Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b"

Transkript

1 Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je ) + = = Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a <, b < + + b Protože pro a < je k= a k = a, je + a + a + + a ) + b + b + + b = + b + b + + b ) = b a + a + a + + a Najděte itu ) ) Protože součet prvích čleů aritmetické poslouposti ) =, je ) ) = = ) = = Najděte itu [ + ] ) Typeset by AMS-TEX

2 Protože platí vztah k= + ) = +, je kk + ) = k= k ) = ) = k + + Najděte itu 4 8 ) Protože ) =, je 4 8 ) )+/ = 3 )+ +/ ) /+/ = Dokažte, že existuje ita poslouposti a = Protože a + = a, je pro 0 posloupost a klesající Protože a > 0, je tato posloupost zdola omezeá Existuje tedy Dokažte, že existuje ita poslouposti a = ) ) ) 4 Protože a + = + posloupost a je zdola omezeá, existuje a Dokažte, že existuje ita poslouposti ) a < a, jedá se o klesající posloupost Protože avíc a > 0, tj a = si + si + + si Protože pro každé, k N platí erovost a +k a = si + ) si + ) ) k si + k) +k <,

3 splňuje posloupost a Cauchy Bolzaovu podmíku, a tedy koverguje Dokažte, že existuje ita poslouposti a = cos! + cos! cos! + ) Protože je + ) = a +k a = + a cos!, platí pro každé, k N erovost cos + )! cos + )! + + ) + ) + ) + 3) + + cos + k)! + k) + k + ) + ) + ) + + ) + 3) k) + k + ) = = + + k + + Proto posloupost a splňuje Cauchy Bolzaovu podmíku, a tedy koverguje Najděte a a a pro posloupost a = ) + 3 ) Uvažujme dvě vybraé poslouposti b 0, = a = + 3 ) a b, = a = Protože b 0, = a b, =, je a = a a = Najděte a a a pro posloupost a = ) + + ) + 3 ) Ozačme b 0, = a = + a b, = a + = dvě poslouposti vybraé z poslouposti + a = 0 a a = a Protože b 0, = a b, = 0, je Najděte a a a pro posloupost a = + + cos π Pro k = 0,,, 3 ozačme b k, = a 4+k = k 4 + k + cos kπ poslouposti a Protože b k, = +cos kπ čtyři vybraé poslouposti z, je a = b, = 0 a a = b 0, = 3

4 Najděte a a a pro posloupost a = + cos π 3 Pro k = 0,, ozačme b k, = a 3+k = 3 + k 3 + k + a Protože b k, = cos kπ Najděte a a a pro posloupost 3 cos kπ 3 tři vybraé poslouposti z poslouposti, je a = b, = b, = a a = b 0, = a = π cos + 3 Pro k = 0,, ozačme b k, = a 3+k = tři vybraé poslouposti z poslouposti a Protože b k, = cos kπ 3 b 0, = Najděte a a a pro posloupost a = 3 + k) kπ cos k) 3, je a = b, = + ) ) + si π 4 b, = a a = Pro k = 0,,, 7 ozačme b k, = a 8+k = ) k + ) 8+k + si kπ 8 + k 4 osm vybraých podposloupostí z poslouposti a Protože b k, = ) k e + si kπ, je a = 4 b 5, = b 7, = e a a = b, = e + Najděte itu + ) Protože ) + = = + +, je + ) = + + = 4

5 Najděte itu + ) ) Protože ) =, je k= k )k = k= k ) = ) = k Najděte itu 3 + ) ) + ) Protože ) + ) = ), je + k= k )k + ) = = k= k + ) = k + ) = Najděte itu a + a, a > 0 Protože pro 0 < a < je a + a = Tedy a = 0, je pro 0 < a < ita a + a = = + a Pro a > je a + a = 0 pro 0 < a < pro a = pro a > a = 0 Pro a = je + a Najděte itu ) 3 + Protože 3 + = 4 ) 3, je = e + + Najděte itu ) + 3 5

6 Protože + 3 = 3 ), je = e 3/ Najděte itu ) Protože + = ) 4+, je = e Najděte itu + 3) ) + 3 Protože + 3) = + 3, je + 3) = + 3 ) + 3 = e6 0 = 0 Najděte itu ) ) Protože =, je = + 3 Tedy ) = = Dokažte kovergeci řady a ajděte její součet ) + Najdeme tý částečý součet této řady Protože s = + 4 +, je s + ) ) = ) + Tedy s = 3 + ) ) + Protože je = 0, je s = s = 3 Dokažte kovergeci řady + ) ) ) 3 + 6

7 a ajděte její součet Částečý součet této řady je Protože je s = = Dokažte kovergeci řady a ajděte její součet Protože platí k= k + ) /) 3 k = + / 3 /3) /3 = 0, je s = 3 s = )3 + ) + 3 )3 + ) = 3 3 ), je tý částečý součet rove 3 + s = k= 3 )3 + ) = 3 k= Tedy s = s = 3 ) = k ) = ) 3k Dokažte kovergeci řady ) a ajděte její součet Nejprve ajdeme tý částečý součet řady Te je s = k ) + k + + k = k= + + = k k + k = k=3 Protože + + = k= k= + + +, je s = s = + = V závislosti a x R zkoumejte kovergeci řady si x 7

8 Protože pro x kπ, k Z, eí si x = 0, řada si x diverguje Pro x = kπ, k Z, je si kπ = 0, a tedy čley řady jsou všechy rovy ule Proto řada x = kπ, k Z, a diverguje pro x kπ, k Z Vyšetřete kovergeci řady si x koverguje pro Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x pro x Pro N je f) = = a Derivace této fukce f x) = je pro x záporá Proto je fukce x ) fx) pro x klesající Tedy podle itegrálího kritéria koverguje řada současě s itegrálem + dx x Protože teto itegrál diverguje, diverguje také řada Vyšetřete kovergeci řady Protože je a = Vyšetřete kovergeci řady = 0, řada diverguje ) + Jedá se o řadu s ezáporými čley Uvažujme fukce fx) =, x, + ) Protože x ) je f 4 x) = x ) 3 < 0 pro x >, je fukce fx) klesající Neboť f) = ) = a, + dx koverguje podle itegrálího kritéria řada současě s itegrálem ) x ) Protože teto itegrál koverguje = /), koverguje také řada Vyšetřete kovergeci řady )

