škola G.A.Lindnera Rožďalovice Za vše mohou geny Jméno a příjmení: Sandra Diblíčková Třída: 9.A Školní rok: 2009/2010 Garant / konzultant: Mgr. Kamila Sklenářová Datum 31.05.2010

Více

Základní pravidla dědičnosti - Mendelovy a Morganovy zákony

Základní pravidla dědičnosti - Mendelovy a Morganovy zákony Obecná genetika Základní pravidla dědičnosti - Mendelovy a Morganovy zákony Ing. Roman LONGAUER, CSc. Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je

Více

Genetika na úrovni mnohobuněčného organizmu

Genetika na úrovni mnohobuněčného organizmu Genetika na úrovni mnohobuněčného organizmu Přenos genetické informace při rozmnožování Nepohlavní rozmnožování: - nový jedinec vzniká ze somatické buňky nebo ze souboru somatických buněk jednoho rodičovského

Více

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162

Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 Rozvoj vzdělávání žáků karvinských základních škol v oblasti cizích jazyků Registrační číslo projektu: CZ.1.07/1.1.07/02.0162 ZŠ Určeno pro Sekce Předmět Téma / kapitola Prameny 8. třída (pro 3. 9. třídy)

Více

Genetika pro začínající chovatele

Genetika pro začínající chovatele 21.4.2012 Praha - Smíchov Genetika pro začínající chovatele včetně několika odboček k obecným základům chovu Obrázky použité v prezentaci byly postahovány z různých zdrojů na internetu z důvodů ilustračních

Více

12. Mendelistická genetika

12. Mendelistická genetika 12. Mendelistická genetika Genetika se zabývá studiem dědičnosti a proměnlivosti organismů proměnlivost (variabilita) odraz vlivu prostředí na organismus potomků klasická dědičnost schopnost rodičů předat

Více

Genetika mnohobuněčných organismů

Genetika mnohobuněčných organismů Genetika mnohobuněčných organismů Metody studia dědičnosti mnohobuněčných organismů 1. Hybridizační metoda představuje systém křížení, který umožňuje v řadě generací vznikajících pohlavní cestou zjišťovat

Více

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek

Cvičení č. 8. KBI/GENE Mgr. Zbyněk Houdek Cvičení č. 8 KBI/GENE Mgr. Zbyněk Houdek Genové interakce Vzájemný vztah mezi geny nebo formami existence genů alelami. Jeden znak je ovládán alelami působícími na více lokusech. Nebo je to uplatnění 2

Více

Chromosomy a karyotyp člověka

Chromosomy a karyotyp člověka Chromosomy a karyotyp člověka Chromosom - 1 a více - u eukaryotických buněk uložen v jádře karyotyp - soubor všech chromosomů v jádře jedné buňky - tvořen z vláknem chromatinem = DNA + histony - malé bazické

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/..00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG) Tento

Více

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost

GENETIKA Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální dědičnost GENETIKA vědecké studium dědičnosti a jejich variant studium kontinuity života ve vztahu ke konečné délce života individuálních organismů Monogenní dědičnost (Mendelovská) Polygenní dědičnost Multifaktoriální

Více

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Registrační číslo projektu: CZ.1.07/1.5.00/34.0649 Výukový materiál zpracován v rámci projektu EU peníze školám Název školy: Střední zdravotnická škola a Obchodní akademie, Rumburk, příspěvková organizace Registrační číslo projektu: CZ.1.07/1.5.00/34.0649

Více

"Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy

Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT . Základy genetiky, základní pojmy "Učení nás bude více bavit aneb moderní výuka oboru lesnictví prostřednictvím ICT ". Základy genetiky, základní pojmy 1/75 Genetika = věda o dědičnosti Studuje biologickou informaci. Organizmy uchovávají,

Více

Základní genetické pojmy

Základní genetické pojmy Základní genetické pojmy Genetika Věda o dědičnosti a proměnlivosti organismů Používá především pokusné metody (např. křížení). K vyhodnocování používá statistické metody. Variabilita v rámci druhu Francouzský

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetika Distribuce genetické informace Základní studijní a pracovní metodou v genetice je křížení (hybridizace), kterým rozumíme vzájemné oplozování jedinců s různými genotypy. Do konce

