Univerzita Karlova v Praze Pedagogická fakulta

Rozměr: px
Začít zobrazení ze stránky:

Download "Univerzita Karlova v Praze Pedagogická fakulta"

Transkript

1 Uirzia Karloa Praz Pdagogiká fakla SEMINÁRNÍ PRÁE Z INTEGRÁLNÍHO POČTU NEURČITÝ INTEGRÁL 00/00 IFRIK

2 Zadáí čás I: Urč primiií fk k daým fkím a sao jjih dfiičí iral(y) ( ) ara ( ) ( ) ar Vypraoáí: Igráí poč Při drioáí ypočíáám k daé fki driai (pokd isj), kdžo při igroáí hldám k daé fki akoo fki, krá drioaá dáá dao fki. J-li fk f dfioáa rčiém ořém iral I a dál, j-li dfioáa fk F() a plaí-li šh bodh ohoo iral F f, říkám, ž fk F j primiií fkí k f. Fk F s azýá rčiým igrálm fk f iral I a oo zapisjm F f d, kdy roosi () a () yjadřjí jdo a oéž. Zápis a praé sraě roosi () čm igrál fk f, igroao fkí j f, proměá j igračí proměo a zak j igračím zamékm. Jlikož [ F ] F 0 F, poom F j aké primiií fkí k fki f, čili isj kočé možsí primiiíh fkí ar F a libooo kosa azýám igračí kosao a píšm f d F. Koroljm-li ýsldk igroáí, prodm o drioáím ýsldk a při spráém ýpoč dosam igroao fki f.

3 Přímá igra Přímá igra j lasě požíáí ýsldků difriáího poč, kré shrjm do základí ablky zorů základíh rčiýh igrálů. Igračí kosa píšm ihd po ýpoč igrál, al dohodm s, ž am, kd ýsldk jšě dál bdm praoa, zapíšm igračí kosa až za kočý ar ýsldk. Vzor pro rčiý igrál f d F y 0 d ( R) Fk f : y f y y, N d y d y d a y a ( a > 0, a ) a d a y d y 0 ( ; ) d ( ; ) Podmíky plaosi zor ( ; ) ( ( f )) ( ;0) ( 0; ) ( ; ) ( ; ) ( ; ) d ( ; ) π y a a d 0, kπ, k lé y o o d 0, kπ, k lé π π y d a U k ; k kz y d o U( k, ( k ) π ) kz y d ar (, ) y d ar (, ) y d ara ( ) y d aro ( ) af d a f d [ f ± g ] d f d ± g d

4 Nmůžm-li dýh zorů poží ihd, sažím s igroao fki prai ak, abyhom pak ěkrého zor mohli poží. Njobykljší způsoby pra: a) Sažím s igroao fki prai algbraiký soč (pokd o jd) fkí, jjihž igrály zám, apř.: ( ) d d d d d d d d, ( 0; ) b) J-li igroaá fk zlomk, pozorjm, í-li čial zlomk driaí jmoal, bo j-li jj možo ásobím (případě dělím) číslm růzým od ly a akoý ar prai, apř.: ( ), ( ) d d, ) J-li igroaá fk yjádřiá jako soči do fkí [ f ] f j. prí má ar moiy a drhá j jjí dria, pak j [ ] [ f ] f f d,. d) Změo difriál j možo ěkré igrály přés a jdodhé, apř.: d d d, (, ) Igroáí modo sbsičí Podsaa éo igračí mody j om, ž zadm oo igračí proměo (obyčjě bo z ) za igroao proměo. Noo igračí proměo yjádřím půodí igračí proměo igroaé fki čě difriál d. Tím daý igrál přádím a jdodšší, řším jj oé proměé a ýsldk ahradím oo proměo půodí proměo. Vzah mzi půodí proměo ( ) a oo proměo ( bo z ) j dá sbsičí roií, íž proměá j fkí oé proměé (bo z ): ϕ. Eisj-li iral I spojiá fk f, pak k í isj primiií fk F a pro každé z iral I j F f.

5 Když hodoy fk ϕ iral I bdo iral I, j dfioáa složá fk iral I F[ ϕ ]; za přdpoklad, ž fk má iral driai, má ji i složá fk F[ ϕ ] a o F [ ϕ () ] F ϕ f ϕ f [ ϕ ] ϕ a fk F [ ϕ () ] j primiií fkí k fki f [ ϕ ] ϕ iral I. Jak ž ím z přímé igra j F f d, a dosadím-li ϕ(), dosáám f d f [ ϕ ] ϕ d. Tao roos yplýá z dria složé fk a požíám ji k řší igrálů, když s igroaá fk dá rozloži da čiil. Jd j složo fkí proměé a drhý driaí éo fk. Igroáí modo pr pars Igračí moda pr pars (j. po čásh) ply z praidla o drioáí soči do fkí. Eisjí-li fk a zkráě psáo a majíí ějakém iral spojié dria, plaí zor ( ). Igraí éo roi dosam ( ) d d d a z oho d d. To zor přdpisj posp při igroáí mo pr pars. Igroao fki rozložím a soči ak, aby s igrál fk dal poměrě sado rči (jlép z základíh igrálů, j-li o možé), dál rčím driai fk. alší posp ž j zřjmý z praé sray zor. T čás fk, kro jsm ozačily igrjm (dosam ), čás kro jsm ozačili drijm (dosáám ). Za zaméko roosi apíšm soči a od ěho odčm igrál d, krý ypočíám. Moda j úspěšá hdy, j-li igrál a praé sraě d jdodšší ž igrál a sraě lé d. Někdy j řba émž příkladě posp opakoa.

