Posloupnosti a číselné řady. n + 1. n n n n. n n n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b b n) = 1 b

Save this PDF as:
 WORD  PNG  TXT  JPG

Rozměr: px
Začít zobrazení ze stránky:

Download "Posloupnosti a číselné řady. n + 1. n + 1 + n n + 1 + n. n n + 1 + n. = lim. n2 sin n! lim. = 0, je lim. lim. lim. 1 + b + b 2 + + b n) = 1 b"

Transkript

1 Najděte itu Poslouposti a číselé řady ) + Protože + = + x ) + + =, je ) + = = Najděte itu 3 si! + Protože je si! a 3 = 0, je 3 si! = 0 Najděte itu + a + a + + a + b + b, a <, b < + + b Protože pro a < je k= a k = a, je + a + a + + a ) + b + b + + b = + b + b + + b ) = b a + a + a + + a Najděte itu ) ) Protože součet prvích čleů aritmetické poslouposti ) =, je ) ) = = ) = = Najděte itu [ + ] ) Typeset by AMS-TEX

2 Protože platí vztah k= + ) = +, je kk + ) = k= k ) = ) = k + + Najděte itu 4 8 ) Protože ) =, je 4 8 ) )+/ = 3 )+ +/ ) /+/ = Dokažte, že existuje ita poslouposti a = Protože a + = a, je pro 0 posloupost a klesající Protože a > 0, je tato posloupost zdola omezeá Existuje tedy Dokažte, že existuje ita poslouposti a = ) ) ) 4 Protože a + = + posloupost a je zdola omezeá, existuje a Dokažte, že existuje ita poslouposti ) a < a, jedá se o klesající posloupost Protože avíc a > 0, tj a = si + si + + si Protože pro každé, k N platí erovost a +k a = si + ) si + ) ) k si + k) +k <,

3 splňuje posloupost a Cauchy Bolzaovu podmíku, a tedy koverguje Dokažte, že existuje ita poslouposti a = cos! + cos! cos! + ) Protože je + ) = a +k a = + a cos!, platí pro každé, k N erovost cos + )! cos + )! + + ) + ) + ) + 3) + + cos + k)! + k) + k + ) + ) + ) + + ) + 3) k) + k + ) = = + + k + + Proto posloupost a splňuje Cauchy Bolzaovu podmíku, a tedy koverguje Najděte a a a pro posloupost a = ) + 3 ) Uvažujme dvě vybraé poslouposti b 0, = a = + 3 ) a b, = a = Protože b 0, = a b, =, je a = a a = Najděte a a a pro posloupost a = ) + + ) + 3 ) Ozačme b 0, = a = + a b, = a + = dvě poslouposti vybraé z poslouposti + a = 0 a a = a Protože b 0, = a b, = 0, je Najděte a a a pro posloupost a = + + cos π Pro k = 0,,, 3 ozačme b k, = a 4+k = k 4 + k + cos kπ poslouposti a Protože b k, = +cos kπ čtyři vybraé poslouposti z, je a = b, = 0 a a = b 0, = 3

4 Najděte a a a pro posloupost a = + cos π 3 Pro k = 0,, ozačme b k, = a 3+k = 3 + k 3 + k + a Protože b k, = cos kπ Najděte a a a pro posloupost 3 cos kπ 3 tři vybraé poslouposti z poslouposti, je a = b, = b, = a a = b 0, = a = π cos + 3 Pro k = 0,, ozačme b k, = a 3+k = tři vybraé poslouposti z poslouposti a Protože b k, = cos kπ 3 b 0, = Najděte a a a pro posloupost a = 3 + k) kπ cos k) 3, je a = b, = + ) ) + si π 4 b, = a a = Pro k = 0,,, 7 ozačme b k, = a 8+k = ) k + ) 8+k + si kπ 8 + k 4 osm vybraých podposloupostí z poslouposti a Protože b k, = ) k e + si kπ, je a = 4 b 5, = b 7, = e a a = b, = e + Najděte itu + ) Protože ) + = = + +, je + ) = + + = 4

5 Najděte itu + ) ) Protože ) =, je k= k )k = k= k ) = ) = k Najděte itu 3 + ) ) + ) Protože ) + ) = ), je + k= k )k + ) = = k= k + ) = k + ) = Najděte itu a + a, a > 0 Protože pro 0 < a < je a + a = Tedy a = 0, je pro 0 < a < ita a + a = = + a Pro a > je a + a = 0 pro 0 < a < pro a = pro a > a = 0 Pro a = je + a Najděte itu ) 3 + Protože 3 + = 4 ) 3, je = e + + Najděte itu ) + 3 5

6 Protože + 3 = 3 ), je = e 3/ Najděte itu ) Protože + = ) 4+, je = e Najděte itu + 3) ) + 3 Protože + 3) = + 3, je + 3) = + 3 ) + 3 = e6 0 = 0 Najděte itu ) ) Protože =, je = + 3 Tedy ) = = Dokažte kovergeci řady a ajděte její součet ) + Najdeme tý částečý součet této řady Protože s = + 4 +, je s + ) ) = ) + Tedy s = 3 + ) ) + Protože je = 0, je s = s = 3 Dokažte kovergeci řady + ) ) ) 3 + 6

7 a ajděte její součet Částečý součet této řady je Protože je s = = Dokažte kovergeci řady a ajděte její součet Protože platí k= k + ) /) 3 k = + / 3 /3) /3 = 0, je s = 3 s = )3 + ) + 3 )3 + ) = 3 3 ), je tý částečý součet rove 3 + s = k= 3 )3 + ) = 3 k= Tedy s = s = 3 ) = k ) = ) 3k Dokažte kovergeci řady ) a ajděte její součet Nejprve ajdeme tý částečý součet řady Te je s = k ) + k + + k = k= + + = k k + k = k=3 Protože + + = k= k= + + +, je s = s = + = V závislosti a x R zkoumejte kovergeci řady si x 7

