VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH

Rozměr: px
Začít zobrazení ze stránky:

Download "VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH"

Transkript

1 Mioš Hüttner SMR přetvoření přímýh nosníků vičení VÝPOČET PŘETVOŘENÍ NA STATICKY URIČTÝCH PŘÍMÝCH NOSNÍCÍCH Zaání Příka č. 1 Vpočítejte maimání průh nosníku o rozpětí zatíženého uprostře siou, viz Or. 1. Způso řešení Or. 1: Shéma zaání příkau č. 1. Pro výpočet je použit prinip virtuáníh si tzn. ue se praovat naví s virtuáním stavem, k o místa, ke heme znát průh, umístíme jenotkovou síu. Poku ueme uvažovat, že viv posouvajííh a normáovýh si na eormai je zaneatený, pak pro průh w patí: ke: E I M w EI, 1.1 je Youngův mou pružnosti materiáová harakteristika, je moment setrvačnosti k voorovné těžišťové ose průřezová harakteristika, M je unke ohového momentu na nosníku o skutečného zatížení. M je unke virtuáního ohového momentu na nosníku o jenotkového zatížení. Skutečný stav průěh momentů Průěh momentů o zatížení je zorazen na Or.. Or. : Průěh momentů skutečný stav. 1

2 Mioš Hüttner SMR přetvoření přímýh nosníků vičení unke momentu, ze vjářit napříka takto: Úsek až, ke ; : a úsek až, ke ; : M, 1. M, 1. Virtuání stav průěh momentů Průěh momentů o virtuáního jenotkového zatížení je zorazen na Or.. Or. : Průěh momentů virtuání stav. unke virtuáníh momentu, ze vjářit napříka takto: Úsek až, ke ; : a úsek až, ke ; : δ M, 1. Výpočet průhu M, 1.5 Pro správné řešení je potřea z rovnie 1.1 včísit čitatee, čii vpočítat určitý integrá, ten má oeně význam poh po křivkou, a tak pro tento smetriký příka ze zapsat: M δ M M 1.6 Integrá z rovnie 1.6 můžeme řešit uďto přímou integraí, aneo s pomoí Vereščaginova pravia o integrai vou spojitýh unkí. V tomto příkau ue použito přímé integrae upatnění Vereščaginova pravia viz příka č.. Do rovnie 1.6 osaíme unke M z rovnie 1. a unke δ M z rovnie 1. a ostaneme:

3 Mioš Hüttner SMR přetvoření přímýh nosníků vičení [ ] 6 M M δ Dosazením o rovnie 1.1 te ostáváme známý vztah pro průh nosníku: EI w 8. Příka č. Zaání Vpočítejte maimání průh nosníku o rozpětí zatíženého spojitým rovnoměrným zatížení, viz Or.. Or. : Shéma zaání příkau č.. Způso řešení Způso řešení ue stejný jako příkau 1. Místo očekávaného maimáního průhu zatížíme jenotkovou virtuání siou a pro průh musí opět patit rovnie 1.1. Skutečný stav průěh momentů Průěh momentů o zatížení je zorazen na Or. 5. Or. 5: Průěh momentů skutečný stav. unke momentu, ze vjářit napříka takto: Úsek až, ke ; : M..1

4 Mioš Hüttner SMR přetvoření přímýh nosníků vičení Virtuání stav průěh momentů Průěh momentů o virtuáního jenotkového zatížení je zorazen na Or. 6. Or. 6: Průěh momentů virtuání stav. unke virtuáníh momentu, ze vjářit napříka takto: Úsek až, ke ; : M δ,. a úsek až, ke ; : M,. Výpočet průhu I v tomto přípaě se jená o smetriký přípa a tak ze upatnit vztah z rovnie 1.6. Do rovnie 1.6 osaíme unke M z rovnie.1 a unke M δ z rovnie. a ostaneme: M M δ Dosazením o rovnie 1.1 te ostáváme známý vztah pro průh nosníku z příkau č.. EI w 8 5.