6 Igra ěkrýh fkí iraioáíh Primiií fk k fki iraioáí í ždy fkí lmárí, j lmárí j ěkrýh případh. Výpoč igrálů iraioáíh fkí lz přés a ýpoč igrálů raioáíh fkí j hdy, když s ám podaří hodo sbsií oé proměé dao iraioáí fki raioalizoa. Jak při ýpoč ěkrýh igrálů iraioáíh fkí mám pospoa, kazj přhld ypoýh igrálů.. a b d a,, b jso kosay, řším sbsií a b m m m. a b d, řším sbsií a b. a b d, řším sbsimi Elroými: a b d, sbsi a pro a > 0, sbsi ( ) pro a < 0, kd j řší roi a b 0, sbsi pro 0, sbsi ( ), má-li ýraz pod odmoio ráé kořy a. d d d. a b přádím a bo a a kadraiký rojčl a úpý čr., ím ž dopím M N. d řším roěž dopěím kadraikého rojčl a a b úpý čr a poom hodo sbsií.. Ozačím-li a b Q, plaí yo zor (igračí kosay jso yháy): d Q a b a a b b b a a pro a 0 a b ara a a Q b d Q b Q Q pro a > 0 pro a < 0 pro a > 0, b 0, > 0 a b pro a > 0, b 0, 0 b b ara pro a > 0, b 0, < 0 Q Q Q Q a b d d d Q Q Q

7 d Q a b Q d a Q Qd a d b d Q Q d a d b d Q Q m p 7. iomiké igrály ( a b ) d Q d Q a d Q d Q, ( m,, p jso raioáí čísla), dají s přés a igrály raioáíh fkí, když aspoň jdo z čísl m m p,, p j číslm lým. a) J-li p číslo lé kladé, pak podl biomiké ěy rozim p m ( a b ) řad, jdolié čly řady yásobím a po člh igrjm; j-li p číslo lé záporé, ajdm jmší spolčý ásobk s s jmoalů zlomků m a a zadm sbsii. m b) J-li lé číslo, požijm sbsi s a b ( s j jmoal zlomk p. Podl oho jaký j po igroaé fk po sbsii, j. kladý, bo záporý, olím další posp, jak j do pod a). m ) J-li p lé číslo, požijm sbsi a b, když jsm přdím ýraz a b praili ykím ; a b a b. Jso jšě další způsoby raioaliza iraioáíh fkí a ýklad o ih ajdm kiz akadmika V. Jaríka, Úod do poč igráího.

8 Řší příkladů Igračí kosa píšm ihd po ýpoč igrál, al dohodm s, ž am, kd ýsldk jšě dál bdm praoa, zapíšm igračí kosa až za kočý ar ýsldk.. ; d d d d d d d. ; d d d d d d d d. d d d d d d 7

9 . ; : d d d d d d d. ; d d d d d d d d

10 . 0; d d d d d d d 7. ; d d d d d d d d d d d d 9

11 . d d d d ( ) ( ) d d d d ( ; ) 9. d d d d d π π > 0, kπ, kπ, k Ζ 0

12 0. ; ar ar ar d d d d d d d d d d d d. [ ] ; d d d. ; ar a a ar d d d d d d

13 . ; ara ara ara ara : ara ara ara d d d d. ; ar ar ar ar ar ar ar d d d d d d d d Nahail owdih z oso, krý přložil čyři díly Laplaoy kihy do agličiy, jdo pozamal: Kdykoli jsm arazil a Laplaů obra ož ám sado yply, byl jsm si jis, ž mám přd sbo hodiy rdé prá, abyh ypil mzry a alzl a dokázal, jak ám o sado yply.

14 Zadáí čás II: Urč primiií fk k daým fkím a sao jjih dfiičí iral(y) 7 Vypraoáí:. { } 0,, R d d d d d d f

15 . { } 0, R d d d d d d d d f

16 . {} d d d d d d d d d d d d d R d f ara ara ara 0 0

17 . ( ( ) ) ara ara ara ara ara ara 7 ; 7 d d d d d d d d d d d d d d d

18 . ara a a a a a a ara, a ara ara : 0 d d d d d d d d d d d d d d d d d d d d d d d 7

19 . ara ara ara ara ara ara 0 0 d d d d d d d d d d d d d d d

20 Lirara ČUPR, K.: Mamaika I. oáů fod při šoě hi rě, ro 9. HLVÁČEK,.: Sbírka řšýh příkladů z yšší mamaiky. SPN, Praha 9. STRUIK,.J.: ějiy mamaiky.orbis, Praha 9. OSH Zadáí čás I:... Igráí poč... Přímá igra... Igroáí modo sbsičí... Igroáí modo pr pars... Igra ěkrýh fkí iraioáíh... Řší příkladů Zadáí čás II: Lirara... 9 OSH

7. Soustavy lineárních diferenciálních rovnic.

7. Soustavy lineárních diferenciálních rovnic. 7 837 4:3 Josf Hkrdla sousavy liárích difrciálích rovic 7 Sousavy liárích difrciálích rovic Příklad 7 3 + 5 + ( ) ξ 3 + ( ) ξ Maicový zápis 3 5 + 3 ( ) ξ ( ) ξ Dfiic 7 (sousava liárích difrciálích rovic

Více

5. Funkce náhodných veličin a náhodných vektorů. 5.1 Spojité náhodné veličiny

5. Funkce náhodných veličin a náhodných vektorů. 5.1 Spojité náhodné veličiny 5 Fc áhodých vliči a áhodých vorů 5 Spojié áhodé vliči V éo čási s bd zabýva problaio rasorac áhodé vliči a ja js již ěolirá zíili v přdchozí Njdřív vd dvě záladí vě o sbsici v igrálí poč Důaz ěcho vě

Více

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení.