9 Jedá se o řadu s ezáporými čley Pro x > 0 uvažujme fukci fx) = je f) = fukce fx) klesající x x + Pro N 3x + ) je záporá, je x x + ) 3/ současě s ite- + grálem = a Protože derivace této fukce f x) = Podle itegrálího kritéria koverguje řada dx x x + protože teto itegrál koverguje = l + ) ), koverguje také řada Vyšetřete kovergeci řady ) + ) Jedá se o řadu s ezáporými čley Protože koverguje řada ) a = = ) + ), ) + ) současě s řadou apříklad podle itegrálího kritéria), řada V závislosti a x R zkoumejte kovergeci řady si x + ) + ) také diverguje si x si x Protože tato řada diverguje Protože pro každé x R platí erovost si x také pro každé x R řada si x V závislosti a x R zkoumejte kovergeci řady a řada cos x cos x cos x koverguje = ), koverguje Protože pro každé x R platí erovost cos x a řada itegrálího kritéria), koverguje také pro každé x R řada 9 koverguje apříklad podle cos x

10 Vyšetřete kovergeci řady!)! +!) 4! + +!) )! + Protože se jedá o řadu s ezáporými čley, můžeme použít pro zkoumáí její kovergece itího podílového kritéria To dává Tedy řada [ ] )! a + + )! = a + )!! ) = + ) + ) + ) = 4 < )! )! koverguje Vyšetřete kovergeci řady! +! + 3! ! + Jedá se o řadu s ezáporými čley K určeí její kovergece můžeme použít apříklad itího podílového kritéria Protože řada! koverguje Vyšetřete kovergeci řady a + = a! = + )! + ) + +! = ) = e <, ) = + +! + 3 3! ! + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada koverguje Zkoumejte kovergeci řady a + + ) = = ) = e < a + ) + + 3! + 3! ! ! + 0

11 Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada diverguje Zkoumejte kovergeci řady a ) = = 3 ) = 3e > a + ) + +!) +!) 4 + 3!) 9 + +!) + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada [ ] a + + )! + ) = ) a +) =! + = 0 < )! koverguje Vyšetřete kovergeci řady ) 3 5 ) ) + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává a + = +3 ) = < a Tedy daá řada koverguje Zkoumejte kovergeci řady + /) Protože se jedá o řadu s ezáporými čley, můžeme se pokusit zjisti její kovergeci pomocí itího odmociového kritéria To dává Tedy řada a = + / ) koverguje + / ) = + / = <

12 Vyšetřujte kovergeci řady = Protože =, je = 0 Tedy řada diverguje Zkoumejte kovergeci řady = ) ) + Jedá se o řadu s ezáporými čley Její kovergeci můžeme zkoumat pomocí itího odmociového kritéria to dává ) a = = ) = e < + + Tedy řada = ) ) koverguje + Zkoumejte kovergeci řady 3 [ + ) ] 3 Nechť je b = a = 8 3 Protože b ==, eí a = 0 Proto řada diverguje 3[ + ) ] 3 Vyšetřete kovergeci řady ) + cos + cos Hodoty cos, Uvažujme fukce fx) = + x a hledejme její maximum a itervalu + x, Protože f x) = + x) > 0, abývá tato fukce a itervalu, maxima f max = 3 ) ) + cos v bodě x = a miima f mi = 0 pro x = Proto platí erovost 0 + cos 3 ) ) + cos Protože řada koverguje s = 4/5), koverguje také řada 3 + cos Vyšetřete kovergeci řady + =

13 Jedá se o řadu s ezáporými čley Protože + 4 a = = + + ), ) je 3/ + a = Tedy řada koverguje současě s řadou 3/ = = Ale posledí řada koverguje apříklad podle itegrálího kritéria) Tedy koverguje také řada + = Vyšetřete kovergeci řady + + ) +)/ Jedá se o řadu s ezáporými čley K určeí její kovergece použijeme itího odmociového kritéria To dává a = + + / + + ) =, /) protože / = ++) /) =, což se dokáže apříklad l Hospitalovým pravidlem Protože <, řada koverguje + + ) +)/ Zkoumejte kovergeci řady ) + ) Jedá se o alterující řadu Můžeme se pokusit ukázat kovergeci této řady pomocí Leibizova kritéria Ozačme a = + ) Podmíka a + ) = = 0 je splěa Ale posloupost a eí mootoí, protože a > a + a a + < a + Budeme zkoumat řadu, v íž sečteme dva po sobě ásledující čley, tj řadu ) a + a = + 3 ) = 4 3 ) ) To je řada s ezáporými čley Neboť =, koverguje řada ) ) současě s řadou, která diverguje Proto diverguje také řada ) + ) Vyšetřujte kovergeci řady si π 4 3

14 Protože řada diverguje, ekoverguje řada si π absolutě Tato řada eí ai alterující Ale jestliže seskupíme čtyři za sebou jdoucí čley řady, dostaeme si π 4 = ) Řadu jsme zapsali jako alterující řadu a = ) + a, kde > 0 ) Protože a = 0 a posloupost a je klesající, koverguje podle Leibizova kritéria řada ) a = si π 4 eabsolutě Vyšetřujte absolutí a eabsolutí kovergeci řady ) + 00 Protože řada s ezáporými čley + 00 koverguje současě s řadou, která diverguje apříklad podle itegrálího kritéria), ekoverguje daá řada absolutě Nyí budeme zkoumat, zda tato řada koverguje eabsolutě Jedá se o alterující řadu Proto se pokusíme dokázat její kovergeci pomocí Leibizova kritéria Platí a = + 00 = 0 x Musíme ještě ukázat, že posloupost a = je klesající Uvažujme fukce fx) = + 00 x + 00 Její derivace je f 00 x x) = x + 00) Protože je tato derivace pro x > 00 záporá, je fukce x fx) pro x > 00 klesající Ale z toho plye, že také posloupost a je pro > 00 klesající Proto daá řada koverguje Vyšetřujte kovergeci řady ) Protože ) =, eí = 0 Tedy řada ) diverguje V závislosti a parametru x R vyšetřujte absolutí a eabsolutí kovergeci řady ) si x 4