Více

Obecná genetika a zákonitosti dědičnosti. KBI / GENE Mgr. Zbyněk Houdek

Obecná genetika a zákonitosti dědičnosti. KBI / GENE Mgr. Zbyněk Houdek Obecná genetika a zákonitosti dědičnosti KBI / GENE Mgr. Zbyněk Houdek Důležité pojmy obecné genetiky Homozygotní genotyp kdy je fenotypová vlastnost genotypově podmíněna uplatněním páru funkčně zcela

Více

Deoxyribonukleová kyselina (DNA)

Deoxyribonukleová kyselina (DNA) Genetika Dědičností rozumíme schopnost rodičů předávat své vlastnosti potomkům a zachovat tak rozličnost druhů v přírodě. Dědičností a proměnlivostí jedinců se zabývá vědní obor genetika. Základní jednotkou

Více

MENDELOVSKÁ DĚDIČNOST

MENDELOVSKÁ DĚDIČNOST MENDELOVSKÁ DĚDIČNOST Gen Část molekuly DNA nesoucí genetickou informaci pro syntézu specifického proteinu (strukturní gen) nebo pro syntézu RNA Různě dlouhá sekvence nukleotidů Jednotka funkce Genotyp

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince

Schopnost organismů UCHOVÁVAT a PŘEDÁVAT soubor informací o fyziologických a morfologických (částečně i psychických) vlastnostech daného jedince Genetika Genetika - věda studující dědičnost a variabilitu organismů - jako samostatná věda vznikla na počátku 20. století - základy položil J.G. Mendel již v druhé polovině 19. století DĚDIČNOST Schopnost

Více

Cvičeníč. 10 Dědičnost a pohlaví. Mgr. Zbyněk Houdek

Cvičeníč. 10 Dědičnost a pohlaví. Mgr. Zbyněk Houdek Cvičeníč. 10 Dědičnost a pohlaví Mgr. Zbyněk Houdek Dědičnost a pohlaví Gonozomy se v evoluci vytvořily z autozomů, proto obsahují nejen geny řídící vznik pohlavních rozdílů, ale i další geny. V těchto

Více

13. Genová vazba a genová interakce

13. Genová vazba a genová interakce 13. Genová vazba a genová interakce o Chromosomová teorie dědičnosti o Bateson a Morgan, chromosomová mapa o Typy genových interakcí Chromosomová teorie dědičnosi Roku 1903 William Sutton pozoroval meiózu

Více

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra

Základy genetiky 2a. Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základy genetiky 2a Přípravný kurz Komb.forma studia oboru Všeobecná sestra Základní genetické pojmy: GEN - úsek DNA molekuly, který svojí primární strukturou určuje primární strukturu jiné makromolekuly

Více

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek

Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací. KBI/GENE: Mgr. Zbyněk Houdek Cvičeníč. 9: Dědičnost kvantitativních znaků; Genetika populací KBI/GENE: Mgr. Zbyněk Houdek Kvantitativní znak Tyto znaky vykazují plynulou proměnlivost (variabilitu) svého fenotypového projevu. Jsou

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Genetika populací Studium dědičnosti a proměnlivosti skupin jedinců (populací)

Více

Úvod do obecné genetiky

Úvod do obecné genetiky Úvod do obecné genetiky GENETIKA studuje zákonitosti dědičnosti a proměnlivosti živých organismů GENETIKA dědičnost - schopnost uchovávat soubor dědičných informací a předávat je nezměněný potomkům GENETIKA

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

Degenerace genetického kódu

Degenerace genetického kódu AJ: degeneracy x degeneration CJ: degenerace x degenerace Degenerace genetického kódu Genetický kód je degenerovaný, resp. redundantní, což znamená, že dva či více kodonů může kódovat jednu a tutéž aminokyselinu.