8 Protože pro x kπ, k Z, eí si x = 0, řada si x diverguje Pro x = kπ, k Z, je si kπ = 0, a tedy čley řady jsou všechy rovy ule Proto řada x = kπ, k Z, a diverguje pro x kπ, k Z Vyšetřete kovergeci řady si x koverguje pro Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x pro x Pro N je f) = = a Derivace této fukce f x) = je pro x záporá Proto je fukce x ) fx) pro x klesající Tedy podle itegrálího kritéria koverguje řada současě s itegrálem + dx x Protože teto itegrál diverguje, diverguje také řada Vyšetřete kovergeci řady Protože je a = Vyšetřete kovergeci řady = 0, řada diverguje ) + Jedá se o řadu s ezáporými čley Uvažujme fukce fx) =, x, + ) Protože x ) je f 4 x) = x ) 3 < 0 pro x >, je fukce fx) klesající Neboť f) = ) = a, + dx koverguje podle itegrálího kritéria řada současě s itegrálem ) x ) Protože teto itegrál koverguje = /), koverguje také řada Vyšetřete kovergeci řady )

9 Jedá se o řadu s ezáporými čley Pro x > 0 uvažujme fukci fx) = je f) = fukce fx) klesající x x + Pro N 3x + ) je záporá, je x x + ) 3/ současě s ite- + grálem = a Protože derivace této fukce f x) = Podle itegrálího kritéria koverguje řada dx x x + protože teto itegrál koverguje = l + ) ), koverguje také řada Vyšetřete kovergeci řady ) + ) Jedá se o řadu s ezáporými čley Protože koverguje řada ) a = = ) + ), ) + ) současě s řadou apříklad podle itegrálího kritéria), řada V závislosti a x R zkoumejte kovergeci řady si x + ) + ) také diverguje si x si x Protože tato řada diverguje Protože pro každé x R platí erovost si x také pro každé x R řada si x V závislosti a x R zkoumejte kovergeci řady a řada cos x cos x cos x koverguje = ), koverguje Protože pro každé x R platí erovost cos x a řada itegrálího kritéria), koverguje také pro každé x R řada 9 koverguje apříklad podle cos x

10 Vyšetřete kovergeci řady!)! +!) 4! + +!) )! + Protože se jedá o řadu s ezáporými čley, můžeme použít pro zkoumáí její kovergece itího podílového kritéria To dává Tedy řada [ ] )! a + + )! = a + )!! ) = + ) + ) + ) = 4 < )! )! koverguje Vyšetřete kovergeci řady! +! + 3! ! + Jedá se o řadu s ezáporými čley K určeí její kovergece můžeme použít apříklad itího podílového kritéria Protože řada! koverguje Vyšetřete kovergeci řady a + = a! = + )! + ) + +! = ) = e <, ) = + +! + 3 3! ! + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada koverguje Zkoumejte kovergeci řady a + + ) = = ) = e < a + ) + + 3! + 3! ! ! + 0

11 Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada diverguje Zkoumejte kovergeci řady a ) = = 3 ) = 3e > a + ) + +!) +!) 4 + 3!) 9 + +!) + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává Tedy řada [ ] a + + )! + ) = ) a +) =! + = 0 < )! koverguje Vyšetřete kovergeci řady ) 3 5 ) ) + Protože se jedá o řadu s ezáporými čley, lze se pokusit zjistit její kovergeci pomocí itího podílového kritéria To dává a + = +3 ) = < a Tedy daá řada koverguje Zkoumejte kovergeci řady + /) Protože se jedá o řadu s ezáporými čley, můžeme se pokusit zjisti její kovergeci pomocí itího odmociového kritéria To dává Tedy řada a = + / ) koverguje + / ) = + / = <

12 Vyšetřujte kovergeci řady = Protože =, je = 0 Tedy řada diverguje Zkoumejte kovergeci řady = ) ) + Jedá se o řadu s ezáporými čley Její kovergeci můžeme zkoumat pomocí itího odmociového kritéria to dává ) a = = ) = e < + + Tedy řada = ) ) koverguje + Zkoumejte kovergeci řady 3 [ + ) ] 3 Nechť je b = a = 8 3 Protože b ==, eí a = 0 Proto řada diverguje 3[ + ) ] 3 Vyšetřete kovergeci řady ) + cos + cos Hodoty cos, Uvažujme fukce fx) = + x a hledejme její maximum a itervalu + x, Protože f x) = + x) > 0, abývá tato fukce a itervalu, maxima f max = 3 ) ) + cos v bodě x = a miima f mi = 0 pro x = Proto platí erovost 0 + cos 3 ) ) + cos Protože řada koverguje s = 4/5), koverguje také řada 3 + cos Vyšetřete kovergeci řady + =

13 Jedá se o řadu s ezáporými čley Protože + 4 a = = + + ), ) je 3/ + a = Tedy řada koverguje současě s řadou 3/ = = Ale posledí řada koverguje apříklad podle itegrálího kritéria) Tedy koverguje také řada + = Vyšetřete kovergeci řady + + ) +)/ Jedá se o řadu s ezáporými čley K určeí její kovergece použijeme itího odmociového kritéria To dává a = + + / + + ) =, /) protože / = ++) /) =, což se dokáže apříklad l Hospitalovým pravidlem Protože <, řada koverguje + + ) +)/ Zkoumejte kovergeci řady ) + ) Jedá se o alterující řadu Můžeme se pokusit ukázat kovergeci této řady pomocí Leibizova kritéria Ozačme a = + ) Podmíka a + ) = = 0 je splěa Ale posloupost a eí mootoí, protože a > a + a a + < a + Budeme zkoumat řadu, v íž sečteme dva po sobě ásledující čley, tj řadu ) a + a = + 3 ) = 4 3 ) ) To je řada s ezáporými čley Neboť =, koverguje řada ) ) současě s řadou, která diverguje Proto diverguje také řada ) + ) Vyšetřujte kovergeci řady si π 4 3