5 Mioš Hüttner SMR přetvoření přímýh nosníků vičení Příka č. Zaání Vpočítejte průh kone konzo nosníku zakreseného na Or. 7. Způso řešení Or. 7: Shéma zaání příkau č.. K řešení opět použijeme metou virtuáníh si. Místo zjišťovaného průhu zatížíme jenotkovou virtuání siou a pro průh musí opět patit rovnie 1.1. Skutečný stav průěh momentů Průěh momentů o zatížení je zorazen na Or. 8. Virtuání stav průěh momentů Or. 8: Průěh momentů skutečný stav. Průěh momentů o virtuáního jenotkového zatížení je zorazen na Or. 9. Výpočet průhu Or. 9: Průěh momentů virtuání stav. V tomto příkau již neze vužít smetrie průěhu momentů, a tak je potřea vpočet integráu M δ M přes eou éku nosníku rozěit na va integrá: 5

6 Mioš Hüttner SMR přetvoření přímýh nosníků vičení M M M + a δ M.1 Pro výpočet integráů z rovnie.1 ue použito Vereščaginovo pravio o integrai vou spojitýh unkí, to říká, že pro včísení integráu že: neo, že: g vou unkí a g patí, integrá je roven součinu poh po křivkou unke a honot unke g v místě těžiště unke, integrá je roven součinu poh po křivkou unke g a honot unke v místě těžiště unke g. Pro náš příka a pro úsek o a o te patí: a 1 M δ M.6 1 poha kNm honota v místě těžiště poh M. -1 m m těžiště červené poh Stejný postup ze apikovat pro úsek o až : 1 M δ M poha.7knm honota v místě těžiště poh M m.5 m těžiště červené poh Dosaíme o rovnie.1 a vpočítáme: M δ M M + M kNm a Vpočteme moment setrvačnosti průřezu k voorovné ose, pro oéník patí: 1 h 1 I. 6

7 Mioš Hüttner SMR přetvoření přímýh nosníků vičení a te pro náš příka: Ohová tuhost I m EI se te rovná pozor na jenotk!: EI A konečně průh na koni konzo se rovná: w.8.mnm knm M EI Příka k provičování Příka : Uvažujte konstruki z příkau a vpočtěte průh uprostře rozpětí tzn. 1.5 metru o evé popor. Řešení: w m m Příka 5: Uvažujte náseujíí konstruki Or. 1 a vpočtěte průh nosníku po siou tj. v oě. Or. 1: Zaání příkau 5. Řešení: w.781 m Tento tet souží výhraně jako opněk k přenáškám a vičením z přemětu Stavení mehanika pro stuent stavení akut ČVUT. I přes veškerou snahu autora se mohou v tetu ojevovat h, nepřesnosti a překep uu rá, kž mě na ně upozorníte. Mioš Hüttner mios.huttner@sv.vut.z, posení aktuaizae..1 7

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA

STATICKY NEURČITÉ RÁMOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ METODA Zaání STATICKY NEURČITÉ RÁOVÉ KONSTRUKCE S PODDAJNOU PODPOROU SILOVÁ ETODA Příkla č. Vykreslete průěhy vnitřníh sil na konstruki zorazené na Or.. Voorovná část konstruke (příčle) je složena z průřezu a

Více

Elastické deformace těles

Elastické deformace těles Eastické eformace těes 15 Na oceový rát ék L 15 m a průměru 1 mm zavěsíme závaží o hmotnosti m 110 kg přičemž Youngův mou pružnosti ocei v tahu E 16 GPa a mez pružnosti ocei σ P 0 Pa Určete reativní prooužení

Více

- Ohybový moment zleva:

- Ohybový moment zleva: příkl 1 q = 10k/m =0 1) Ohněte směry rekí z pomínek rovnováhy určete jejih velikost, proveďte kontrolu ) ykreslete průěhy vnitřníh sil jejih honoty určete ve všeh vyznčenýh oeh,,. R z R Reke z pomínek

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět Přenášk č. Přenášk č. PRINCIP VIRTUÁLNÍCH PRCÍ Výpočet přetvoření n sttk určtý konstrukí Přenášk č. Dopňková vrtuání práe momentů Vv n výpočet eformí: oment Posouvjíí sí Normáové sí (přírové

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Deformční meto jenošená eformční meto, Přetvárně nerčité konstrke POROVNÁNÍ OBECNÉ A JEDNODUŠENÉ DEF. ETODY V zjenošené eformční metoě (D) se zneává viv normáovýh

Více

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání

ZDM PŘÍMÉ NOSNÍKY. Příklad č. 1. Miloš Hüttner SMR2 ZDM přímé nosníky cvičení 09. Zadání iloš Hüttner SR D přímé nosníky cvičení 09 adání D PŘÍÉ NOSNÍKY Příklad č. 1 Vykreslete průběhy vnitřních sil na konstrukci zobrazené na Obr. 1. Příklad převzat z katedrové wikipedie (originál ke stažení