Cvičení č. 9 Lineární zobrazení. Jádro a obor hodnot. Matice lineárního zobrazení. Ciční z linání lg 4 Ví Vonák Ciční č 9 Linání zozní Jáo oo hono Mi lináního zozní Linání zozní ini Zozní V U k U V jso kooé oso s nzýá linání jsliž U U Množin šh lináníh zozní U o V znčím V L U říkl ozhoně

Více

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t)

Přechodové jevy RC. Řešení přechodového jevu v obvodech 1. řádu RC. a) varianta nabíjení ideálního kondenzátoru u C (t) čbní xy pro Elkrochnik Ing. Kindrá Alxandr Přchodové jvy Účlm éo knihy j nači sdny řši přchodové jvy v obvodch. řád yp a sznámi j s oricko problmaiko přchodových jvů v obvodch. řádů yp. Přchodové jvy v

Více

ZPĚTNÁ TRANSFORMACE RACIONÁLNĚ LOMENÉ FUNKCE

ZPĚTNÁ TRANSFORMACE RACIONÁLNĚ LOMENÉ FUNKCE Tor řízí I Zěá lcov rformc TEHNIKÁ UNIVERZIT V IBERI Hálkov 6 46 7 brc Z Fkul mchroky mzoborových žýrkých udí Tor uomckého řízí I ZPĚTNÁ TRNSFORE RIONÁNĚ OENÉ FUNKE Sudjí mrály Doc Ig Ovld odrlák Sc Kdr

Více

Úhrada za ústřední vytápění bytů V

Úhrada za ústřední vytápění bytů V Úhrada za úsřdí vyápěí byů V Aoa osldí z sér čláků o poměrovém měří pojdává o vzahu poměrového a zv. absoluího měří pla, a poukazuj a další, zaím méě zámou možos využí poměrovýh dkáorů VIA, krou j korola

Více

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné.

Seznámíte se s pojmem primitivní funkce a neurčitý integrál funkce jedné proměnné. INTEGRÁLNÍ POČET FUNKCÍ JEDNÉ PROMĚNNÉ NEURČITÝ INTEGRÁL NEURČITÝ INTEGRÁL Průvodc studim V kapitol Difrnciální počt funkcí jdné proměnné jst s sznámili s drivováním funkcí Jstliž znát drivac lmntárních

Více

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme

je daná vztahem v 0 Ve fyzice bývá zvykem značit derivaci podle proměnné t (podle času) tečkou, proto píšeme DERIVACE FUNKCE Má zásadí výzam při vyštřováí fukčích závislostí j v matmatic, al také v aplikacích, apř v chmii, fyzic, koomii a jiých vědích oborch Pricip drivováí formulovali v 7 stoltí závisl a sobě

Více

7.2.4 Násobení vektoru číslem

7.2.4 Násobení vektoru číslem 7..4 Násobeí vektor číslem Předpoklady: 703 Tetokrát začeme hed defiicí. Násobek lového vektor číslem k je lový vektor. Násobek elového vektor = B Ačíslem k je vektor C A, přičemž C je bod, pro který platí:

Více

Pružnost a plasticita II CD03

Pružnost a plasticita II CD03 Pržost a plasticita II CD3 Lděk Brdčko VUT Brě Faklta stabí Ústa stabí mchaik tl: 541147368 mail: brdcko.l @ fc.tbr.c http:www.fc.tbr.cstbrdcko.lhtmldistc.htm Obsah přdmět 1. přdáška spolhliost kostrkcí

Více

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů:

Algebraické výrazy. Mnohočleny 1) Sčítání (odčítání) mnohočlenů: Algeicé ýz Výz = ždý zápis, eý je spáě oře podle zásd o zápisech čísel, poěých, ýsledů opecí, hodo fcí. Npř. π,,... Výz číselé s poěo Výzo spi oří loeé ýz s ezáo e jeoeli ( sí ý ede podí, ýz á ssl poze

Více

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb

4.KMITÁNÍ VOLNÉ. Rozlišujeme: 1. nepoddajné vazby - nedovolující pohyb 2. pružně poddajné vazby - dovolují pohyb 4.MITÁNÍ VOLNÉ 4. Lárí ktáí (harocký osclátor v fyzc) Vl časý pohy hotého odu j ktavý pohy. táí ud lárí, jstlž síla, ktrá př výchylc x vrací hotý od do rovovážé polohy, j úěrá výchylc F x (4..) kostata

Více

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim

f(x) f(x 0 ) = a lim x x0 f f(x 0 + h) f(x 0 ) (x 0 ) = lim f(x + h) f(x) (x) = lim KAPITOLA 4: 4 Úvod Derivace fkce [MA-8:P4] Moivačí příklady: okamžiá ryclos, směrice ečy Defiice: Řekeme, že fkce f má v bodě derivaci [ derivaci zleva derivaci zprava ] rov čísl a, jesliže exisje [ x

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant.

k 1 P R 2 A t = 0 c A = c A,0 = A,0 c t Poměr rychlostí vzniku produktů P a R je konstantní a je roven poměru příslušných rychlostních konstant. Ra simulánní Ra bočné (onurnční) Njjnoušší přípa - vě monomolulární ra: ro časovou změnu onnra láy plaí ( + ) + Řšním éo ifrniální rovni pro počáční pomínu R osanm závislos na čas v varu 0,0 ( ) +,0 (analogi

Více

Exponenciální funkce a jejich "využití" - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu.