14 Protože řada diverguje, ekoverguje řada si π absolutě Tato řada eí ai alterující Ale jestliže seskupíme čtyři za sebou jdoucí čley řady, dostaeme si π 4 = ) Řadu jsme zapsali jako alterující řadu a = ) + a, kde > 0 ) Protože a = 0 a posloupost a je klesající, koverguje podle Leibizova kritéria řada ) a = si π 4 eabsolutě Vyšetřujte absolutí a eabsolutí kovergeci řady ) + 00 Protože řada s ezáporými čley + 00 koverguje současě s řadou, která diverguje apříklad podle itegrálího kritéria), ekoverguje daá řada absolutě Nyí budeme zkoumat, zda tato řada koverguje eabsolutě Jedá se o alterující řadu Proto se pokusíme dokázat její kovergeci pomocí Leibizova kritéria Platí a = + 00 = 0 x Musíme ještě ukázat, že posloupost a = je klesající Uvažujme fukce fx) = + 00 x + 00 Její derivace je f 00 x x) = x + 00) Protože je tato derivace pro x > 00 záporá, je fukce x fx) pro x > 00 klesající Ale z toho plye, že také posloupost a je pro > 00 klesající Proto daá řada koverguje Vyšetřujte kovergeci řady ) Protože ) =, eí = 0 Tedy řada ) diverguje V závislosti a parametru x R vyšetřujte absolutí a eabsolutí kovergeci řady ) si x 4

15 Nejprve budeme zkoumat absolutí kovergeci této řady K tomu použijeme itího podílového kritéria Protože a + a = si x + = si x, bude řada kovergovat absolutě pro si x <, tj si x <, a divergovat pro si x >, tj pro si x > Tedy řada koverguje absolutě pro x 4k π, 4k + ) π a diverguje 4 4 k Z pro x 4k + π, 4k + 3 ) π 4 4 k Z Pro x = k + π, k Z, je si x = 4 Pro tato x má daá řada tvar ) Protože = 0 a posloupost a = k + je klesající, řada pro x =, k Z, koverguje podle 4 Leibizova kritéria eabsolutě V závislosti a parametru x R zkoumejte absolutí a eabsolutí kovergeci řady ) x + Pokud x = k, k N, eí k tý čle řady defiová, a tedy pro tato x řada ekoverguje Pro ostatí x R se jedá o alterující řadu Protože x + = 0 a x + > x + + daá řada koverguje pro x / N podle Leibizova kritéria eabsolutě Zkoumejte absolutí a eabsolutí kovergeci řady ) + Protože řada + podle itegrálího kritéria diverguje, ekoverguje daá řada absolutě Jedá se o alterující řadu Proto se pokusíme dokázat kovergeci řady pomocí Leibizova kritéria Pro posloupost a = + je a = 0 Zbývá ukázat, že posloupost a je klesající Uvažujme fukci fx) = x x + ) x Protože derivace této fukce f + 4x x x) = je pro x > 5 x + ) x3/ záporá, je tato fukce pro x > 5 klesající Proto je také pro > 5 klesající posloupost a = f) Zkoumejte absolutí a eabsolutí kovergeci řady ) )/ 00 5

16 Protože + ) Zkoumejte absolutí a eabsolutí kovergeci řady = <, daá řada koverguje absolutě ) Uvažujme fukce ) l x l x x x = exp x Protože x + ) = Protože posloupost Zkoumejte absolutí a eabsolutí kovegreci řady = x = 0, je x + x x = emá itu rovou ule, daá řada diverguje siπ/) l Proto je Protože řada = l diverguje, ekoverguje daá řada absolutě Protože posloupost a = si π má omezeé částečé součty a posloupost b = l a je = 0, koverguje daá řada podle Abelova kritéria eabsolutě l je klesající V závislosti a parametru x R zkoumejte absolutí a eabsolutí kovergeci řady [ ] 3 5 ) ) x 4 6 ) Návod: Použijte erovost 3 5 ) 4 6 ) < Nejprve ajdeme možiuvšech x R, pro která řada koverguje absolutě kritérium dává a + a = x + + = x Limití podílové Tedy řada koverguje absolutě pro x < a diverguje pro x > Pro x = dostaeme altrující řadu ) 3 ) b, kde b = Protože b + = 4 ) b < b, je posloupost b klesající Protože 0 < b <, je b = 0 Proto daá řada koverguje pro x = podle Leibizova kritéria eabsolutě Pro x = dostaeme řadu se záporými čley b Jestliže použijeme Raabeho kritérium dostaeme ) ) a + = a + + = + = < 6

17 Tedy podle Raabeova kritéria řada v bodě x = diverguje Zkoumejte absolutí a eabsolutí kovergeci řady ) si Protože eexistuje ) si daá řada diverguje Vyšetřete absolutí a eabsolutí kovergeci číselé řady ) + Nejprve budeme zkoumat absolutí kovergeci daé řady, tj kovergeci řady + Protože + =, koverguje tato řada současě s řadou Protože tato řada diverguje apříklad podle itegrálího kritéria), diverguje také řada Tedy daá řada ekoverguje absolutě + Protože se jedá o alterující, lze k vyšetřováí její kovergece použít Leibizova kritéria Protože + = 0 a posloupost a = + je klesající, řada ) podle tohoto kritéria + koverguje eabsolutě) Vyšetřete kovergeci číselé řady = l Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x l pro x > Protože její x derivace f x) = l x + x l 3 x < 0 je tato fukce klesající Protože pro =, 3, je f) = a, jsou splěy všechy předpoklady itegrálího kritéria Protože itegrál koverguje = ), koverguje také řada l = + e dx x l x = + dy y Vyšetřete kovergeci číselé řady = l 7