Více

Základní pravidla dědičnosti

Základní pravidla dědičnosti Mendelova genetika v příkladech Základní pravidla dědičnosti Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/28.0018 Mendelovy zákony dědičnosti

Více

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním

1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním 1. Téma : Genetika shrnutí Název DUMu : VY_32_INOVACE_29_SPSOA_BIO_1_CHAM 2. Vypracovala : Hana Chamulová 3. Vytvořeno v projektu EU peníze středním školám Genetika - shrnutí TL2 1. Doplň: heterozygot,

Více

Genetické určení pohlaví

Genetické určení pohlaví Přehled GMH Seminář z biologie Genetika 2 kvalitativní znaky Genetické určení pohlaví Téma se týká pohlavně se rozmnožujících organismů s odděleným pohlavím (gonochoristů), tedy dvoudomých rostlin, většiny

Více

GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY

GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY GENETIKA POPULACÍ ŘEŠENÉ PŘÍKLADY 5. Speciální případy náhodného oplození PŘÍKLAD 5.1 Testováním krevních skupin systému AB0 v určité populaci 6 188 bělochů bylo zjištěno, že 2 500 osob s krevní skupinou

Více

Inovace studia molekulární a buněčné biologie

Inovace studia molekulární a buněčné biologie Inovace studia molekulární a buněčné biologie I n v e s t i c e d o r o z v o j e v z d ě l á v á n í reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním

Více

Barevné formy zebřiček a jejich genetika - část II. příklady

Barevné formy zebřiček a jejich genetika - část II. příklady Barevné formy zebřiček a jejich genetika - část II. příklady Tyto příklady se váží k předchozímu článku o obecných zákonitostech genetiky. K napsaní těchto detailů mne inspiroval jeden dotaz, který určuje

Více

GENETIKA. Dědičnost a pohlaví

GENETIKA. Dědičnost a pohlaví GENETIKA Dědičnost a pohlaví Chromozómové určení pohlaví Dvoudomé rostliny a gonochoristé (živočichové odděleného pohlaví) mají pohlaví určeno dědičně chromozómovou výbavou jedince = dvojicí pohlavních

Více

Počet chromosomů v buňkách. Genom

Počet chromosomů v buňkách. Genom Počet chromosomů v buňkách V každé buňce těla je stejný počet chromosomů. Výjimkou jsou buňky pohlavní, v nich je počet chromosomů poloviční. Spojením pohlavních buněk vzniká zárodečná buňka s celistvým

Více

Molekulární genetika, mutace. Mendelismus

Molekulární genetika, mutace. Mendelismus Molekulární genetika, mutace 1) Napište komplementární řetězec k uvedenému řetězci DNA: 5 CGTACGGTTCGATGCACTGTACTGC 3. 2) Napište sekvenci vlákna mrna vzniklé transkripcí molekuly DNA, pokud templátem

Více

GENETIKA V MYSLIVOSTI

GENETIKA V MYSLIVOSTI GENETIKA V MYSLIVOSTI Historie genetiky V r. 1865 publikoval Johann Gregor Mendel výsledky svých pokusů s hrachem v časopisu Brněnského přírodovědeckého spolku, kde formuloval principy přenosu vlastností

Více

ÚVOD DO MATEMATICKÉ BIOLOGIE I. (setkání třetí)

ÚVOD DO MATEMATICKÉ BIOLOGIE I. (setkání třetí) ÚVOD DO MATEMATICKÉ BIOLOGIE I. (setkání třetí) prof. Ing. Jiří Holčík, CSc. UKB, pav. A29, RECETOX, dv.č.112 holcik@iba.muni.cz KAM SE VZDĚLÁNÍM V MATEMATICKÉ BIOLOGII? UPLATNĚNÍ MATEMATICKÝCH (TEORETICKÝCH)

Více

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr

GENETICKÁ INFORMACE - U buněčných organismů je genetická informace uložena na CHROMOZOMECH v buněčném jádře - Chromozom je tvořen stočeným vláknem chr GENETIKA VĚDA, KTERÁ SE ZABÝVÁ PROJEVY DĚDIČNOSTI A PROMĚNLIVOSTI Klíčové pojmy: CHROMOZOM, ALELA, GEN, MITÓZA, MEIÓZA, GENOTYP, FENOTYP, ÚPLNÁ DOMINANCE, NEÚPLNÁ DOMINANCE, KODOMINANCE, HETEROZYGOT, HOMOZYGOT

Více

V F 2. generaci vznikají rozdílné fenotypy. Stejné zabarvení značí stejný fenotyp.