Více

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku

5 kn/m. E = 10GPa. 50 kn/m. a b c 0,1 0,1. 30 kn. b c. Statika stavebních konstrukcí I. Příklad č. 1 Posun na nosníku Sttik stveníh konstrukí I Příkl č. 1 Posun n nosníku Metoou jenotkovýh ztížení určete voorovný posun ou nosníku pole orázku. Nosník je vyroen z měkkého řev o moulu pružnosti 10 GP. 50 kn/m E = 10GP 0,1

Více

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ

PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Zdání PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ Příkd č. Uvžujte příhrdovou konstruki z Or., vypočítejte svisý posun v odě (znčený ). odře vyznčené pruty (pruty 3, 4, 5, 6 7) jsou ztíženy rovnoměrným otepením

Více

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda

Stanovení přetvoření ohýbaných nosníků. Clebschova a Mohrova metoda Stnovení přetvoření ohýnýh nosníků Ceshov Mohrov metod (pokrčování) (Mohrov nogie) Příkd Určete rovnii ohyové čáry pootočení nosníku stáého průřezu Ceshovou metodou. Stnovte veikost průhyu w pootočení

Více

ZDM RÁMOVÉ KONSTRUKCE

ZDM RÁMOVÉ KONSTRUKCE ioš Hüttner SR D rámové onstruce cvičení 0 adání D RÁOVÉ KONSTRUKCE Příad č. Vyresete průběhy vnitřních si na onstruci zobrazené na Obr.. Příad převzat z atedrové wiipedie (originá e stažení zde http://mech.fsv.cvut.cz/wii/images/d/de/dm_.pdf).

Více

Trojkloubový nosník. Rovinné nosníkové soustavy

Trojkloubový nosník. Rovinné nosníkové soustavy Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Trojklouový nosník Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Trojklouový nosník Kter stvení mehniky Fkult

Více

RBZS Úloha 1 Postup řešení

RBZS Úloha 1 Postup řešení RBZS Úoha 1 Postup řešení 1. Výpočet vnitřních si 1.1. Lineární anaýza Prvním způsobem výpočtu je ineární anaýza, ky ohybové momenty spočteme z rovnosti průhybů ve směrech a y. Tento způsob výpočtu v sobě

Více

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I

6.3 Momenty setrvačnosti a deviační momenty rovinných obrazců. yda. 1) I y, I z > 0. 2) I y, I z závisí na vzdálenosti plochy od osy II I I I I 6.3 Moment setrvačnosti a deviační moment rovinných obraců Statické moment rovinného obrace -k ose xiální moment setrvačnosti rovinného obrace -k ose -k ose Pon.: 1), > 0 S d d d. S d -k ose [m 3 ] [m

Více

Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie)

Stanovení přetvoření ohýbaných nosníků. Mohrova metoda (Mohrova analogie) Stnovení přetvoření ohýnýh nosníků ohrov metod (ohrov nlogie) Přetvoření ohýnýh nosníků Posouzení z hledisk meze použitelnosti Ztížení, deforme w, φ Okrové podmínky (deforme) Šmiřák, S.: Pružnost plstiit

Více

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby

Pohyblivé zatížení. Pohyblivé zatížení. Příčinkové čáry na prostém nosníku, konzole a spojitém nosníku s vloženými klouby Stvní sttik,.ročník kářského stui Pohyivé ztížní zniká pojížěním vozi (vky, utomoiy, jřáy po stvní konstruki (mosty, jřáové ráhy, nájzové rmpy, pohy gráží. Pohyivé ztížní n prostém nosníku, konzo spojitém

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR Pve Pevět PRICIP VIRTUÁLÍCH PRACÍ jenošená eformční meto, esiové vivy, Sčítání účinků ztížení ezi nesiové vivy vžjeme v D: viv posntí popor, viv tepoty. ESILOVÉ VLIVY Popštění popory vyvoává v sttiky

Více

SMR 2. Pavel Padevět

SMR 2. Pavel Padevět SR 2 Pvel Pevět PRINCIP VIRTUÁLNÍCH PRACÍ Silová meto Rámová konstruke, symetriké konstruke Prinipy pro symetriké konstruke ztížené oeným ztížením. Symetriká konstruke ntimetriké ztížení. Os symetrie

Více

Smyková napětí v ohýbaných nosnících

Smyková napětí v ohýbaných nosnících Pružnost a plasticita, 2.ročník kominovaného studia Smková napětí v ohýaných nosnících Základní vtah a předpoklad řešení ýpočet smkového napětí odélníkového průřeu Dimenování nosníků namáhaných na smk

Více

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr.

Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. . cvičení Klopení nosníků Klopením rozumíme ztrátu stability při ohybu, při které dojde k vybočení prutu z roviny jeho prvotního ohybu (viz obr.). Obr. Ilustrace klopení Obr. Ohýbaný prut a tvar jeho ztráty

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia

Zakřivený nosník. Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly. Stavební statika, 1.ročník bakalářského studia Stavební statika, 1.ročník bakalářského stuia Zakřivený nosník Rovinně zakřivený nosník v rovinné úloze geometrie, reakce, vnitřní síly Katera stavební mechaniky Fakulta stavební, VŠB - Technická univerzita

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Sttiky neurčité

Více

Redukční věta princip

Redukční věta princip SA Přednáška 4 Redukční věta Staticky neurčité příhradové konstrukce Spojité nosníky Uzavřené rámy Oecné vlastnosti staticky neurčitých konstrukcí Copyright (c) Vít Šmilauer Czech Technical University

Více

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M.

Statika 2. Vetknuté nosníky. Miroslav Vokáč 2. listopadu ČVUT v Praze, Fakulta architektury. Statika 2. M. 3. přednáška Průhybová čára Mirosav Vokáč mirosav.vokac@kok.cvut.cz ČVUT v Praze, Fakuta architektury 2. istopadu 2016 Průhybová čára ohýbaného nosníku Znaménková konvence veičin M z x +q +w +ϕ + q...

Více

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka.

Přetvořené ose nosníku říkáme ohybová čára. Je to rovinná křivka. OHYBOVÁ ČÁRA ZA PROSTÉHO OHYBU - rovinné průřez zůstávají po deformaci rovinnými, avšak natáčejí se. - při prostém ohbu hlavní centrální osa setrvačnosti všech průřezů leží v rovině vnějších sil, která

Více

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef

Schéma podloží pod základem. Parametry podloží: c ef c d. třída tloušťka ɣ E def ν β ϕef Příkla avrhněte záklaovou esku ze ŽB po sloupy o rozměru 0,6 x 0,6 m a stanovte max. provozní napětí záklaové půy. Zatížení a geometrie le orázku. Tloušťka esky hs = 0,4 m. Zatížení: rohové sloupy 1 =

Více

Průřezové charakteristiky základních profilů.

Průřezové charakteristiky základních profilů. Stření průmyslová škola a Vyšší oborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřenictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Průřezové

Více

Překlad z vyztuženého zdiva (v 1.0)

Překlad z vyztuženého zdiva (v 1.0) Překla z vyztuženého ziva (v 1.0) Výpočetní pomůcka pro poouzení zěného vyztuženého překlau Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka prutového či těnového

Více

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad)

Statický výpočet komínové výměny a stropního prostupu (vzorový příklad) KERAMICKÉ STROPY HELUZ MIAKO Tabulky statických únosností stropy HELUZ MIAKO Obsah tabulka č. 1 tabulka č. 2 tabulka č. 3 tabulka č. 4 tabulka č. 5 tabulka č. 6 tabulka č. 7 tabulka č. 8 tabulka č. 9 tabulka

Více

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004

VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO004 VÝPOČET PŘETVOŘENÍ PŘÍHRADOVÝCH KONSTRUKCÍ SILOVOU METODOU řešený příklad pro BO00 Slová metoda využívá prncp vrtuální práce. Zavádí se nový zatěžovací stav vrtuální zatížení. V tomto zatěžovacím stavu

Více

Téma 8 Přetvoření nosníků namáhaných ohybem I.

Téma 8 Přetvoření nosníků namáhaných ohybem I. Pružnost psticit, ročník kářského studi Tém 8 Přetvoření nosníků nmáhných ohem Zákdní vzth předpokd řešení Přetvoření nosníků od nerovnoměrného otepení etod přímé integrce diferenciání rovnice ohové čár

Více

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2.