18 Protože se jedá o řadu s ezáporými čley, lze k vyšetřeí její kovergece použít itího odmociového kritéria Protože a = l = 0 <, číselá řada l koverguje = Vyšetřete kovergeci číselé řady = l Jedá se o řadu s ezáporými čley Uvažujme fukci fx) = x l x derivace f x) = l x + pro x > Protože její x l x < 0 je tato fukce klesající Protože pro =, 3, je f) = a, jsou splěy všechy předpoklady itegrálího kritéria Protože itegrál diverguje, diverguje také řada l = + e dx x l x = + dy y Vyšetřete kovergeci číselé řady + ) Jedá se o řadu s ezáporými čley Protože =, koverguje daá řada současě + ) s řadou Protože tato řada diverguje apříklad podle itegrálího kritéria), diverguje také řada + ) Vyšetřete kovergeci číselé řady 3 Jedá se o řadu s ezáporými čley Proto lze k určeí její kovergece použít itího podílového a + 3 kritéria Protože = a + ) 3 = >, číselá řada 3 diverguje Vyšetřete kovergeci číselé řady = l + 5 ) Protože se jedá o řadu s ezáporými čley, lze k vyšetřeí její kovergece použít itího odmociového kritéria Protože a = + 5 = 0 e l ) 5 = 0 < 8

19 číselá řada = l + 5 ) koverguje 9

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1

n=1 ( Re an ) 2 + ( Im a n ) 2 = 0 Im a n = Im a a n definujeme předpisem: n=1 N a n = a 1 + a 2 +... + a N. n=1 [M2-P9] KAPITOLA 5: Číselé řady Ozačeí: R, + } = R ( = R) C } = C rozšířeá komplexí rovia ( evlastí hodota, číslo, bod) Vsuvka: defiujeme pro a C: a ± =, a = (je pro a 0), edefiujeme: 0,, ± a Poslouposti

Více

ŘADY Jiří Bouchala a Petr Vodstrčil

ŘADY Jiří Bouchala a Petr Vodstrčil ŘADY Jiří Bouchala a Petr Vodstrčil Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 2. století (reg. č. CZ..07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská Techická

Více

Číselné řady. 1 m 1. 1 n a. m=2. n=1

Číselné řady. 1 m 1. 1 n a. m=2. n=1 Číselé řady Úvod U řad budeme řešit dva typy úloh: alezeí součtu a kovergeci. Nalezeí součtu (v případě, že řada koverguje) je obecě mohem těžší, elemetárě lze sečíst pouze ěkolik málo typů řad. Součet

Více

Infinity series collection of solved and unsolved examples

Infinity series collection of solved and unsolved examples Nekoečé řady sbírka řešeých a eřešeých příkladů Ifiity series collectio of solved ad usolved examples Lucie Jaoušková Bakalářská práce 9 ABSTRAKT Cílem práce bylo vytvořit sbírku řešeých příkladů, která

Více

z možností, jak tuto veličinu charakterizovat, je určit součet

z možností, jak tuto veličinu charakterizovat, je určit součet 6 Charakteristiky áhodé veličiy. Nejdůležitější diskrétí a spojitá rozděleí. 6.1. Číselé charakteristiky áhodé veličiy 6.1.1. Středí hodota Uvažujme ejprve diskrétí áhodou veličiu X s rozděleím {x }, {p

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu.

Seznámíte se s pojmem Riemannova integrálu funkce jedné proměnné a geometrickým významem tohoto integrálu. 2. URČITÝ INTEGRÁL 2. Určitý itegrál Průvodce studiem V předcházející kapitole jsme se sezámili s pojmem eurčitý itegrál, který daé fukci přiřazoval opět fukci (přesěji možiu fukcí). V této kapitole se

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

Diskrétní matematika

Diskrétní matematika Diskrétí matematika Biárí relace, zobrazeí, Teorie grafů, Teorie pravděpodobosti Diskrétí matematika látka z I semestru iformatiky MFF UK Zpracovali: Odřej Keddie Profat, Ja Zaatar Štětia Obsah Biárí relace2

Více

PříkladykecvičenízMMA ZS2013/14

PříkladykecvičenízMMA ZS2013/14 PříkladykecvičeízMMA ZS203/4 (středa, M3, 9:50 :20) Pozámka( ):Pokudebudeuvedeojiakbudemevždypracovatsprostoryadtělesem T= R.Ve všech ostatích případech(tj. při T = C), bude těleso explicitě specifikováo.