V F 2. generaci vznikají rozdílné fenotypy. Stejné zabarvení značí stejný fenotyp. Cvičení č. 6: Mendelovy zákony KI/GENE Mgr. Zyněk Houdek Mendelovy zákony Při pohlavním rozmnožování se může z každého rodiče přenést na jeho potomka vždy pouze jediná alela z páru. Vyslovil v roce 1865

Více

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248

Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 Gymnázium a Střední odborná škola pedagogická, Čáslav, Masarykova 248 M o d e r n í b i o l o g i e reg. č.: CZ.1.07/1.1.32/02.0048 TENTO PROJEKT JE SPOLUFINANCOVÁN EVROPSKÝM SOCIÁLNÍM FONDEM A STÁTNÍM

Více

Hardy-Weinbergův zákon - cvičení

Hardy-Weinbergův zákon - cvičení Genetika a šlechtění lesních dřevin Hardy-Weinbergův zákon - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Výukový materiál zpracován v rámci projektu EU peníze školám

Výukový materiál zpracován v rámci projektu EU peníze školám http://vtm.zive.cz/aktuality/vzorek-dna-prozradi-priblizny-vek-pachatele Autorem materiálu a všech jeho částí, není-li uvedeno jinak, je Mgr. Eva Strnadová. Dostupné z Metodického portálu www.rvp.cz ;

Více

Základy genetiky populací

Základy genetiky populací Základy genetiky populací Jedním z významných odvětví genetiky je genetika populací, která se zabývá studiem dědičnosti a proměnlivosti u velkých skupin jedinců v celých populacích. Populace je v genetickém

Více

Mendelova genetika - dědičnost Kat. číslo Příručka pro učitele

Mendelova genetika - dědičnost Kat. číslo Příručka pro učitele Mendelova genetika - dědičnost Kat. číslo 109.3032 Příručka pro učitele Strana 1 ze 13 Příručka pro učitele Vědecké pojmy Monohybridní a dihybridní křížení Zákon dominance Zákon segregace Nezávislá kombinovatelnost

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Crossing-over. over. synaptonemální komplex

Crossing-over. over. synaptonemální komplex Genetické mapy Crossing-over over v průběhu profáze I meiózy princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem synaptonemální komplex zlomy a nová spojení chromatinových

Více

MENDELISMUS. Biologie a genetika LS 3, BSP, 2014/2015, Ivan Literák

MENDELISMUS. Biologie a genetika LS 3, BSP, 2014/2015, Ivan Literák MENDELISMUS Biologie a genetika LS 3, BSP, 2014/2015, Ivan Literák 1822-1884 In the ten years G. Mendel worked on his plants in the garden of the monastery, he made the greatest discovery in biology that

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

9.12.2012 Brno - Lužánky Základy chovatelství a genetiky potkanů

9.12.2012 Brno - Lužánky Základy chovatelství a genetiky potkanů 9.12.2012 Brno - Lužánky Základy chovatelství a genetiky potkanů Obrázky použité v prezentaci byly postahovány z různých zdrojů na internetu z důvodů ilustračních a nejedná se o má díla. Prezentace nejsou

Více

Vrozené vývojové vady, genetika

Vrozené vývojové vady, genetika UNIVERZITA KARLOVA V PRAZE Fakulta tělesné výchovy a sportu Vrozené vývojové vady, genetika studijní opora pro kombinovanou formu studia Aplikovaná tělesná výchova a sport Doc.MUDr. Eva Kohlíková, CSc.

Více

PRAKTIKUM Z OBECNÉ GENETIKY

PRAKTIKUM Z OBECNÉ GENETIKY RNDr. Pavel Lízal, Ph.D. Přírodovědecká fakulta MU Ústav experimentální biologie Oddělení genetiky a molekulární biologie lizal@sci.muni.cz 1) Praktikum z obecné genetiky 2) Praktikum z genetiky rostlin

Více

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316

Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Zvyšování konkurenceschopnosti studentů oboru botanika a učitelství biologie CZ.1.07/2.2.00/15.0316 Tradice šlechtění šlechtění zlepšování pěstitelsky, technologicky a spotřebitelsky významných vlastností

Více

VYBRANÉ GENETICKÉ ÚLOHY II.