( ) 7.3.16 Další metrické úlohy II. Předpoklady: 7315. Př. 1: Najdi přímku rovnoběžnou s osou I a III kvadrantu vzdálenou od bodu A[ 1;2 ] 2 2. 76 Další metriké úlohy II Předpoklady: 7 Př : Najdi přímku rovnoěžnou s osou I a III kvadrantu vzdálenou od odu A[ ; ] Osou I a III kvadrantu je přímka y = x přímky s ní rovnoěžné mají rovnii x y + = 0

Více

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady

SMA2 Přednáška 08. Symetrické konstrukce Symetrické a anti(sy)metrické zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady SA2 Přednáška 08 Symetriké konstruke Symetriké a anti(sy)metriké zatížení Silová metoda a symetrie Deformační metoda a symetrie Příklady Copyright () 2012 Vít Šmilauer Czeh Tehnial University in Prague,

Více

Pružnost a pevnost. 2. přednáška, 10. října 2016

Pružnost a pevnost. 2. přednáška, 10. října 2016 Pružnost a pevnost 2. přednáška, 10. října 2016 Prut namáhaný jednoduchým ohybem: rovnoměrně ohýbaný prut nerovnoměrně ohýbaný prut příklad výpočet napětí a ohybu vliv teplotních měn příklad nerovnoměrné

Více

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL

2. DVOJROZMĚRNÝ (DVOJNÝ) INTEGRÁL . VOJROZMĚRNÝ (VOJNÝ) INTEGRÁL Úvodem připomenutí základních integračních vzorců, bez nichž se neobejdete: [.] d = C [.] d = + C n+ n [.] d = + C n + [4.] d = ln + C [5.] sin d = cos + C [6.] cos d = sin

Více

Průvodní zpráva ke statickému výpočtu

Průvodní zpráva ke statickému výpočtu Průvodní zpráva ke statickému výpočtu V následujícím statickém výpočtu jsou navrženy a posouzeny nosné prvky ocelové konstrukce zesílení části stávající stropní konstrukce v 1.a 2. NP objektu ředitelství

Více

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM

ENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM P Ř Í K L A D Č. 6 LOKÁLNĚ PODEPŘENÁ ŽELEZOBETONOVÁ DESKA S VELKÝM UŽITNÝM ZATÍŽENÍM Projekt : FRVŠ 011 - Analýza meto výpočtu železobetonovýh lokálně poepřenýh esek Řešitelský kolektiv : Ing. Martin Tipka

Více

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD

VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Miloš Hüne SMR neilové účink vičení 05 Zání VÝPOČET PŘETVOŘENÍ STATICKY URIČTÝCH KONSTRUKCÍCH KOMPLEXNÍ PŘÍKLAD Příkl č. Uvžje konki z O., vpočíeje vooovný pon v oě (znčený eploní ozžnoi vžje α 0 6 K -.

Více

4. cvičení výpočet zatížení a vnitřních sil

4. cvičení výpočet zatížení a vnitřních sil 4. cvičení výpočet zatížení a vnitřních sil Výpočet zatížení stropní deska Skladbu podlahy a hodnotu užitného zatížení převezměte z 1. úlohy. Uvažujte tloušťku ŽB desky, kterou jste sami navrhli ve 3.

Více

Rovinné nosníkové soustavy III Příhradový nosník

Rovinné nosníkové soustavy III Příhradový nosník Stvení sttik,.ročník klářského stui Rovinné nosníkové soustvy III Příhrový nosník Rovinný klouový příhrový nosník Skl rovinného příhrového nosníku Pomínk sttiké určitosti příhrového nosníku Zjenoušená

Více

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ

ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ 7. cvičení ZÁKLADNÍ PŘÍPADY NAMÁHÁNÍ V této kapitole se probírají výpočty únosnosti průřezů (neboli posouzení prvků na prostou pevnost). K porušení materiálu v tlačených částech průřezu dochází: mezní

Více

Teoretický rozbor vlivu deformací na záběr ozubených kol a modifikace ozubení

Teoretický rozbor vlivu deformací na záběr ozubených kol a modifikace ozubení VYSOKÁ ŠKOLA BÁŇSKÁ - TECHNICKÁ UNIVERZITA OSTRAVA Fakulta strojní katera částí a mechanismů strojů ul. 17. listopau, 708 33 Ostrava-Porua tel. +40 59 73 136, 45, 340 : sekretariát: Hana.Drmolova@vs.cz