15 Nejprve budeme zkoumat absolutí kovergeci této řady K tomu použijeme itího podílového kritéria Protože a + a = si x + = si x, bude řada kovergovat absolutě pro si x <, tj si x <, a divergovat pro si x >, tj pro si x > Tedy řada koverguje absolutě pro x 4k π, 4k + ) π a diverguje 4 4 k Z pro x 4k + π, 4k + 3 ) π 4 4 k Z Pro x = k + π, k Z, je si x = 4 Pro tato x má daá řada tvar ) Protože = 0 a posloupost a = k + je klesající, řada pro x =, k Z, koverguje podle 4 Leibizova kritéria eabsolutě V závislosti a parametru x R zkoumejte absolutí a eabsolutí kovergeci řady ) x + Pokud x = k, k N, eí k tý čle řady defiová, a tedy pro tato x řada ekoverguje Pro ostatí x R se jedá o alterující řadu Protože x + = 0 a x + > x + + daá řada koverguje pro x / N podle Leibizova kritéria eabsolutě Zkoumejte absolutí a eabsolutí kovergeci řady ) + Protože řada + podle itegrálího kritéria diverguje, ekoverguje daá řada absolutě Jedá se o alterující řadu Proto se pokusíme dokázat kovergeci řady pomocí Leibizova kritéria Pro posloupost a = + je a = 0 Zbývá ukázat, že posloupost a je klesající Uvažujme fukci fx) = x x + ) x Protože derivace této fukce f + 4x x x) = je pro x > 5 x + ) x3/ záporá, je tato fukce pro x > 5 klesající Proto je také pro > 5 klesající posloupost a = f) Zkoumejte absolutí a eabsolutí kovergeci řady ) )/ 00 5

16 Protože + ) Zkoumejte absolutí a eabsolutí kovergeci řady = <, daá řada koverguje absolutě ) Uvažujme fukce ) l x l x x x = exp x Protože x + ) = Protože posloupost Zkoumejte absolutí a eabsolutí kovegreci řady = x = 0, je x + x x = emá itu rovou ule, daá řada diverguje siπ/) l Proto je Protože řada = l diverguje, ekoverguje daá řada absolutě Protože posloupost a = si π má omezeé částečé součty a posloupost b = l a je = 0, koverguje daá řada podle Abelova kritéria eabsolutě l je klesající V závislosti a parametru x R zkoumejte absolutí a eabsolutí kovergeci řady [ ] 3 5 ) ) x 4 6 ) Návod: Použijte erovost 3 5 ) 4 6 ) < Nejprve ajdeme možiuvšech x R, pro která řada koverguje absolutě kritérium dává a + a = x + + = x Limití podílové Tedy řada koverguje absolutě pro x < a diverguje pro x > Pro x = dostaeme altrující řadu ) 3 ) b, kde b = Protože b + = 4 ) b < b, je posloupost b klesající Protože 0 < b <, je b = 0 Proto daá řada koverguje pro x = podle Leibizova kritéria eabsolutě Pro x = dostaeme řadu se záporými čley b Jestliže použijeme Raabeho kritérium dostaeme ) ) a + = a + + = + = < 6

17 Tedy podle Raabeova kritéria řada v bodě x = diverguje Zkoumejte absolutí a eabsolutí kovergeci řady ) si Protože eexistuje ) si daá řada diverguje Vyšetřete absolutí a eabsolutí kovergeci číselé řady ) + Nejprve budeme zkoumat absolutí kovergeci daé řady, tj kovergeci řady + Protože + =, koverguje tato řada současě s řadou Protože tato řada diverguje apříklad podle itegrálího kritéria), diverguje také řada Tedy daá řada ekoverguje absolutě + Protože se jedá o alterující, lze k vyšetřováí její kovergece použít Leibizova kritéria Protože + = 0 a posloupost a = + je klesající, řada ) podle tohoto kritéria + koverguje eabsolutě) Vyšetřete kovergeci číselé řady = l Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x l pro x > Protože její x derivace f x) = l x + x l 3 x < 0 je tato fukce klesající Protože pro =, 3, je f) = a, jsou splěy všechy předpoklady itegrálího kritéria Protože itegrál koverguje = ), koverguje také řada l = + e dx x l x = + dy y Vyšetřete kovergeci číselé řady = l 7

18 Protože se jedá o řadu s ezáporými čley, lze k vyšetřeí její kovergece použít itího odmociového kritéria Protože a = l = 0 <, číselá řada l koverguje = Vyšetřete kovergeci číselé řady = l Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x l x derivace f x) = l x + pro x > Protože její x l x < 0 je tato fukce klesající Protože pro =, 3, je f) = a, jsou splěy všechy předpoklady itegrálího kritéria Protože itegrál diverguje, diverguje také řada l = + e dx x l x = + dy y Vyšetřete kovergeci číselé řady + ) Jedá se o řadu s ezáporými čley Protože =, koverguje daá řada současě + ) s řadou Protože tato řada diverguje apříklad podle itegrálího kritéria), diverguje také řada + ) Vyšetřete kovergeci číselé řady 3 Jedá se o řadu s ezáporými čley Proto lze k určeí její kovergece použít itího podílového a + 3 kritéria Protože = a + ) 3 = >, číselá řada 3 diverguje Vyšetřete kovergeci číselé řady = l + 5 ) Protože se jedá o řadu s ezáporými čley, lze k vyšetřeí její kovergece použít itího odmociového kritéria Protože a = + 5 = 0 e l ) 5 = 0 < 8

19 číselá řada = l + 5 ) koverguje 9

(3n + 1) 3n Příklady pro samostatnou práci

(3n + 1) 3n Příklady pro samostatnou práci ... 4. 5. 6. 0 0 0 a q koverguje pro q < geometrická řada diverguje harmoická řada koverguje srovejte s teleskopickou řadou + + utá podmíka kovergece + 4 + + 7 ití srovávací kritérium, srováí s ití podílové

Více

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace:

Znegujte následující výroky a rozhodněte, jestli platí výrok, nebo jeho negace: . cvičeí Příklady a matematickou idukci Dokažte:.! . Návody:. + +. + i i i i + + 4. + + + + + + + + Operace s možiami.