VYBRANÉ GENETICKÉ ÚLOHY II. VYRNÉ GENETICKÉ ÚLOHY II. (Nemendelistická dědičnost, kodominance, genové interakce, vazba genů) ÚLOHY 1. Krevní skupiny systému 0 -,,, 0 - jsou určeny řadou alel (mnohotná alelie, alelická série), které

Více

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA

RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA RIGORÓZNÍ OTÁZKY - BIOLOGIE ČLOVĚKA 1. Genotyp a jeho variabilita, mutace a rekombinace Specifická imunitní odpověď Prevence a časná diagnostika vrozených vad 2. Genotyp a prostředí Regulace buněčného

Více

Výuka genetiky na Přírodovědecké fakultě UK v Praze

Výuka genetiky na Přírodovědecké fakultě UK v Praze Výuka genetiky na Přírodovědecké fakultě UK v Praze Studium biologie na PřF UK v Praze Bakalářské studijní programy / obory Biologie Biologie ( duhový bakalář ) Ekologická a evoluční biologie ( zelený

Více

Selekce v populaci a její důsledky

Selekce v populaci a její důsledky Genetika a šlechtění lesních dřevin Selekce v populaci a její důsledky Doc. Ing. RNDr. Eva Palátová, PhD. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován Evropským sociálním

Více

Genetika pohlaví genetická determinace pohlaví

Genetika pohlaví genetická determinace pohlaví Genetika pohlaví Genetická determinace pohlaví Způsoby rozmnožování U nižších organizmů může docházet i k ovlivnění pohlaví jedince podmínkami prostředí (např. teplotní závislost pohlavní determinace u

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

VY_32_INOVACE_11.18 1/6 3.2.11.18 Genetika Genetika

VY_32_INOVACE_11.18 1/6 3.2.11.18 Genetika Genetika 1/6 3.2.11.18 Cíl chápat pojmy dědičnost, proměnlivost, gen, DNA, dominantní, recesivní, aleoly - vnímat význam vědního oboru - odvodit jeho využití, ale i zneužití Tajemství genů - dědičnost schopnost

Více

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny

Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Obecná genetika Základní pojmy obecné genetiky, kvalitativní a kvantitativní znaky, vztahy mezi geny Doc. RNDr. Ing. Eva PALÁTOVÁ, PhD. Ing. Roman LONGAUER, CSc. Ústav zakládání a pěstění lesů LDF MENDELU

Více

Důsledky selekce v populaci - cvičení

Důsledky selekce v populaci - cvičení Genetika a šlechtění lesních dřevin Důsledky selekce v populaci - cvičení Doc. Ing. RNDr. Eva Palátová, PhD. Ing. R. Longauer, CSc. Ústav zakládání a pěstění lesů LDF MENDELU Brno Tento projekt je spolufinancován

Více

Působení genů. Gen. Znak

Působení genů. Gen. Znak Genové interakce Působení genů Gen Znak Dědičnost Potomek získává predispozice k vlastnostem z rodičovské buňky nebo organismu. Vlastnosti přenášené do další generace nemusí být zcela totožné s vlastnostmi

Více

GENETIKA A JEJÍ ZÁKLADY

GENETIKA A JEJÍ ZÁKLADY GENETIKA A JEJÍ ZÁKLADY Genetické poznatky byly v historii dlouho výsledkem jen pouhého pozorování. Zkušenosti a poznatky se přenášely z generace na generaci a byly tajeny. Nikdo nevyvíjel snahu poznatky

Více

Genetika populací. KBI / GENE Mgr. Zbyněk Houdek

Genetika populací. KBI / GENE Mgr. Zbyněk Houdek Genetika populací KBI / GENE Mgr. Zbyněk Houdek Genetika populací Populace je soubor genotypově různých, ale geneticky vzájemně příbuzných jedinců téhož druhu. Genový fond je společný fond gamet a zygot

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Genetika přehled zkouškových otázek:

Genetika přehled zkouškových otázek: Genetika přehled zkouškových otázek: 1) Uveďte Mendelovy zákony (pravidla) dědičnosti, podmínky platnosti Mendelových zákonů. 2) Popište genetický zápis (mendelistický čtverec) monohybridního křížení u