Více

Vyztužená stěna na poddajném stropu (v 1.0)

Vyztužená stěna na poddajném stropu (v 1.0) Vyztužená těna na poajném tropu (v.0) Výpočetní pomůcka pro poouzení zěné, vyztužené těny na poajném tropu Smazat zaané honoty Nápověa - čti pře prvním použitím programu!!! O programu 0. Pomínka rešení:

Více

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování:

Ve výrobě ocelových konstrukcí se uplatňují následující druhy svařování: 5. cvičení Svarové spoje Obecně o svařování Svařování je technologický proces spojování kovů podmíněného vznikem meziatomových vazeb, a to za působení tepla nebo tepla a tlaku s případným použitím přídavného

Více

É ú ě Ž ě Ú ě ě ě Ř Ř ž ž Č ú ů ů ě ě ě Ó ú ú š Č ú Ž ě ú ě š Ž ú ě Ý ě Č úě ě Ú š ž ů Ú ú Č ě ÓŘ Č ě Č Ú ě ů ú š Ú ě Ú ě ě ů Ž Ť Ť ó š š Ú ó Ú ě Ť ó ů ů Ú ě ú Ú ě ú ě ě Č Ž ě Č Ú ú ě Ú ň ě Ú ě ů ú ň ě

Více

Beton 5. Podstata železobetonu

Beton 5. Podstata železobetonu Beton 5 Pro. Ing. ilan Holický, DrSc. ČVUT, Šolínova 7, 166 08 Praha 6 Tel.: 435384, Fax: 43553 E-mail: milan.holicky@klok.cvut.cz, http://www.klok.cvut.cz Peagogická činnost Výuka bakalářských a magisterský

Více

STACIONÁRNÍ MAGNETICKÉ POLE

STACIONÁRNÍ MAGNETICKÉ POLE Příklay: 1. Přímý voič o élce 0,40 m, kterým prochází prou 21 A, leží v homogenním magnetickém poli kolmo k inukčním čarám. Velikost vektoru magnetické inukce je 1,2 T. Vypočtěte práci, kterou musíme vykonat

Více

ú é ů ú ť ů ú š ň é ň é é é ž é Ý é Ý Ý é ú ů ú ů Ý ú é é ú ú Ú ů ů š é é ž é ú Ú Í ů ů é é é ú ú ó é é é é ú é ž é é ž ž ň é é é é é é É Š é ů é Š Š ú é ž ú ú é ú é é Ú ú ú Ý ů ó Š ú ú ň ů ň š ň š é é

Více

Rovinné nosníkové soustavy Gerberův nosník

Rovinné nosníkové soustavy Gerberův nosník Stvení sttik, 1.ročník klářského stui Rovinné nosníkové soustvy Gererův nosník Spojitý nosník s vloženými klouy - Gererův nosník Kter stvení mehniky Fkult stvení, VŠB - Tehniká univerzit Ostrv Opkování

Více

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem 2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se

Více

Podmínky k získání zápočtu

Podmínky k získání zápočtu Podmínky k získání zápočtu 18 až 35 bodů 7 % aktivní účast, omluvená neúčast Odevzdání programů Testy: 8 nepovinných testů (-2 body nebo -3 body) 3 povinné testy s ohodnocením 5 bodů (povoleny 2 opravné

Více

Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru

Reakce. K618 FD ČVUT v Praze (pracovní verze). Tento materiál má pouze pracovní charakter a bude v průbehu semestru Poznámky ke cvičení z předmětu Pružnost pevnost na K618 D ČVU v Praze (pracovní verze). ento materiá má pouze pracovní charakter a bude v průbehu semestru postupně dopňován. Autor: Jan Vyčich E mai: vycich@fd.cvut.cz

Více

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí

Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Vybrané okruhy znalostí z předmětů stavební mechanika, pružnost a pevnost důležité i pro studium předmětů KP3C a KP5A - navrhování nosných konstrukcí Skládání a rozklad sil Skládání a rozklad sil v rovině

Více

Ě ú Š ú ú ů ž ůž ž ů ů ů ž ž ž ž ú ů ů ů ž ú ž ž ž ú Á ž ž ž ž ž ž ž ž É ů ů Á É Ď ó ť Ň Ú ť ó ó ó ÚÚ Ú ó ň ó óú ó Ě ú ť ŇŇ É Ň Ě ÓŇ Ň Ň Ť ó ť Ť ť ť É úě Ě ň Ň Ž Ó ť É ú Ě Ť ú Ť ň É Í ú ňé ťž ž ž ť ť ť