Více

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU

SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU SEMESTRÁLNÍ PRÁCE Z PŘEDMĚTU Matematické modelováí (KMA/MM Téma: Model pohybu mraveců Zdeěk Hazal (A8N18P, zhazal@sezam.cz 8/9 Obor: FAV-AVIN-FIS 1. ÚVOD Model byl převzat z kihy Spojité modely v biologii

Více

Posloupnosti na střední škole Bakalářská práce

Posloupnosti na střední škole Bakalářská práce MASARYKOVA UNIVERZITA V BRNĚ Přírodovědecká fkult Ktedr mtemtiky Poslouposti středí škole Bklářská práce Bro 00 Kteři Rábová Prohlášeí Prohlšuji, že tto bklářská práce je mým původím utorským dílem, které

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Základní požadavky a pravidla měření

Základní požadavky a pravidla měření Základí požadavky a pravidla měřeí Základí požadavky pro správé měřeí jsou: bezpečost práce teoretické a praktické zalosti získaé přípravou a měřeí přesost a spolehlivost měřeí optimálí orgaizace průběhu

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice

Matematika I. Název studijního programu. RNDr. Jaroslav Krieg. 2014 České Budějovice Matematika I Název studijího programu RNDr. Jaroslav Krieg 2014 České Budějovice 1 Teto učebí materiál vzikl v rámci projektu "Itegrace a podpora studetů se specifickými vzdělávacími potřebami a Vysoké

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

3.1 OBSAHY ROVINNÝCH ÚTVARŮ

3.1 OBSAHY ROVINNÝCH ÚTVARŮ 3 OBSAHY ROVINNÝCH ÚTVARŮ Představa obsahu roviého obrazce byla pro lidi důležitá od pradávých dob ať již se jedalo o velikost a přeměu polí či apříklad rozměry základů obydlí Úlohy a výpočet obsahu základích

Více

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ

VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ Vlastosti úloh celočíselého programováí VLASTNOSTI ÚLOH CELOČÍSELNÉHO PROGRAMOVÁNÍ PRINCIP ZESILOVÁNÍ NEROVNOSTÍ A ZÁKLADNÍ METODY. METODA VĚTVENÍ A HRANIC. TYPY ÚLOH 1. Úloha lieárího programováí: max{c

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti 1 Základí statistické zpracováí dat 1.1 Základí pojmy Populace (základí soubor) je soubor objektů (statistických jedotek), který je vymeze jejich výčtem ebo charakterizací jejich vlastostí, může být proto

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n,

1. Nakreslete všechny kostry následujících grafů: nemá žádnou kostru, roven. roven n, DSM2 Cv 7 Kostry grafů Defiice kostry grafu: Nechť G = V, E je souvislý graf. Kostrou grafu G azýváme každý jeho podgraf, který má stejou možiu vrcholů a je zároveň stromem. 1. Nakreslete všechy kostry

Více

Nekonečné číselné řady. January 21, 2015

Nekonečné číselné řady. January 21, 2015 Nekonečné číselné řady January 2, 205 IMA 205 Příklad 0 = 0 + 0 +... + 0 +... =? n= IMA 205 Příklad n= n 2 + n = 2 + 6 + 2 +... + n 2 +... =? + n s = 2 s 2 = 2 3... s 3 = 3 4 IMA 205 Příklad (pokr.) =

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich.

5 Funkce. jsou si navzájem rovny právě tehdy, když se rovnají jejich. Fukce. Základí pojmy V kpt.. jsme mluvili o zobrazeí mezi možiami AB., Připomeňme, že se jedá o libovolý předpis, který každému prvku a A přiřadí ejvýše jede prvek b B. Jsou-li A, B číselé možiy, azýváme

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková Základy statistiky Zpracováí pokusých dat Praktické příklady Kristia Somerlíková Data v biologii Zak ebo skupia zaků popisuje přírodí jevy, úlohou výzkumíka je vybrat takovou skupiu zaků, které charakterizují

Více

1.1 Definice a základní pojmy

1.1 Definice a základní pojmy Kaptola. Teore děltelost C. F. Gauss: Matematka je královou všech věd a teore čísel je králova matematky. Základím číselým oborem se kterým budeme v této kaptole pracovat jsou celá čísla a pouze v ěkterých

Více

a n (z z 0 ) n, z C, (1) n=0

a n (z z 0 ) n, z C, (1) n=0 Mocniné řady Nechť 0, a 0, a, a 2,... jsou konečná komplexní čísla. Pak řadu funkcí a n ( 0 ) n, C, () naýváme mocninou řadou. Číslo 0 koeficienty mocniné řady. Onačme dále: se naývá střed mocniné řady,

Více

Cvičení z termomechaniky Cvičení 5.

Cvičení z termomechaniky Cvičení 5. Příklad V kompresoru je kotiuálě stlačová objemový tok vzduchu [m 3.s- ] o teplotě 20 [ C] a tlaku 0, [MPa] a tlak 0,7 [MPa]. Vypočtěte objemový tok vzduchu vystupujícího z kompresoru, jeho teplotu a příko

Více

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc Statistika Statistické fukce v tabulkových kalkulátorech MSO Excel a OO.o Calc Základí pojmy tabulkových kalkulátorů Cílem eí vyložit pojmy tabulkových kalkulátorů, ale je defiovat pojmy vyskytující se

Více

Vážeí zákazíci dovolujeme si Vás upozorit že a tuto ukázku kihy se vztahují autorská práva tzv. copyright. To zameá že ukázka má sloužit výhradì pro osobí potøebu poteciálího kupujícího (aby èteáø vidìl

Více

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb:

Laboratorní práce č. 10 Úloha č. 9. Polarizace světla a Brownův pohyb: ruhlář Michal 8.. 5 Laboratorí práce č. Úloha č. 9 Polarizace světla a Browův pohyb: ϕ p, C 4% 97,kPa Úkol: - Staovte polarizačí schopost daého polaroidu - Určete polarimetrem úhel stočeí kmitavé roviy

Více

Mendelova univerzita v Brně Statistika projekt

Mendelova univerzita v Brně Statistika projekt Medelova uverzta v Brě Statstka projekt Vypracoval: Marek Hučík Obsah 1. Úvod... 3. Skupové tříděí... 3 o Data:... 3 o Počet hodot:... 3 o Varačí rozpětí:... 3 o Počet tříd:... 4 o Šířka tervalu:... 4