Více

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0

n=0 a n, n=0 a n = ±. n=0 n=0 a n diverguje k ±, a píšeme n=0 n=0 b n = t. Pak je konvergentní i řada n=0 (a n + b n ) = s + t. n=0 k a n a platí n=0 Nekoečé řady, geometrická řada, součet ekoečé řady Defiice Výraz a 0 a a a, kde {a i } i0 je libovolá posloupost reálých čísel, azveme ekoečou řadou Číslo se azývá -tý částečý součet Defiice Nekoečá řada

Více

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

Masarykova univerzita Přírodovědecká fakulta

Masarykova univerzita Přírodovědecká fakulta Masarykova uiverzita Přírodovědecká fakulta Zuzaa Došlá, Vítězslav Novák NEKONEČNÉ ŘADY Bro 00 c Zuzaa Došlá, Vítězslav Novák, Masarykova uiverzita, Bro, 998, 00 ISBN 80-0-949- 3 Kapitola 3 Řady absolutě

Více

ZS 2018/19 Po 10:40 T5

ZS 2018/19 Po 10:40 T5 Cvičeí - Matematická aalýza ZS 08/9 Po 0:40 T5 Cvičeí 008 Řešte erovice v R: 8, log 3 ( 3+3 0 Částečý součet geometrické řady: pro každé q C, q, a N platí 3 Důsledek: +q +q + +q = q+ q si+si+ +si = si

Více

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1

n 3 lim 3 1 = lim Je vidět, že posloupnost je neklesající, tedy z Leibnize řada konverguje, ( 1) k 1 k=1 3. cvičeí Přílady. (a) (b) (c) ( ) ( 3 ) = Otestujeme itu 3 = 3 = = 0. Je vidět, že posloupost je elesající, tedy z Leibize řada overguje, ( ) Řada overguje podle Leibizova ritéria, ebot je zjevě erostoucí.

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

1 Nekonečné řady s nezápornými členy

1 Nekonečné řady s nezápornými členy Nekoečé řady s ezáporými čley Příklad.. Rozhoděte o kovergeci ásledující řady Řešeí. Pro každé N platí Řada tg. tg. diverguje, a proto podle srovávacího kritéria diverguje také řada tg. Příklad.. Určete

Více

Přednáška 7, 14. listopadu 2014

Přednáška 7, 14. listopadu 2014 Předáška 7, 4. listopadu 204 Uvedeme bez důkazu klasické zobecěí Leibizova kritéria (v ěmž b = ( ) + ). Tvrzeí (Dirichletovo a Abelovo kritérium). Nechť (a ), (b ) R, přičemž a a 2 a 3 0. Pak platí, že.

Více

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln

k(k + 1) = A k + B. s n = n 1 n + 1 = = 3. = ln 2 + ln. 2 + ln Číselé řady - řešeé přílady ČÍSELNÉ ŘADY - řešeé přílady A. Součty řad Vzorové přílady:.. Přílad. Určete součet řady + = + 6 + +.... Řešeí: Rozladem -tého čleu řady a parciálí zlomy dostáváme + = + ) =

Více

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel

11.1 Úvod. Definice : [MA1-18:P11.1] definujeme pro a C: nedefinujeme: Posloupnosti komplexních čísel KAPITOLA : Číselé řdy MA-8:P.] Ozčeí: R {, +} R R C {} C rozšířeá komplexí rovi evlstí hodot, číslo, bod U ε {x C x < ε } pro C, ε > 0 U K {x C x > K } pro K 0 defiujeme pro C: ±, je pro 0, edefiujeme:

Více

5. Posloupnosti a řady

5. Posloupnosti a řady Matematická aalýza I předášky M. Málka cvičeí A. Hakové a R. Otáhalové Zimí semestr 2004/05 5. Poslouposti a řady 5.1 Limita a hromadé hodoty. Mějme posloupost x ) prvků Hausdorffova topologického prostoru

Více

Matematická analýza I

Matematická analýza I 1 Matematická aalýza ity posloupostí, součty ekoečých řad, ity fukce, derivace Matematická aalýza I látka z I. semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia a další 2 Matematická

Více

P. Girg. 23. listopadu 2012

P. Girg. 23. listopadu 2012 Řešeé úlohy z MS - díl prví P. Girg 2. listopadu 202 Výpočet ity poslouposti reálých čísel Věta. O algebře it kovergetích posloupostí.) Necht {a } a {b } jsou kovergetí poslouposti reálých čísel a echt

Více

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a

Kapitola 1. Nekonečné číselné řady. Definice 1.1 Nechť {a n } n=1 je posloupnost reálných čísel. Symbol. a n nebo a 1 + a 2 + a Kpitol Nekoečé číselé řdy Defiice. Nechť { } je posloupost reálých čísel. Symbol ebo + 2 + 3 +... zýváme ekoečou číselou řdou. s = i= i = + 2 +... + zveme -tý částečý součet řdy {s } posloupost částečých

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Mocninné řady - sbírka příkladů

Mocninné řady - sbírka příkladů UNIVERZITA PALACKÉHO V OLOMOUCI PŘÍRODOVĚDECKÁ FAKULTA KATEDRA MATEMATICKÉ ANALÝZY A APLIKACÍ MATEMATIKY BAKALÁŘSKÁ PRÁCE Mocié řady - sbírka příkladů Vedoucí bakalářské práce: Mgr. Iveta Bebčáková, Ph.D.