Exponenciální funkce a jejich využití - A (Tato doplňková pomůcka nemůže v žádném případě nahradit systematickou matematickou přípravu. Josf PUNČOCHÁŘ: Epociálí fukc a ich "využití" ld Epociálí fukc a ich "využití" - A (Tato doplňková pomůcka můž v žádém případě ahradit systmatickou matmatickou přípravu. Epociálí fukc dfiováa obcě vztahm

Více

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti

Odezva na obecnou periodickou budící funkci. Iva Petríková Katedra mechaniky, pružnosti a pevnosti Odezva a obecou periodickou budící fukci Iva Períková Kaedra mechaiky, pružosi a pevosi Obsah Fourierovy řady Odezva a polyharmoickou fukci Odezva a obecou periodickou fukci Odezva a jedokový skok Příklad

Více

Č É Á Ů š Ě ý š š ě ě é ů ř ě š ý š ř ě é ěř ů ř ě ž žů óř é é ů š é ěš š Š š š ě š ž é š ú ý ý ů ě é ý ů ž ě ě ě š ě ž řš é š ě ě ř ě ž ž ě ž é ř Ž ž ý š ř š ě ř řš ž ř š ě ě ř é ř é ě é é é ě é ř š š

Více

Odchylka přímek

Odchylka přímek 734 Odchylka římek Předoklady: 708, 7306 Pedagogická ozámka: Pokd chcete hladký růěh začátk hodiy, je leší dořed ozorit žáky, že do otřeoat zorec ro úhel do ektorů Př : Urči úhel, který sírají ektory (

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti

Fotometrie a radiometrie Důležitou částí kvantitativního popisu optického záření je určování jeho mohutnosti Učbí txt k přášc UFY1 Fotomtri a raiomtri Fotomtri a raiomtri Důlžitou částí kvatitativího popisu optického září j určováí jho mohutosti B, jsou přímo měřitlé, a proto rgtických charaktristik. Samoté vktory

Více

SP2 01 Charakteristické funkce

SP2 01 Charakteristické funkce SP 0 Chararisicé func Chararisicé func pro NP Chararisicé func pro NV Náhld Náhodnou proměnnou, nbo vor, L, n lz popsa funčními chararisiami: F, p, f číslnými chararisiami: E, D, A, A 4 Co s dá z čho spočía:

Více

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají

Teplota. 3 kt. Boltzmanova konstanta k = J K -1. definice teploty. tlaky v obou částech se vyrovnají Teploa laky obou čásech se yroají 1 m1 1 m rooáe budou sředí kieické eergie obou druhů molekul sejé: 1 1 m m 1 1 ěžší molekuly se pohybují pomaleji ež lehčí sejé musí edy bý i objemoé kocerace: 1 když

Více

7. Analytická geometrie

7. Analytická geometrie 7. Aaltická geoetrie Studijí tet 7. Aaltická geoetrie A. Příka v roviě ϕ s A s ϕ s 2 s 1 B p s ϕ = (s1, s 2 ) sěrový vektor přík p orálový vektor přík p sěrový úhel přík p k = tgϕ = s 2 s 1 sěrice příkp

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

x udává hodnotu směrnice tečny grafu

x udává hodnotu směrnice tečny grafu Předmě: Ročník: Vyvořil: Daum: MATEMATIKA ČTVRTÝ Mgr. Tomáš MAŇÁK 5. srpna Název zpracovaného celku: GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE GEOMETRICKÝ VÝZNAM DERIVACE FUNKCE v bodě (ečny grafu funkcí) Je

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

0.1 reseny priklad 4. z

0.1 reseny priklad 4. z Uvadim dva rsn priklad, abch pokud mozno napravil zmak na cvicni. Js o okomnuju pris.. rsn priklad 4. z 9.. Najd sandardni fundamnalni maici pro Cauchho ulohu = 7 + + 5 = Prislusna maic j 7 5 a jji vlasni

Více

Digitální učební materiál

Digitální učební materiál Číslo projku Názv projku Číslo a názv šablony klíčové akvy Dgální učbní marál CZ..07/.5.00/4.080 Zkvalnění výuky prosřdncvím CT / novac a zkvalnění výuky prosřdncvím CT Příjmc podpory Gymnázum, Jvíčko,

Více

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302

( ) 7.3.3 Vzájemná poloha parametricky vyjádřených přímek I. Předpoklady: 7302 7.. Vzájemná oloha aramericky yjádřených římek I Předoklady: 70 Pedagogická oznámka: Tao hodina neobsahje říliš mnoho říkladů. Pos elké čási sdenů je oměrně omalý a časo nesihno sočía ani obsah éo hodiny.

Více

Co bude European accessibility act a k če u poslouží?

Co bude European accessibility act a k če u poslouží? Co bude European accessibility act a k če u poslouží? 1 O če je gover a e a essi ility Přístup á veřej á správa Přístup é a v užitel é služ I tegra e oso se zdravot í postiže í V užívá í služe a rov opráv

Více

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- SLOŽENÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/../.98 IV- Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- SLOŽENÉ ÚROOVÁNÍ

Více

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011

Ekonomika podniku. Katedra ekonomiky, manažerství a humanitních věd Fakulta elektrotechnická ČVUT v Praze. Ing. Kučerková Blanka, 2011 Evropský socálí fod Praha & EU: Ivesujee do vaší budoucos Ekooka podku aedra ekooky, aažersví a huaích věd Fakula elekroechcká ČVUT v Praze Ig. učerková Blaka, 20 Úrokový poče, základy fačí aeaky (BI-EP)

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad.