Více

7. P o p i s n á s t a t i s t i k a

7. P o p i s n á s t a t i s t i k a 7. P o p i s á s t a t i s t i k a 7.. Pozámka: Při statistickém zkoumáí ás zajímají hromadé jevy a procesy, u kterých zkoumáme zákoitosti, které se projevují u velkého počtu prvků. Prvky zkoumáí azýváme

Více

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení.,

u, v, w nazýváme číslo u.( v w). Chyba! Chybné propojení., Def: Vetorovým součiem vetorů u =(u, u, u 3 ) v = (v, v, v 3 ) zýváme vetor u v = (u v 3 u 3 v, u 3 v u v 3, u v u v ) Vět: Pro vetory i, j, ortoormálí báze pltí i i = j = i, i = j Vět: Nechť u v, w, jsou

Více

Limita a spojitost funkce

Limita a spojitost funkce Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu

Více

Metody zkoumání závislosti numerických proměnných

Metody zkoumání závislosti numerických proměnných Metody zkoumáí závslost umerckých proměých závslost pevá (fukčí) změě jedoho zaku jedozačě odpovídá změa druhého zaku (podle ějakého fukčího vztahu) (matematka, fyzka... statstcká (volá) změám jedé velčy

Více

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl

Střední průmyslová škola sdělovací techniky Panská 3 Praha 1 Jaroslav Reichl Středí průmyslová škol sdělovcí techiky Pská 3 Prh Jroslv Reichl, 00 Jroslv Reichl OBSAH Poslouposti, Jroslv Reichl, 00 Poslouposti jejich vlstosti 3 Pojem posloupost 3 Připomeutí fukcí 3 Defiice poslouposti

Více

11. Časové řady. 11.1. Pojem a klasifikace časových řad

11. Časové řady. 11.1. Pojem a klasifikace časových řad . Časové řad.. Pojem a klasfkace časových řad Specfckým statstckým dat jsou časové řad pomocí chž můžeme zkoumat damku jevů v čase. Časovou řadou (damcká řada, vývojová řada) rozumíme v čase uspořádaé

Více

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF

ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Úloha číského listooše ÚLOHA ČÍNSKÉHO LISTONOŠE, MATEMATICKÉ MODELY PRO ORIENTOVANÝ A NEORIENTOVANÝ GRAF Uvažujme situaci, kdy exstuje ějaký výchozí uzel a další uzly spojeé hraami (může jít o cesty, ulice

Více

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t. Techická aalýza Techická aalýza z vývoje cey a obchodovaých objemů akcie odvozuje odhad budoucího vývoje cey. Dalšími metodami odhadu vývoje ce akcií jsou apř. fudametálí aalýza (zkoumá podrobě účetictví

Více

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá

1. Rozdělení četností a grafické znázornění Předpokládejme, že při statistickém šetření nás zajímá jediný statistický znak x, který nabývá Statitická šetřeí a zpracováí dat Statitika e věda o metodách běru, zpracováí a vyhodocováí tatitických údaů. Statitika zkoumá polečeké, přírodí, techické a. evy vždy a dotatečě rozáhlém ouboru údaů. Matematická

Více

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde

POLYNOM. 1) Základní pojmy. Polynomem stupně n nazveme funkci tvaru. a se nazývají koeficienty polynomu. 0, n N. Čísla. kde POLYNOM Zákldí pojmy Polyomem stupě zveme fukci tvru y ( L +, P + + + + kde,,, R,, N Čísl,,, se zývjí koeficiety polyomu Číslo c zveme kořeem polyomu P(, je-li P(c výrz (-c pk zýváme kořeový čiitel Vlstosti

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava-

Okruhy z učiva středoškolské matematiky pro přípravu ke studiu na VŠB TU Ostrava- Okruhy z učiv středoškolské mtemtiky pro příprvu ke studiu VŠB TU Ostrv- I Zákldí poztky z logistiky teorie moži: výrok prvdivostí hodot výroku, egce, disjukce, kojukce, implikce, ekvivlece, složeé výroky,

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

Interval spolehlivosti pro podíl

Interval spolehlivosti pro podíl Iterval polehlivoti pro podíl http://www.caueweb.org/repoitory/tatjava/cofitapplet.html Náhodý výběr Zkoumaý proce chápeme jako áhodou veličiu určitým ám eámým roděleím a měřeá data jako realiace této

Více

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh:

PRACOVNÍ SEŠIT POSLOUPNOSTI A FINANČNÍ MATEMATIKA. 5. tematický okruh: Připrv se státí mturití zkoušku z MATEMATIKY důkldě, z pohodlí domov olie PRACOVNÍ SEŠIT 5. temtický okruh: POSLOUPNOSTI A FINANČNÍ MATEMATIKA vytvořil: RNDr. Věr Effeberger expertk olie příprvu SMZ z

Více

Úvod do zpracování měření

Úvod do zpracování měření Laboratorí cvičeí ze Základů fyziky Fakulta techologická, UTB ve Zlíě Cvičeí č. Úvod do zpracováí měřeí Teorie chyb Opakujeme-li měřeí téže fyzikálí veličiy za stejých podmíek ěkolikrát za sebou, dostáváme

Více

Optimalizace portfolia

Optimalizace portfolia Optmalzace portfola ÚVOD Problémy vestováí prostředctvím ákupu ceých papírů sou klasckým tématem matematcké ekoome. Celkový výos z portfola má v době rozhodováí o vestcích povahu áhodé velčy, eíž rozložeí