Více

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ

STEJNOMĚRNÁ KONVERGENCE POSLOUPNOSTI A ŘADY FUNKCÍ STEJNOMĚRNÁ KONVERGENCE Ztím ebylo v těchto textech věováo příliš pozorosti kovergeci fukcí, t jko limit poslouposti ebo součet řdy. Jik byl kovergece poslouposti fukcí ebo řdy brá jko bodová kovergece.

Více

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n.

a logaritmickou funkci a goniometrické funkce. 6.1 Násobení řad. Podívejme se neprve na násobení mnohočlenů x = x x n a y = y y n. Matematická aalýza II předášky M. Málka cvičeí A. Hakové a R. Otáhalové Semestr letí 2005 6. Nekoečé řady fukcí V šesté kapitole pokračujeme ve studiu ekoečých řad. Nejprve odvozujeme základí tvrzeí o

Více

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a }

Nekonečné řady. 1. Nekonečné číselné řady 1.1. Definice. = L L nekonečnou posloupnost reálných čísel. a) Označme { a } Nekoečé řdy. Nekoečé číselé řdy.. Defiice ) Ozčme { } { } = L L ekoečou posloupost reálých čísel.,,,,, Nekoečá číselá řd je součet tvru = + + + L+ + L. Jedotlivá čísl,,, L,, L se zývjí čley řdy, čle obvykle

Více

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte:

6.2. ČÍSELNÉ ŘADY. V této kapitole se dozvíte: 6.2. ČÍSELNÉ ŘADY V této kpitole se dozvíte: jk defiujeme číselou řdu; defiici kovergece řdy jejího součtu; jk vypdá ritmetická, geometrická hrmoická řd jk je to s jejich kovergecí; jk zí utá podmík kovergece

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Opakováí z miulé hodiy: 8 Hodoty poslouposti + se pro blížící se k ekoeču blíží k a to tak že mezi = posloupostí a číslem eexistuje žádá mezera říkáme že

Více

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx

NMAF061, ZS Zápočtová písemná práce skupina A 16. listopad dx NMAF06, ZS 07 08 Zápočtová písemá práce skupia A 6. listopad 07 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Spojitost a limita funkcí jedné reálné proměnné

Spojitost a limita funkcí jedné reálné proměnné Spojitost a limita fukcí jedé reálé proměé Pozámka Vyšetřeí spojitosti fukce je možo podle defiice převést a výpočet limity V dalším se proto soustředíme je problém výpočtu limit Pozámka Limitu fukce v

Více

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad...

Obsah. 1 Mocninné řady Definice a vlastnosti mocninných řad Rozvoj funkce do mocninné řady Aplikace mocninných řad... Obsah 1 Mocié řady 1 1.1 Defiice a vlastosti mociých řad.................... 1 1. Rozvoj fukce do mocié řady...................... 5 1.3 Aplikace mociých řad........................... 10 1 Kapitola 1

Více

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých 9 Limití věty. V aplikacích teorie pravděpodobosti (matematická statistika, metody Mote Carlo se užívají tvrzeí vět o kovergeci posloupostí áhodých veliči. Podle povahy kovergece se limití věty teorie

Více

Infinity series collection of solved and unsolved examples

Infinity series collection of solved and unsolved examples Nekoečé řady sbírka řešeých a eřešeých příkladů Ifiity series collectio of solved ad usolved examples Lucie Jaoušková Bakalářská práce 9 ABSTRAKT Cílem práce bylo vytvořit sbírku řešeých příkladů, která

Více

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N?

Cvičení 1.1. Dokažte Bernoulliovu nerovnost (1 + x) n 1 + nx, n N, x 2. Platí tato nerovnost obecně pro všechna x R a n N? 1 Prví prosemiář Cvičeí 1.1. Dokažte Beroulliovu erovost (1 + x) 1 + x, N, x. Platí tato erovost obecě pro všecha x R a N? Řešeí: (a) Pokud předpokládáme x 1, pak lze řešit klasickou idukcí. Pro = 1 tvrzeí

Více

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n

je konvergentní, právě když existuje číslo a R tak, že pro všechna přirozená <. Číslu a říkáme limita posloupnosti ( ) n n 1 n n n 8.3. Limity ěkterých posloupostí Předpoklady: 83 Pedagogická pozámka: Tuto a tři ásledující hodiy je možé probrat za dvě vyučovací hodiy. V této hodiě je možé vyechat dokazováí limit v příkladu 3. Opakováí

Více

6. Posloupnosti a jejich limity, řady

6. Posloupnosti a jejich limity, řady Moderí techologie ve studiu aplikovaé fyziky CZ..07/..00/07.008 6. Poslouposti a jejich limity, řady Posloupost je speciálí, důležitý příklad fukce. Při praktickém měřeí hodot určité fyzikálí veličiy dostáváme

Více

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) =

I. TAYLORŮV POLYNOM. Taylorovy řady některých funkcí: Pro x R platí: sin(x) = Taylorovy řady ěkterých fukcí: I. TAYLORŮV POLYNOM Pro R platí: si) = 2+ = ), cos) = 2 2+)! = ), 2)! e = =.! Pro, : log + ) = = ) Pro, ) a a R: + ) a = a ) =, kde ) a = a a ) a 2) a +).!. Nalezěte Taylorův

Více

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 2012 / 13 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Funkce. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Fukce RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Limita poslouposti a fukce VY INOVACE_0 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou A) Limita poslouposti Říkáme, že posloupost a je kovergetí,

Více

Petr Šedivý Šedivá matematika

Petr Šedivý  Šedivá matematika LIMITA POSLOUPNOSTI Úvod: Kapitola, kde poprvé arazíme a ekoečo. Argumety posloupostí rostou ade všechy meze a zkoumáme, jak vypadají hodoty poslouposti. V kapitole se sezámíte se základími typy it a početími