Cvičení č. 14 Vlastní čísla a vlastní vektory. Charakteristický mnohočlen a charakteristická rovnice. Lokalizace spektra. Spektrální rozklad. Cičení z lineání algeby 7 Ví Vondák Cičení č 4 Vlasní čísla a lasní ekoy Chaakeisický mnohočlen a chaakeisická onice Lokalizace speka Spekální ozklad Vlasní čísla a lasní ekoy maice Nechť je dána čecoá

Více

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek

El2.C. Podle knihy A Blahovec Základy elektrotechniky v příkladech a úlohách zpracoval ing. Eduard Vladislav Kulhánek Spš lko PŘÍKOPY El. viční z základů lkochniky. očník Podl knihy Blahovc Základy lkochniky v příkladch a úlohách zpacoval ing. Eduad ladislav Kulhánk yšší odboná a sřdní půmyslová škola lkochnická Faniška

Více

1.7.4 Těžiště, rovnovážná poloha

1.7.4 Těžiště, rovnovážná poloha 74 ěžiště, rovovážá poloha Předpoklady: 00703 Př : Polož si sešit a jede prst tak, aby espadl Záleží a místě, pod kterým sešit podložíš? Proč? Musíme sešit podložit prstem přesě uprostřed, jiak spade Sešit

Více

Či ost katastrál í h úřadů po digitaliza i katastrál í h ap

Či ost katastrál í h úřadů po digitaliza i katastrál í h ap Či ost katastrál í h úřadů po digitaliza i katastrál í h ap Konference ISSS 2016. du a Základ í íl ) ě it aktuál í stav, kd katastr e ovitostí si e do ře slouží k o hra ě práv vlast íků a ezpeč osti realit

Více

ř ř ň š ž ř ů ř ř ž ř ř ř ř ž š ř ú ž ů ř ř š ž ů ř ř ř ř ř ř ř š ř ž ř š ž ř ř ž ř ž ř ž š ž ž š š ž š ř ř ř ů ž ř ů ž ú ř ř ř š ó ř š ž š ř ř š š š

ř ř ň š ž ř ů ř ř ž ř ř ř ř ž š ř ú ž ů ř ř š ž ů ř ř ř ř ř ř ř š ř ž ř š ž ř ř ž ř ž ř ž š ž ž š š ž š ř ř ř ů ž ř ů ž ú ř ř ř š ó ř š ž š ř ř š š š ř š ř ž Č ú Č ř š ž š Č ú ř ž Í ř ř ř ú ž ď Íž ř ž ř ř ř ř ž ř ž ú š ú ž ž ů ž ž ú ž ř ď ř ř ň š ž ř ů ř ř ž ř ř ř ř ž š ř ú ž ů ř ř š ž ů ř ř ř ř ř ř ř š ř ž ř š ž ř ř ž ř ž ř ž š ž ž š š ž š ř ř ř ů

Více

7.2.3 Násobení vektoru číslem I

7.2.3 Násobení vektoru číslem I 7..3 Násobení ektor číslem I Předpoklad: 70 Př. : Zakresli do sosta sořadnic alespoň dě různá místění ektorů: = 3; = 3;0 = ; a) ( ) ( ) c) ( ) - - - x - Pedagogická poznámka: Předchozí příklad není zbtečný.

Více

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování

INTEGRÁLNÍ POČET. Primitivní funkce. Neurčitý integrál. Pravidla a vzorce pro integrování INTEGRÁLNÍ POČET Primiivní unkce. Neurčiý inegrál Deinice. Jesliže pro unkce F einovné n oevřeném inervlu J plí F pro kžé J, říkáme, že F je primiivní unkcí k unkci n J. Vě. Je-li spojiá n J, pk k ní eisuje

Více

Přijímací zkouška na navazující magisterské studium 2016

Přijímací zkouška na navazující magisterské studium 2016 Přijímací zkouška a avazující magiserské sudium 2016 Sudijí program: Sudijí obor: Maemaika Fiačí a pojisá maemaika Variaa A Řešeí příkladů pečlivě odůvoděe. Věuje pozoros ověřeí předpokladů použiých maemaických

Více

4. Přechodné děje. 4.1 Zapínání střídavého obvodu

4. Přechodné děje. 4.1 Zapínání střídavého obvodu 4. Přhoné ě Exisí-li v lkriké obvo rvky shoné aklova nrgii, noho v obvo robíha ě, ři nihž by vznikaly skokové zěny éo aklované nrgi. To ovš znaná, ž o ob, ky ohází k zěně nrioiké fory nrgi nahroaěné v

Více

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ

FINANČNÍ MATEMATIKA- JEDNODUCHÉ ÚROKOVÁNÍ Projek ŠABLONY NA GVM Gymázium Velké Meziříčí regisračí číslo projeku: CZ..7/.5./34.948 IV-2 Iovace a zkvaliěí výuky směřující k rozvoji maemaické gramoosi žáků sředích škol FINANČNÍ MATEMATIA- JEDNODCHÉ

Více

hledané funkce y jedné proměnné.

hledané funkce y jedné proměnné. DIFERCIÁLNÍ ROVNICE Úvod Df : Občjnou difrniální rovnií dál jn DR rozumím rovnii, v ktré s vsktují driva hldané funk jdné proměnné n n Můž mít pliitní tvar f,,,,, n nbo impliitní tvar F,,,,, Řádm difrniální

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

Skupiny sebeobhájců jako prostředek podpory práv lidí s mentálním postižením

Skupiny sebeobhájců jako prostředek podpory práv lidí s mentálním postižením Seznam příloh Příloha č. 1: Prezentace Sebeobhajování (prezentace) Příloha č. 2: Informační leták sebeobhajování (informační leták) Příloha č. 3: Zápis provedený asistentem BN (zápis) Příloha č. 4: Zápis

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

5. Lineární diferenciální rovnice n-tého řádu

5. Lineární diferenciální rovnice n-tého řádu 5 3.3.8 8:44 Josef Herdla lieárí difereciálí rovice -tého řádu 5. Lieárí difereciálí rovice -tého řádu (rovice s ostatími oeficiety) ( ), a,, a (5.) ( ) ( ) y a y a y ay q L[ y] y a y a y a y, q je spojitá