Více

Genetika kvantitativních znaků

Genetika kvantitativních znaků Genetika kvantitativních znaků Kvantitavní znaky Plynulá variabilita Metrické znaky Hmotnost, výška Dojivost Srstnatost Počet vajíček Velikost vrhu Biochemické parametry (aktivita enzymů) Imunologie Prahové

Více

Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky

Genetika kvantitativních znaků. - principy, vlastnosti a aplikace statistiky Genetika kvantitativních znaků Genetika kvantitativních znaků - principy, vlastnosti a aplikace statistiky doc. Ing. Tomáš Urban, Ph.D. urban@mendelu.cz Genetika kvantitativních vlastností Mendelistická

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Pohlavní typy Drosophila Protenor Člověk Lymantria/Abraxas (bekyně) Habrobracon/haplodiploidie

Více

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/

Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí. Reg. č.: CZ.1.07/2.2.00/ Propojení výuky oborů Molekulární a buněčné biologie a Ochrany a tvorby životního prostředí Reg. č.: CZ.1.07/2.2.00/28.0032 Základy genetiky - Alelové a Genové interakce Intra-alelické interakce = Interakce

Více

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/

Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/ Inovace studia molekulární a buněčné biologie reg. č. CZ.1.07/2.2.00/07.0354 Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky Populační genetika (KBB/PG)

Více

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů

Crossing-over. Synaptonemální komplex. Crossing-over a výměna genetického materiálu. Párování homologních chromosomů Vazba genů Crossing-over V průběhu profáze I meiózy Princip rekombinace genetického materiálu mezi maternálním a paternálním chromosomem Synaptonemální komplex Zlomy a nová spojení chromatinových řetězců

Více

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512

Výukový materiál zpracován v rámci operačního projektu. EU peníze školám. Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Výukový materiál zpracován v rámci operačního projektu EU peníze školám Registrační číslo projektu: CZ.1.07/1.5.00/34.0512 Střední škola ekonomiky, obchodu a služeb SČMSD Benešov, s.r.o. ZDRAVOVĚDA Genetika

Více

Vznik a vývoj života na Zemi

Vznik a vývoj života na Zemi Vznik a vývoj života na Zemi Vznik a vývoj života na Zemi VY_32_INOVACE_02_03_01 Vytvořeno 11/2012 Tento materiál je určen k doplnění výuky předmětu. Zaměřuje se na vznik života na Zemi. Cílem je uvědomit

Více

Genotypy absolutní frekvence relativní frekvence

Genotypy absolutní frekvence relativní frekvence Genetika populací vychází z: Genetická data populace mohou být vyjádřena jako rekvence (četnosti) alel a genotypů. Každý gen má nejméně dvě alely (diploidní organizmy). Součet všech rekvencí alel v populaci

Více

Okruhy otázek ke zkoušce

Okruhy otázek ke zkoušce Okruhy otázek ke zkoušce 1. Úvod do biologie. Vznik života na Zemi. Evoluční vývoj organizmů. Taxonomie organizmů. Původ a vývoj člověka, průběh hominizace a sapientace u předků člověka vyšších primátů.

Více

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu:

Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: Název školy: Střední odborná škola stavební Karlovy Vary Sabinovo náměstí 16, 360 09 Karlovy Vary Autor: Hana Turoňová Název materiálu: VY_32_INOVACE_04_BUŇKA 1_P1-2 Číslo projektu: CZ 1.07/1.5.00/34.1077

Více

Genetika populací. Doposud genetika na úrovni buňky, organizmu

Genetika populací. Doposud genetika na úrovni buňky, organizmu Doposud genetika na úrovni buňky, organizmu - jedinec nás nezajímá - pouze jeho gamety a to jako jedny z mnoha = genofond = soubor všech gamet skupiny jedinců Populace mnoho různých definic - skupina organizmů

Více

Cesta genetiky od hrachu v Brně po kriminálku Miami. Barbora Černá Bolfíková

Cesta genetiky od hrachu v Brně po kriminálku Miami. Barbora Černá Bolfíková Cesta genetiky od hrachu v Brně po kriminálku Miami Barbora Černá Bolfíková bolfikova@ftz.czu.cz Genetika Obor studující dědičnost v živých organismech Základy mu položil Gregor Mendel v 19st. Dynamicky