Více

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+

Přehled často se vyskytujících limit posloupností. = ek. = 1 lim n n! = = C = α 0+ Neurčité výrzy (lgebr s posloupostmi divergujícími k ekoeču), zvedeí pojmu číselé řdy, defiice POSLOUPNOST ČÁSTEČNÝCH SOUČTŮ, součet řdy, TVRZENÍ O NUTNÉ PODMÍNCE KONVERGENCE ŘADY, kokrétí příkldy výpočtu

Více

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B

MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY MB202. Diferenciální a integrální počet B MASARYKOVA UNIVERZITA FAKULTA INFORMATIKY Sbírka příkladů do cvičeí MB0 Difereciálí a itegrálí počet B jaro 08 Mgr. Jakub Juráek Obsah Polyomy, racioálí lomeé fukce, iterpolace Limity a spojitost fukce

Více

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a)

Budeme pokračovat v nahrazování funkce f(x) v okolí bodu a polynomy, tj. hledat vhodné konstanty c n tak, aby bylo pro malá x a. = f (a), f(x) f(a) Předáša 7 Derivace a difereciály vyšších řádů Budeme poračovat v ahrazováí fuce f(x v oolí bodu a polyomy, tj hledat vhodé ostaty c ta, aby bylo pro malá x a f(x c 0 + c 1 (x a + c 2 (x a 2 + c 3 (x a

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

1 Uzavřená Gaussova rovina a její topologie

1 Uzavřená Gaussova rovina a její topologie 1 Uzavřeá Gaussova rovia a její topologie Podobě jako reálá čísla rozšiřujeme o dva body a, rozšiřujeme také možiu komplexích čísel. Nepřidáváme však dva body ýbrž je jede. Te budeme začit a budeme ho

Více

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) =

NMAF061, ZS Zápočtová písemná práce VZOR 5. ledna e bx2 x 2 e x2. F (b) = NAF61, ZS 17 18 Zápočtová písemá práce VZOR 5. leda 18 Jedotlivé kroky při výpočtech stručě, ale co ejpřesěji odůvoděte. Pokud používáte ějaké tvrzeí, ezapomeňte ověřit splěí předpokladů. Jméo a příjmeí:

Více

Definice obecné mocniny

Definice obecné mocniny Defiice obecé mociy Zavedeí obecé mociy omocí ity číselé oslouosti lze rovést ěkolika zůsoby Níže uvedeý zůsob využívá k defiici eoeciálí fukce itu V dalším budeme otřebovat ásledující dvě erovosti: Lemma

Více

Vlastnosti posloupností

Vlastnosti posloupností Vlstosti posloupostí Nekoečá posloupost je fukce defiová v oboru přirozeých čísel Z toho plye, že kždá posloupost má prví čle (zčíme ), koečé poslouposti mjí i čle posledí Př Vypište prví čtyři čley poslouposti

Více

Zimní semestr akademického roku 2015/ listopadu 2015

Zimní semestr akademického roku 2015/ listopadu 2015 Cvičeí k předmětu BI-ZMA Tomáš Kalvoda Katedra aplikovaé matematiky FIT ČVUT Matěj Tušek Katedra matematiky FJFI ČVUT Obsah Cvičeí Zimí semestr akademického roku 2015/2016 20. listopadu 2015 Předmluva

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti

Matematika 1. Ivana Pultarová Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D Posloupnosti Úvod Opakováí Poslouposti Příklady Matematika 1 Ivaa Pultarová Katedra matematiky, Fakulta stavebí ČVUT v Praze středa 10-11:40 posluchára D-1122 Úvod Opakováí Poslouposti Příklady Úvod Opakováí Poslouposti

Více

I. TAYLORŮV POLYNOM ( 1

I. TAYLORŮV POLYNOM ( 1 I. TAYLORŮV POLYNOM Připomeňme si defiice elemetárích fukcí: a si( = 2+ = ( (2+! b cos( = 2 = ( (2! c e = =!. Dokažte, že Taylorův polyom k-tého řádu v bodě pro fukce f je rove polyomu P : (tyto výsledky

Více

1 Základní pojmy a vlastnosti

1 Základní pojmy a vlastnosti Základí pojmy a vlastosti DEFINICE (Trigoometrický polyom a řada). Fukce k = (a cos(x) + b si(x)) se azývá trigoometrický polyom. Řada = (a cos(x) + b si(x)) se azývá trigoometrická řada. TVRZENÍ (Ortogoalita).

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a) fx) x 5x+4 4 x b) fx) x x +4x+ c) fx) 3x 9x+ x +6x 0 d) fx) x 7x+0 4 x. Řešeí a) Nulové body čitatele a jmeovatele

Více

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost

DUM č. 19 v sadě. 13. Ma-1 Příprava k maturitě a PZ algebra, logika, teorie množin, funkce, posloupnosti, řady, kombinatorika, pravděpodobnost projekt GML Bro Doces DUM č. 9 v sdě. M- Příprv k mturitě PZ lgebr, logik, teorie moži, fukce, poslouposti, řdy, kombitorik, prvděpodobost Autor: Jrmil Šimečková Dtum:.0.0 Ročík: mturití ročíky Aotce DUMu:

Více

3. cvičení - LS 2017

3. cvičení - LS 2017 3. cvičeí - LS 07 Michal Outrata Defiičí obor, průsečíky os, kladost/záporost fukce a fx x 5x+4 4 x b fx x x +4x+ c fx 3x 9x+ x +6x 0. Řešeí a Nulové body čitatele a jmeovatele jsou { 4}. Aby vše bylo

Více

Komplexní čísla. Definice komplexních čísel

Komplexní čísla. Definice komplexních čísel Komplexí čísla Defiice komplexích čísel Komplexí číslo můžeme adefiovat jako uspořádaou dvojici reálých čísel [a, b], u kterých defiujeme operace sčítáí, ásobeí, apod. Stadardě se komplexí čísla zapisují