Více

Variabilita měření a statistická regulace procesu

Variabilita měření a statistická regulace procesu Variabilita měří a statistická rgulac procsu Ig. Darja Noskivičová, CSc. Katdra kotroly a řízí jakosti, VŠB-TU Ostrava Abstrakt: Efktivost využití statistických mtod pro aalýzu a řízí procsů j odvislá

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC

5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC 5.5. KOMPLEXNÍ ODMOCNINA A ŘEŠENÍ KVADRATICKÝCH A BINOMICKÝCH ROVNIC V této kaptole se dozvíte: jak je defováa fukce přrozeá odmoca v kompleím oboru a jaké má vlastost včetě odlšostí od odmocy v reálém

Více

jsou reálná a m, n jsou čísla přirozená.

jsou reálná a m, n jsou čísla přirozená. .7.5 Racioálí a polomické fukce Předpoklad: 704 Pedagogická pozámka: Při opisováí defiic racioálí a polomické fukce si ěkteří studeti stěžovali, že je to příliš těžké. Ve skutečosti je sstém, kterým jsou

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

j k k k i k k k k k j k j j j j ij i k k jk k k jk k j j i

j k k k i k k k k k j k j j j j ij i k k jk k k jk k j j i 1.Stá-la Mat-a od-ho-dla-ně v sl-zách ve- dle ří-že Pá-ně, na te-rém Syn e-í pněl. Je- í du-š v hoř-ém lá-ní slí-če - nou, bez sm-lo - vá-ní do hlu-bn meč o-te - vřel. a f d b f Copyrght by

Více

ř ť ř é ř Š ř š ř ř Č ú Č Č ř ř ó ř é ř ř ř Č Č ú ř Ř Ě ř ť ó ť ř š ť š é ú é š š ř ř é ÁŘ ů š é é š š ů é š é é é š ř ř ů ú é é é ř ř ů é ó é ť é ň é é ú š é é Ý ř ť ř é é ů Ř š ř é é ř ú ř š ř ó é ú

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

Vlny jsou podélné elementy ve a proti směru šíření rozruchu (tlaková vlna v plynovém či vodovodním potrubí)

Vlny jsou podélné elementy ve a proti směru šíření rozruchu (tlaková vlna v plynovém či vodovodním potrubí) Vlnění Mehaniké vlnění Je formo ohyb lákového rosředí Elemeny láky se ři růhod vlny vyhyljí ze svýh rovnovážnýh oloh a ohybjí se (kmiají) kolem nih věšino nearně Změna deformae a naěí (mehaniký rozrh)

Více

7.4.1 Parametrické vyjádření přímky I

7.4.1 Parametrické vyjádření přímky I 741 Paramerické vyjádření přímky I Předpoklady: 7303 Jak jsme vyjadřovali přímky v rovině? X = + D Ke všem bodů z roviny se z bod dosaneme posním C o vekor Pokd je bod na přímce, posováme se o vekor, E

Více

PJS Přednáška číslo 2

PJS Přednáška číslo 2 PJS Přdnáška číslo Jdnoduché lkromagncké přchodné děj Přdpoklady: onsanní rychlos všch očvých srojů (časové konsany dlší nž u l.-mg. dějů) a v důsldku oho frkvnc lkrckých vlčn. Pops sysému bud provdn pomocí

Více

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH

USTÁLENÉ PROUDĚNÍ V OTEVŘENÝCH KORYTECH USTÁLENÉ POUDĚNÍ V OTEVŘENÝCH KOYTECH ovoměré prouděí Charakterstka:. Hloubka vod v kortě, průtočá plocha a průřezová rchlost jsou v každém příčém řezu kostatí.. Čára eerge, vodí hlada a do korta jsou

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

a výška ich prípustného pre kro če nia

a výška ich prípustného pre kro če nia Strana 644 Zberka zákonov č. 71/004 Častka 11 Príloha č. k vyhláške č. 71/004 Z. z. Navyšše prípustné hodnoty ožarena elektromagnetckým po om a výška ch prípustného pre kro če na 1. Na vy šše prí pust

Více

Kapitola 2. Bohrova teorie atomu vodíku

Kapitola 2. Bohrova teorie atomu vodíku Kapitola - - Kapitola Bohrova tori atomu vodíku Obsah:. Klasické modly atomu. Spktrum atomu vodíku.3 Bohrův modl atomu vodíku. Frack-Hrtzův pokus Litratura: [] BEISER A. Úvod do modrí fyziky [] HORÁK Z.,

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Seznam z k ra te k...9 P ře d m lu v a... 11

Seznam z k ra te k...9 P ře d m lu v a... 11 O b s a h Seznam z k ra te k...9 P ře d m lu v a... 11 ČÁST 1 - O becná charakteristika, obecná část občanského práva 1. kapitola - VÝCHODISKA POZNÁNÍ OBČANSKÉHO PRÁVA...17 2. kapitola - VÝVOJ SOUKROM

Více

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku

, která vznikla z matice A vynecháním i-tého řádku a j-tého sloupce nazýváme minorem matice A příslušnému k prvku Cvičeí z ieárí agebry 4 Vít Vodrák Cvičeí č Determiat a vastosti determiatů Výpočet determiat djgovaá a iverzí matice Cramerovo pravido Determiat Defiice: Nechť je reáá čtvercová matice řád Čtvercovo matici,