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více

IAJCE Přednáška č. 12

IAJCE Přednáška č. 12 Složitost je úvod do problematiky Úvod praktická realizace algoritmu = omezeí zejméa: o časem o velikostí paměti složitost = vztah daého algoritmu k daým prostředkům: časová složitost každé možiě vstupích

Více

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ Fakulta strojího ižeýrství Ústav strojíreské techologie ISBN 978-80-214-4352-5 VYSOCE PŘESNÉ METODY OBRÁBĚNÍ doc. Ig. Jaroslav PROKOP, CSc. 1 1 Fakulta strojího ižeýrství,

Více

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications) Základy datové aalýzy, modelového vývojářství a statistického učeí (Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applicatios) Lukáš Pastorek POZOR: Autor upozorňuje, že se jedá

Více

2 EXPLORATORNÍ ANALÝZA

2 EXPLORATORNÍ ANALÝZA Počet automobilů Ig. Martia Litschmaová EXPLORATORNÍ ANALÝZA.1. Níže uvedeá data představují částečý výsledek zazameaý při průzkumu zatížeí jedé z ostravských křižovatek, a to barvu projíždějících automobilů.

Více

ZÁKLADY DISKRÉTNÍ MATEMATIKY

ZÁKLADY DISKRÉTNÍ MATEMATIKY ZÁKLADY DISKRÉTNÍ MATEMATIKY Michael Kubesa Text byl vytvoře v rámci realizace projektu Matematika pro ižeýry 21. století (reg. č. CZ.1.07/2.2.00/07.0332), a kterém se společě podílela Vysoká škola báňská

Více

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR Ze serveru www.czso.cz jsme sledovali sklizeň obilovi v ČR. Sklizeň z ěkolika posledích let jsme vložili do tabulky 10.10. V kapitole 7. Idexy

Více

Geometrická optika. Zákon odrazu a lomu světla

Geometrická optika. Zákon odrazu a lomu světla Geometrická optika Je auka o optickém zobrazováí. Je vybudováa a 4 zákoech, které vyplyuly z pozorováí a ke kterým epotřebujeme zalosti o podstatě světla: ) přímočaré šířeí světla (paprsky) ) ezávislost

Více

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA

FAKULTA STAVEBNÍ MATEMATIKA II MODUL 2 STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STAVEBNÍ MATEMATIKA II MODUL KŘIVKOVÉ INTEGRÁLY STUDIJNÍ OPORY PRO STUDIJNÍ PROGRAMY S KOMBINOVANOU FORMOU STUDIA Typeset by L A TEX ε c Josef Daněček, Oldřich Dlouhý,

Více

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

10.3 GEOMERTICKÝ PRŮMĚR

10.3 GEOMERTICKÝ PRŮMĚR Středí hodoty, geometrický průměr Aleš Drobík straa 1 10.3 GEOMERTICKÝ PRŮMĚR V matematice se geometrický průměr prostý staoví obdobě jako aritmetický průměr prostý, pouze operace jsou o řád vyšší: místo

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

Příklady k přednášce 5 - Identifikace

Příklady k přednášce 5 - Identifikace Příklady k předášce 5 - Idetifikace Michael Šebek Automatické řízeí 05 3-3-5 Automatické řízeí - Kyberetika a robotika Jiá metoda pro. řád bez ul kmitavý Hledáme ω Gs () k s + ζω s + ω Aplikujeme u( )

Více

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová

Matematicko-fyzikální fakulta Univerzita Karlova. Diplomová práce. Renata Sikorová Matematicko-fyzikálí fakulta Uiverzita Karlova Diplomová práce e Reata Sikorová Obor: Učitelství matematika - fyzika Katedra didaktiky matematiky Vedoucí práce: RNDr. Jiří Kottas, CSc. i Prohlašuji, že

Více

1. Základy počtu pravděpodobnosti:

1. Základy počtu pravděpodobnosti: www.cz-milka.et. Základy počtu pravděpodobosti: Přehled pojmů Jev áhodý jev, který v závislosti a áhodě může, ale emusí při uskutečňováí daého komplexu podmíek astat. Náhoda souhr drobých, ezjistitelých

Více

4. Model M1 syntetická geometrie

4. Model M1 syntetická geometrie 4. Model M1 sytetiká geometrie V této kapitole se udeme zaývat vektory, jejih vlastostmi a využitím v geometrii. Neudeme přitom rozlišovat, jestli se jedá je o roviu (dvě dimeze) eo prostor (tři dimeze).

Více

Funkce zadané implicitně

Funkce zadané implicitně Kapitola 8 Funkce zadané implicitně Začneme několika příklady. Prvním je známá rovnice pro jednotkovou kružnici x 2 + y 2 1 = 0. Tato rovnice popisuje křivku, kterou si však nelze představit jako graf

Více

Pravděpodobnost a statistika - absolutní minumum

Pravděpodobnost a statistika - absolutní minumum Pravděpodobost a statistika - absolutí miumum Jaromír Šrámek 4108, 1.LF, UK Obsah 1. Základy počtu pravděpodobosti 1.1 Defiice pravděpodobosti 1.2 Náhodé veličiy a jejich popis 1.3 Číselé charakteristiky

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Metodický postup pro určení úspor primární energie

Metodický postup pro určení úspor primární energie Metodický postup pro určeí úspor primárí eergie Parí protitlaká turbía ORGRZ, a.s., DIVIZ PLNÉ CHNIKY A CHMI HUDCOVA 76, 657 97 BRNO, POŠ. PŘIHR. 97, BRNO 2 z.č. Obsah abulka hodot vstupujících do výpočtu...3