Více

Matematická analýza III (NMUM201)

Matematická analýza III (NMUM201) Matematická aalýza III (NMUM0) Marti Rmoutil 0. leda 09 Kapitola Nekoečé číselé řady. Základí fakta Mějme posloupost reálých čísel {a } R. Až dosud jsme se při studiu posloupostí zabývali zejméa jejich

Více

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení

MA1: Cvičné příklady posloupnosti, řady, mocninné řady Stručná řešení MA: Cvičé přílady poslouposti, řady, mocié řady Stručá řešeí Prvíčley: a 0, a, a, a 5, a 5 Podezřeí: {a }jerostoucípodívámeseato: a + > a + ++ > + + > + + > + 0 > Dostalijsmeerovostplatouprovšecha,ámstačípro,protopro

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n

NMAF063 Matematika pro fyziky III Zkoušková písemná práce 25. ledna x 1 n Jméo: Příklad 3 Celkem bodů Bodů 8 0 30 Získáo [8 Uvažujte posloupost distribucí f } D R defiovaou jako f [δ kde δ a začí Diracovu distribuci v bodě a Najděte itu δ 0 + δ + této poslouposti aeb spočtěte

Více

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI

6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.1. ČÍSELNÉ POSLOUPNOSTI 6. ČÍSELNÉ POSLOUPNOSTI A ŘADY 6.. ČÍSELNÉ POSLOUPNOSTI V této kpitole se dozvíte: jk defiujeme posloupost reálých ebo komplexích čísel; defiici vlstí evlstí limity poslouposti; defiici pojmů souvisejících

Více

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce

DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ. 1) Pojem funkce, graf funkce DIFERENCIÁLNÍ POČET FUNKCE JEDNÉ PROMĚNNÉ ) Pojem ukce, gra ukce De: Fukcí reálé proměé azýváme pravidlo, které každému reálému číslu D přiřazuje právě jedo reálé číslo y H Toto pravidlo začíme ejčastěji

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY. Bakalářská práce BRNO 2012 PAVLA STARÁ

MASARYKOVA UNIVERZITA ÚSTAV MATEMATIKY A STATISTIKY. Bakalářská práce BRNO 2012 PAVLA STARÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Bakalářská práce BRNO 202 PAVLA STARÁ MASARYKOVA UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA ÚSTAV MATEMATIKY A STATISTIKY Rozklady celých

Více

3. Charakteristiky a parametry náhodných veličin

3. Charakteristiky a parametry náhodných veličin 3. Charateristiy a parametry áhodých veliči Úolem této apitoly je zavést pomocý aparát, terým budeme dále popisovat pomocí jedoduchých prostředů áhodé veličiy. Taovýmto aparátem jsou tzv. parametry ebo

Více

3. Lineární diferenciální rovnice úvod do teorie

3. Lineární diferenciální rovnice úvod do teorie 3 338 8: Josef Hekrdla lieárí difereciálí rovice úvod do teorie 3 Lieárí difereciálí rovice úvod do teorie Defiice 3 (lieárí difereciálí rovice) Lieárí difereciálí rovice -tého řádu je rovice, která se

Více

1. Zjistěte, jestli následující formule jsou tautologie. V případě záporné odpovědi určete k dané formuli konjunktivní a disjunktivní normální formu.

1. Zjistěte, jestli následující formule jsou tautologie. V případě záporné odpovědi určete k dané formuli konjunktivní a disjunktivní normální formu. Výrokový počet. Zjistěte, jestli ásledující formule jsou tautologie. V případě záporé odpovědi určete k daé formuli kojuktiví a disjuktiví ormálí formu. i) A C) = B C) = A B) ) ii) A B) = A C C B ) iii)

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení

Přijímací řízení akademický rok 2012/2013 Kompletní znění testových otázek matematické myšlení Přijímací řízeí akademický rok 0/0 Kompletí zěí testových otázek matematické myšleí Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá odpověď. Které číslo doplíte místo otazíku? 6 8 8 6?.

Více

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE

3. ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI. 3.1 Základní elementární funkce. Nejprve uvedeme základní elementární funkce: KONSTANTNÍ FUNKCE ELEMENTÁRNÍ FUNKCE A POSLOUPNOSTI Základí elemetárí fukce Nejprve uvedeme základí elemetárí fukce: KONSTANTNÍ FUNKCE Nechť a je reálé číslo Potom kostatí fukcí rozumíme fukce f defiovaou předpisem ( f

Více

Posloupnosti a řady. Obsah

Posloupnosti a řady. Obsah Poslouposti řdy Poslouposti řdy Obsh. Poslouposti... 8. Úvod do posloupostí... 8. Aritmetická geometrická posloupost... 9. Limit poslouposti... 9. Řdy... 0. Nekoečá geometrická řd... 0 Strák 7 Poslouposti

Více

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6

STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Středoškolská techika 00 Setkáí a prezetace prací středoškolských studetů a ČVUT STUDIUM MAXWELLOVA ZÁKONA ROZDĚLENÍ RYCHLSOTÍ MOLEKUL POMOCÍ DERIVE 6 Pavel Husa Gymázium Jiřího z Poděbrad Studetská 66/II

Více

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b.