Více

Molekulární fyziologie genomu

Molekulární fyziologie genomu Molekulární fyziologie genomu Historický úvod Nukleové kyseliny a chromosomy Poškození genomu Systémy reparace Cytogenetika rchitektura buněčného jádra Replikace genomu Exprese genomu Historický úvod 1632-1723

Více

Druhová a mezidruhová hybridizace

Druhová a mezidruhová hybridizace Druhová a mezidruhová hybridizace Obsah Druhová a mezidruhová hybridizace... 1 Obsah... 1 Monohybridní křížení... 1 Dihybridní křížení... 2 Polyhybridní křížení... 3 Souhrn Mendelismus v dědičnosti kvalitativních

Více

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů

Zkoumání přírody. Myšlení a způsob života lidí vyšší nervová činnost odlišnosti člověka od ostatních organismů Předmět: PŘÍRODOPIS Ročník: 9. Časová dotace: 1 hodina týdně Výstup předmětu Rozpracované očekávané výstupy Učivo předmětu Přesahy, poznámky Konkretizované tématické okruhy realizovaného průřezového tématu

Více

Dědičnost na úrovni organismu

Dědičnost na úrovni organismu Dědičnost na úrovni organismu MENDELISTICKÁ GENETIKA (výběr z přednášky) CO JE MENDELISMUS? Mendelismus vysvětluje, jak se kvalitativní znaky dědí a jak se budou chovat v následujících generacích Mendelismus

Více

II. ročník, zimní semestr 1. týden OPAKOVÁNÍ. Úvod do POPULAČNÍ GENETIKY

II. ročník, zimní semestr 1. týden OPAKOVÁNÍ. Úvod do POPULAČNÍ GENETIKY II. ročník, zimní semestr 1. týden 6.10. - 10.10.2008 OPAKOVÁNÍ Úvod do POPULAČNÍ GENETIKY 1 Informace o výuce (vývěska) 2 - nahrazování (zcela výjimečně) - podmínky udělení zápočtu (docházka, prospěch

Více

Mendelistická genetika

Mendelistická genetika Mendelistická genetik Mgr. leš RUD Rozmnožování orgnismů Nepohlvní nový jedinec vzniká z diploidních somtických buněk je geneticky identický s mteřským jedincem Pohlvní nový jedinec vzniká spojením chromozomových

Více

Nondisjunkce v II. meiotickém dělení zygota

Nondisjunkce v II. meiotickém dělení zygota 2. semestr, 1. výukový týden OPAKOVÁNÍ str. 1 OPAKOVÁNÍ VYBRANÉ PŘÍKLADY letního semestru: 1. u Downova a Klinefelterova syndromu, 2. Hodnocení karyotypu s aberací, 3. Mono- a dihybridismus, 4. Vazba genů

Více

Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/ Téma sady: Přírodopis

Název školy: Základní škola a Mateřská škola Žalany. Číslo projektu: CZ. 1.07/1.4.00/ Téma sady: Přírodopis Název školy: Základní škola a Mateřská škola Žalany Číslo projektu: CZ. 1.07/1.4.00/21.3210 Téma sady: Přírodopis Název DUM: VY_32_INOVACE_3C_20_Významní_biologové Vyučovací předmět: Přírodopis Název vzdělávacího

Více

ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA

ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA učební texty Univerzity Karlovy v Praze ZÁKLADY BIOLOGIE a GENETIKY ČLOVĚKA Berta Otová Romana Mihalová KAROLINUM Základy biologie a genetiky člověka doc. RNDr. Berta Otová, CSc. MUDr. Romana Mihalová

Více

- Zákl. metodou studia organismů je křížení (hybridizace)- rozmn. dvou vybraných jedinců, umožnuje vytváření nových odrůd rostlin a živočichů

- Zákl. metodou studia organismů je křížení (hybridizace)- rozmn. dvou vybraných jedinců, umožnuje vytváření nových odrůd rostlin a živočichů Otázka: Základní zákonitosti dědičnosti Předmět: Biologie Přidal(a): Kateřina P. - Zákl. zákonitosti dědičnosti zformuloval Johann Gregor Mendel - Na základě svých pokusů křížením hrachu- popsal a vysvětlil

Více