Více

MECHANICKÉ KMITÁNÍ TLUMENÉ

MECHANICKÉ KMITÁNÍ TLUMENÉ MECHNICKÉ KMITÁNÍ TLUMENÉ V skučnosi s čás nrgi u všch mchanických pohybů přměňuj vlivm řní a odporu prosřdí na plo, a nní dy využia V om případě s vlikosi po sobě jdoucích ampliud zmnšují a kmiající sousava

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět:

5 DISKRÉTNÍ ROZDĚLENÍ PRAVDĚPODOBNOSTI. Čas ke studiu kapitoly: 120 minut. Cíl: Po prostudování tohoto odstavce budete umět: 5 DISKRÉTNÍ ROZDĚLENÍ RAVDĚODOBNOSTI Čas e sudiu aioly: 0 miu Cíl: o rosudováí ohoo odsavce budee umě: charaerizova hyergeomericé rozděleí charaerizova Beroulliho ousy a z ich odvozeé jedolivé yy disréích

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Pera Schreiberová, Ph.D. Osrava 0 Ing. Pera Schreiberová, Ph.D. Vysoká škola báňská Technická

Více

You see the green apple You smell the green apple. Elevato AROMA UV GEL SYSTEM PATENTED TECHNOLOGY PRODUCT CATALOG. Discovered by

You see the green apple You smell the green apple. Elevato AROMA UV GEL SYSTEM PATENTED TECHNOLOGY PRODUCT CATALOG. Discovered by R Yo s h gn ppl Yo smll h gn ppl lvo RM U SYSM PND CHNY PRDUC C Disovd b Po dsilém působní jko výhdní zsopní mikýh spolčnosí NSI, CUCCI Nlé po úspěšné řdě U lů PINUM jsm s ozhodli vd vlsní so vvoři spolčnos,

Více

Á í ú ý í á ů ř ť ů ž á Ú á ů á á ž í á íž á á á í ěž á ú í á í ě í í é á í í í ý í ří ě é í ž í ě ář í í á í á í ě í á ří á í á í í é é í á ří žá é í ě ý Í ří í á íí Ří í é á ě é í é í í áš í ú á í á

Více

6.3.6 Zákon radioaktivních přeměn

6.3.6 Zákon radioaktivních přeměn .3. Zákon radioakivních přeměn Předpoklady: 35 ěkeré nuklidy se rozpadají. Jak můžeme vysvěli, že se čás jádra (například čásice 4 α v jádře uranu 38 U ) oddělí a vyleí ven? lasická fyzika Pokud má čásice

Více

Derivace funkce více proměnných

Derivace funkce více proměnných Derivace funkce více proměnných Pro sudeny FP TUL Marina Šimůnková 21. prosince 2017 1. Parciální derivace. Ve výrazu f(x, y) považujeme za proměnnou jen x a proměnnou y považujeme za konsanu. Zderivujeme

Více

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b

Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je + + + + ) + = = 0 + + Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy 3.1 Zadáí: 3. Sekvečí obvody 1. Navrhěte a realizujte obvod geerující zadaou sekveci. Postupujte ásledově: a) Vytvořte vývojovou tabulku pro zadaou sekveci b) Miimalizujte budící fukce pomocí Karaughovy

Více

Křížová cesta - postní píseň. k k k k. k fk. fj k k. ať mi - lu - jem prav - du, dob - ro věč - né, ty nás příj - mi v lás - ce ne - ko - neč - né.

Křížová cesta - postní píseň. k k k k. k fk. fj k k. ať mi - lu - jem prav - du, dob - ro věč - né, ty nás příj - mi v lás - ce ne - ko - neč - né. T:Slovenso 19,stol.//T:a H: P.Chaloupsý 2018. zastavení Před Pi-lá - tem dra - hý e - žíš sto - jí, do že han-bu, bo - lest mu za - ho - jí? G =60 Sly - ší or - tel Kris-tus, Pán ne - vin - ný a jde tr

Více

Tlumené kmity. Obr

Tlumené kmity. Obr 1.7.. Tluené kiy 1. Uě vysvěli podsau lueného kiavého pohybu.. Vysvěli význa luící síly. 3. Zná rovnici okažié výchylky lueného kiavého pohybu. 4. Uě popsa apliudu luených kiů. 5. Zná konsany charakerizující

Více

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á

č í úř é č úň ž č ň ř č é ř í š ň é č č čí ó ř á é é ů á č é ň é ň á í š ě č áš č ý ř ó š á á á č íó á ň á Ř Á í ří ů á ý á č í í řú ů ě í ě š ř ú á á í úř úň ž ň ř ř í š ň í ó ř á ů á ň ň á í š ě áš ý ř ó š á á á íó á ň á Ř Á í ří ů á ý á í í řú ů ě í ě š ř ú á á ž ň í í í á á ň ř á í ú á Č ó Čá Ó í Č É řžňá ř ž ň ý á ň ó á ž ó ř ú ň á á ť ú á ěí ú

Více

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o

o d e vz d á v e j t ek o m p l e t n í, / n e r o z e b r a n é /, a b y s e t y t o o b d o b í : X e r v e n e c s r p e n z á í 2 0 1 1 U S N E S E N Í Z A S T U P I T E L S T V A Z v e e j n é h o z a s e d á n í Z a s t u p i t e l s t v a o b c e d n e 3 0. 6. 2 0 1 1 p r o s t e

Více

ŠKOLENÍ ŘIDIČŮ

ŠKOLENÍ ŘIDIČŮ ŠKOLENÍ ŘIDIČŮ Novi k a z ě k.. v hláška č. / S. a záko č. / S. Co se ě í? Nová v hláška č. / S. provádějí í pravidla a poze í h ko u ika í h s úči ostí od. led a ruší a ahrazuje v hlášku č. / S. upravují