Více

Cvičení 1 Elementární funkce

Cvičení 1 Elementární funkce Cvičení Elementární funkce Příklad. Najděte definiční obor funkce f = +. + = + =, = D f =,. Příklad. Najděte definiční obor funkce f = 3. 3 3 = > 3 3 + =, 3, 3 = D f =, 3, 3. ± 3 = Příklad 3. Nalezněte

Více

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv

Integrace hodnot Value-at-Risk lineárních subportfolií na bázi vícerozměrného normálního rozdělení výnosů aktiv 3. meziárodí koferece Řízeí a modelováí fiačích rizik Ostrava VŠB-U Ostrava, Ekoomická fakulta, katedra Fiací 6.-7. září 006 tegrace hodot Value-at-Risk lieárích subportfolií a bázi vícerozměrého ormálího

Více

10. Rekurentní vztahy

10. Rekurentní vztahy Diskrétí matematika 0 Rekuretí vztahy phabala 202 Kapitolu uvedeme populárím příkladem 0 Rekuretí vztahy Příklad 0a: Teto problém je zám po ázvem Haojské věže Představte si tři tyčky, a jedé je avlečeo

Více

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů

PODNIKOVÁ EKONOMIKA 3. Cena cenných papírů Semárky, předášky, bakalářky, testy - ekoome, ace, účetctví, ačí trhy, maagemet, právo, hstore... PODNIKOVÁ EKONOMIKA 3. Cea ceých papírů Ceé papíry jsou jedím ze způsobů, jak podk může získat potřebý

Více

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže

Základní princip regulace U v ES si ukážeme na definici statických charakteristik zátěže Regulace apětí v ES Základí pricip regulace v ES si ukážeme a defiici statických charakteristik zátěže Je zřejmé, že výko odebíraý spotřebitelem je závislý a frekveci a apětí a přípojicích spotřebitelů.

Více

Matematika II Aplikace derivací

Matematika II Aplikace derivací Matematika II Aplikace derivací RNDr. Renata Klufová, Ph. D. Jihoèeská univerzita v Èeských Budìjovicích EF Katedra aplikované matematiky a informatiky Derivace slo¾ené funkce Vìta o derivaci slo¾ené funkce.

Více

35! n! n k! = n k k! n k! k! = n k

35! n! n k! = n k k! n k! k! = n k Do školí jídely přišla skupia 35 žáků. Určete kolika způsoby se mohli seřadit do froty u výdeje obědů. Řešeí: Počet možostí je 1 2... 35=35! (Permutace bez opakováí) Permutací bez opakováí z -prvkové možiy

Více

Zápočtová písemka Řešení

Zápočtová písemka Řešení Zápočtová písemka Řešení 0. května 0. Spočítejte derivaci následujicí funkce podle x a podle ln x: y ln ln ln x )) + ln ln ln 598 )).. Řešení: Tento člen ln ln ln 598 )) sloužil samozřejmě jen k zmatení

Více

4.5.9 Vznik střídavého proudu

4.5.9 Vznik střídavého proudu 4.5.9 Vzik střídavého proudu Předpoklady: 4508 Miulá hodia: Pokud se v uzavřeém závitu měí magetický idukčí tok, idukuje se v ěm elektrické apětí =. Př. 1: Vodorově orietovaá smyčka se pohybuje rovoměrě

Více

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti.

Seznámíte se s použitím určitého integrálu při výpočtu hmotnosti, statických momentů, souřadnic těžiště a momentů setrvačnosti. Mtemtik II 5 Fzikálí plikce 5 Fzikálí plikce Cíle Sezámíte se s použitím určitého itegrálu při výpočtu hmotosti, sttických mometů, souřdic těžiště mometů setrvčosti Předpokládé zlosti Předpokládáme, že

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla

FYZIKA 4. ROČNÍK. Disperze světla. Spektrální barvy. β č β f. T různé f různá barva. rychlost světla v prostředí závisí na f = disperze světla Disperze světla. Spektrálí barvy v = = f T v = F(f) růzé f růzá barva rychlost světla v prostředí závisí a f = disperze světla c = = F ( f ) idex lomu daého optického prostředí závisí a frekveci světla

Více

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek

SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO. Statistika I. distanční studijní opora. Milan Křápek SOUKROMÁ VYSOKÁ ŠKOLA EKONOMICKÁ ZNOJMO Statstka I dstačí studjí opora Mla Křápek Soukromá vysoká škola ekoomcká Zojmo Dube 3 Statstka I Vydala Soukromá vysoká škola ekoomcká Zojmo. vydáí Zojmo, 3 ISBN

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

ZÁKLADNÍ SUMAČNÍ TECHNIKY

ZÁKLADNÍ SUMAČNÍ TECHNIKY Zápdočeská uiverzit v Plzi Fkult pedgogická Bklářská práce ZÁKLADNÍ SUMAČNÍ TECHNIKY Diel Tyr Plzeň Prohlšuji, že jsem tuto práci vyprcovl smosttě s použitím uvedeé litertury zdrojů iformcí. V Plzi,..

Více

1. Definiční obor funkce dvou proměnných

1. Definiční obor funkce dvou proměnných Definiční obor funkce dvou proměnných Řešené příklady 1. Definiční obor funkce dvou proměnných Vyšetřete a v kartézském souřadném systému (O, x, y) zakreslete definiční obory následujících funkcí dvou

Více

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců.

Napíšeme si, jaký význam mají jednotlivé zadané hodnoty z hlediska posloupností. Zbytek příkladu je pak pouhým dosazováním do vzorců. 8..4 Užití ritmetických posloupostí Předpokldy: 80,80 Př. : S hloubkou roste teplot Země přibližě rovoměrě o 0 C 000 m. Jká bude teplot dě dolu hlubokého 900 m, je-li v hloubce 5 m teplot 9 C? Jký by byl

Více