8.1 Úvod. Definice: [MA1-18:P8.1] výpočet obsahu plochy pod grafem funkce. (nejdříve jen pro a < b ) a = x 0 < x 1 <... < x n = b. KPITOL 8: určitý itegrál Riemův itegrál [M-8:P8.] motivce: výpočet oshu plochy pod grfem fukce 8. Úvod ejdříve je pro < ) řekeme, že moži D, je děleím itervlu,, jestliže je koečá, D. Prvky děleí D {x,

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x),

c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je transcendentí. xp 1 (p 1)! (x 1)p (x 2) p... (x d) p e x t f(t) d t = F (0)e x F (x), a) Vyslovte a dokažte Liouvillovu větu o šaté aroximovatelosti algebraického čísla řádu d b) Defiujte Liouvillovo číslo c) Pomocí Liouvillovy věty dokažte, že Liouvillovo číslo je trascedetí 2 a) Defiujte

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA SP Záko velkých čísel, cetrálí lmtí věta PRAVDĚPODOBNOST A STATISTIKA Lbor Žák SP Záko velkých čísel, cetrálí lmtí věta Lbor Žák Kovergece podle pravděpodobost Posloupost áhodých proměých,,,, koverguje

Více

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7

1 Základní matematické pojmy Logika Množiny a jejich zobrazení... 7 Semiář z matematické aalýzy I Čížek Jiří-Kubr Mila 8 září 007 Obsah Základí matematické pojmy Logika Možiy a jejich zobrazeí 7 Reálá a komplexí čísla 6 Poslouposti 7 Základí vlastosti posloupostí 7 Limita

Více

1 Základy Z-transformace. pro aplikace v oblasti

1 Základy Z-transformace. pro aplikace v oblasti Základy Z-trasformace pro aplikace v oblasti číslicového zpracováí sigálů Petr Pollák 9. říja 29 Základy Z-trasformace Teto stručý text slouží k připomeutí základích vlastostí Z-trasformace s jejími aplikacemi

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MATEMATICKÁ ANALÝZA 1. Doc. RNDr. Jaroslav Hančl, CSc. Jan Šustek

OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MATEMATICKÁ ANALÝZA 1. Doc. RNDr. Jaroslav Hančl, CSc. Jan Šustek OSTRAVSKÁ UNIVERZITA PŘÍRODOVĚDECKÁ FAKULTA MATEMATICKÁ ANALÝZA Doc. RNDr. Jaroslav Hačl, CSc. Ja Šustek OSTRAVA 00 0. ÚVOD 0.. INFORMACE O POUŽITÝCH SYMBOLECH Průvodce studiem vstup autora do tetu, specifický

Více

Zkoušková písemná práce č. 1 z předmětu 01MAB3

Zkoušková písemná práce č. 1 z předmětu 01MAB3 Katedra matematiky Fakulty jaderé a fyzikálě ižeýrské ČVUT v Praze Příjmeí a jméo 1 2 3 4 5 BONUS CELKEM (13 bodů) Zkoušková písemá práce č. 1 z předmětu 01MAB3 14. leda 2016, 9:00 11:00 Pro kvadratickou

Více

8. Zákony velkých čísel

8. Zákony velkých čísel 8 Zákoy velkých čísel V této část budeme studovat velm často užívaá tvrzeí o součtech posloupost áhodých velč Nedříve budeme vyšetřovat tvrzeí azývaá souhrě ako slabé zákoy velkých čísel Veškeré úvahy

Více

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti. 10 Cvičeí 10 Statistický soubor. Náhodý výběr a výběrové statistiky aritmetický průměr, geometrický průměr, výběrový rozptyl,...). Bodové odhady parametrů. Itervalové odhady parametrů. Jedostraé a oboustraé

Více

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat

Abstrakt. Co jsou to komplexní čísla? K čemu se používají? Dá se s nimi dělat Komplexí čísla Hoza Krejčí Abstrakt. Co jsou to komplexí čísla? K čemu se používají? Dá se s imi dělat ěco cool? Na tyto a další otázky se a předášce/v příspěvku pokusíme odpovědět. Proč vzikla komplexí

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL

FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL Difereciálí počet fukcí jedé reálé proměé - 6. - PRVNÍ DIFERENCIÁL TAYLORŮV ROZVOJ FUNKCÍ JEDNÉ REÁLNÉ PROMĚNNÉ PRVNÍ DIFERENCIÁL PŘÍKLAD Pomocí věty o prvím difereciálu ukažte že platí přibližá rovost

Více

11. přednáška 16. prosince Úvod do komplexní analýzy.

11. přednáška 16. prosince Úvod do komplexní analýzy. 11. předáška 16. prosice 009 Úvod do komplexí aalýzy. Tři závěrečé předášky předmětu Matematická aalýza III (NMAI056) jsou věováy úvodu do komplexí aalýzy. Což je adeseá formulace eboť časový rozsah ám

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

PŘEDNÁŠKA 2 POSLOUPNOSTI

PŘEDNÁŠKA 2 POSLOUPNOSTI PŘEDNÁŠKA 2 POSLOUPNOSTI 2.1 Zobrazení 2 Definice 1. Uvažujme libovolné neprázdné množiny A, B. Zobrazení množiny A do množiny B je definováno jako množina F uspořádaných dvojic (x, y A B, kde ke každému

Více

M - Posloupnosti VARIACE

M - Posloupnosti VARIACE M - Poslouposti Autor: Mgr Jromír Juřek - http://wwwjrjurekcz Kopírováí jkékoliv dlší využití výukového mteriálu je povoleo pouze s uvedeím odkzu wwwjrjurekcz VARIACE Teto dokumet byl kompletě vytvoře,

Více

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2

Interpolační křivky. Interpolace pomocí spline křivky. f 1. f 2. f n. x... x 2 Iterpolace pomocí sple křvky dáo: bodů v rově úkol: alézt takovou křvku, která daým body prochází y f f 2 f 0 f x0 x... x 2 x x Iterpolace pomocí sple křvky evýhodou polyomálí terpolace změa ěkterého z

Více

Integrální počet II. In: Vojtěch Jarník (author): Integrální počet II. (Czech). Praha: Academia, pp

Integrální počet II. In: Vojtěch Jarník (author): Integrální počet II. (Czech). Praha: Academia, pp Itegrálí počet II Kapitola XI. Riemaův itegrál I: Vojtěch Jarík (author): Itegrálí počet II. (Czech). Praha: Academia, 1984. pp. 436--447. Persistet URL: http://dml.cz/dmlcz/402058 Terms of use: Vojtěch

Více