Více

Téma 6: Indexy a diference

Téma 6: Indexy a diference dexy a dferece Téma 6: dexy a dferece ředáška 9 dvdálí dexy a dferece Základí ojmy Vedle elemetárího statstckého zracováí dat se hromadé jevy aalyzjí tzv. srováváím růzých kazatelů. Statstcký kazatel -

Více

Ý Á Í ŘÁ Č Á

Ý Á Í ŘÁ Č Á Ý Á Í ŘÁ Č Á Ř Á úč ř č ě ů Ť é č ě š ř ž š é é š é é Ý ž š é ó ó ť š ž ů é Ť é ž é ů ú š ň ž ě š ž š é é ř š š ě š ó č é ů š ě ř š ť ť é ř ž ó ř š é Ť é ě š ř ě ř š ř ě ó é é ú ů Á ř é é é č š é ř ž ř

Více

NUMERICKÁ ANALÝZA ŠÍŘENÍ SVĚTELNÝCH PAPRSKŮ V IZOTROPNÍM OPTICKÉM PROSTŘEDÍ

NUMERICKÁ ANALÝZA ŠÍŘENÍ SVĚTELNÝCH PAPRSKŮ V IZOTROPNÍM OPTICKÉM PROSTŘEDÍ NUMERICKÁ ANALÝZA ŠÍŘENÍ SVĚTELNÝCH PAPRSKŮ V IZOTROPNÍM OPTICKÉM PROSTŘEDÍ A Volfová J Nová ČVUT v Paze Fala savebí aea fyzy Čláe se zabývá aalýzo půcho papsů obecě ehomogeím zoopím opcým posřeím V pác

Více

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š...

... 4. 1 P Ř I J Í M A C Í Ř Í Z E N Í ..4 V O Š... 2 0 1 2 / 2 01 V ý r o č n í z p r á v a o č i n n o s t i š š k o l n í k r2o0 1 2 / 2 01 Z p r a c o v a l : I n g. P e t r a M a n s f e l d o v á D o k u m e n t : I I V O S / I / S M 9 8 8 S c h v

Více

ž ě č Č š ě ě ž Ě š š ě Š ě ě ě ž ů ě Ě ě Š č ě č č ž č č Č Ě š Ě š ě ě š ě ě ě ž Ů ě č ě Š Š č ž Ý Óž Ó č ÝŠ č š ú ě š č č č šť Š šť šť Ú ú ů Š Ú ů ú Š ž ě ě ě ů ě ě ě ů ě ě ž ů ě ů ž ž ě č ě č ě č ů

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat.

Seznámíte se s principem integrace substituční metodou a se základními typy integrálů, které lze touto metodou vypočítat. 4 Inegrace subsiucí 4 Inegrace subsiucí Průvodce sudiem Inegrály, keré nelze řeši pomocí základních vzorců, lze velmi časo řeši subsiuční meodou Vzorce pro derivace elemenárních funkcí a věy o derivaci

Více

6 Algoritmy ořezávání a testování polohy

6 Algoritmy ořezávání a testování polohy 6 lgorim ořezáváí a esováí poloh Sudijí íl Teo blok je věová problemaie vzájemé poloh grafikýh primiiv, zejméa poloze bodu vzhledem k mohoúhelíku včeě jedolivýh speifikýh varia jako jsou čřúhelík, jehož

Více

1. Zjistěte, jestli následující formule jsou tautologie. V případě záporné odpovědi určete k dané formuli konjunktivní a disjunktivní normální formu.

1. Zjistěte, jestli následující formule jsou tautologie. V případě záporné odpovědi určete k dané formuli konjunktivní a disjunktivní normální formu. Výrokový počet. Zjistěte, jestli ásledující formule jsou tautologie. V případě záporé odpovědi určete k daé formuli kojuktiví a disjuktiví ormálí formu. i) A C) = B C) = A B) ) ii) A B) = A C C B ) iii)

Více

é Ř é é Č ů ů é é ý ú é ú ú ů ý Á š Ž é ů š ý š Š ý Č Š é ů š Ž š ý ů ý ý ý ý ý ý ý ň ů ýš ý ů Ť ů ý ý é ý Ť ý ý š š é Ž ý é Ž é é š ů ů Ž š é ď ý é ů ů ú ý ž ý ň é Ž é ý ý ý ó ý š ň ý ý ň ý š ý ť ž ý

Více

Slovní úlohy na pohyb

Slovní úlohy na pohyb VY_32_INOVACE_M-Ar 8.,9.09 Sloní úlohy na pohyb Anoace: Praconí li ukazuje žákoi poup řešení loních úloh na pohyb. Jou zde rozebrány ypy, keré mohou naa. Poupy řešení zoroých příkladů jou žákům promínuy

Více

Píseň ke kříž. cestě (I. zastavení - Ježíš souzen) Je- žíš sto - jí před Pi - lá - tem, všech- no se dě - je

Píseň ke kříž. cestě (I. zastavení - Ježíš souzen) Je- žíš sto - jí před Pi - lá - tem, všech- no se dě - je Píseň ke kříž. cestě (. zastavení ežíš souzen) e a kal né rá no, Pan na sva tá k pa lá ci vla da e žíš sto í před Pi lá tem, všech no se dě e a s k s kk b k k k fk k e řo vu s vel kým chvá tá, chva tem,

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Ť č č ó ó č č č ý č ď ý ď š ě ý ň ě ý ú Ó ý ě č ě č Š ě Ž ý ý ě č č Ú č ý Č ě ě Š ř ěťž ě č É ť Č č ř Ž ě š č č ě ě ú č ó ó č č ů ě ř ě š Ž š ě Ž č š ď č ěž ž č ň š ň ň ř č ň č ý š ě ý Č Ó č É Á Ý Š č

Více