Více

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU

NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁMU NÁVRH OHYBOVÉ VÝZTUŽE ŽB TRÁU Navrhněte ohybovou výztuž do železobetonového nosníku uvedeného na obrázku. Kromě vlastní tíhy je nosník zatížen bodovou silou od obvodového pláště ostatním stálým rovnoměrným

Více

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr)

Šikmý nosník rovnoměrné spojité zatížení. L průmětu. zatížení kolmé ke střednici prutu (vítr) Šikmý nosník Šikmý nosník rovnoměrné spojité ztížení ztížení kolmé ke střednii prutu (vítr) q h - ztížení kolmé ke střednii prutu (vítr) - ztížení svislé zdáno n délku prutu (vlstní tíh) - ztížení svislé

Více

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1

Obrázková matematika D. Šafránek Fakulta jaderná a fyzikálně inženýrská, Břehová 7, Praha 1 Orázková mtemtik D. Šfránek Fkult jerná fyzikálně inženýrská řehová 7 115 19 Prh 1.sfrnek@seznm.z strkt Názorná ovození záklníh geometrikýh vět známýh ze stření školy. 1 Úvo N stření škole se mehniky používjí

Více

MATEMATIKA II V PŘÍKLADECH

MATEMATIKA II V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ MATEMATIKA II V PŘÍKLADECH CVIČENÍ Č. Ing. Petr Schreierová, Ph.D. Ostrv Ing. Petr Schreierová, Ph.D. Vsoká škol áňská Technická univerzit

Více

š č š ě Ú č ě ú š č Úň ě ž Ú ě ň ž ň ě Ý š ů š ž úč č Š ň ď Ž č š ě ň ů č Ž č Ž ú ň č š ž Ž ů č ů Š ú š ě č š ě ů š ů ě šť ě š š Ž č ě ě š ď Š ž ď ě š ě ě š ě ě š š ě Ě č ó ů ě ů ů ě š ě ů č ž š č Š ó

Více

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!!

Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci. Zde budou normové hodnoty vypsány do tabulky!!! Zesilování dřevěného prvku uhlíkovou lamelou při dolním líci jméno: stud. skupina: příjmení: pořadové číslo: datum: Materiály: Lepené lamelové dřevo třídy GL 36h : norma ČSN EN 1194 (najít si hodnotu modulu

Více

SLOUP NAMÁHANÝ TLAKEM A OHYBEM

SLOUP NAMÁHANÝ TLAKEM A OHYBEM SOUP NAMÁHANÝ TAKEM A OHYBEM Posuďte únosnost centrick tlačeného sloupu délk 50 m profil HEA 4 ocel S 55 00 00. Schéma podepření a atížení je vidět na následujícím obráku: M 0 M N N N 5m 5m schéma pro

Více

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D.

BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY. AUTOR: Ing. MARTIN HORÁČEK, Ph.D. BO009 KOVOVÉ MOSTY 1 NÁVOD NA VÝPOČET VNITŘNÍCH SIL NA PODÉLNÝCH VÝZTUHÁCH ORTOTROPNÍ MOSTOVKY AUTOR: Ing. MARTIN HORÁČEK, Ph.D. Obsah Stanovení pérové konstanty poddajné podpory... - 3-1.1 Princip stanovení

Více

F (x, h(x)) T (g)(x) = g(x)

F (x, h(x)) T (g)(x) = g(x) 11 Implicitní funkce Definice 111 (implicitní funkce) Nechť F : R 2 R je funkce a [x 0, y 0 ] R 2 je takový bo, že F (x 0, y 0 ) = 0 Řekneme, že funkce y = f(x) je v okolí bou [x 0, y 0 ] zaána implicitně

Více

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem

Obsah: 1. Technická zpráva ke statickému výpočtu 2. Seznam použité literatury 3. Návrh a posouzení monolitického věnce nad okenním otvorem Stavba: Stavební úpravy skladovací haly v areálu firmy Strana: 1 Obsah: PROSTAB 1. Technická zpráva ke statickému výpočtu 2 2. Seznam použité literatury 2 3. Návrh a posouzení monolitického věnce nad okenním

Více

Přijímací zkoušky na magisterské studium, obor M

Přijímací zkoušky na magisterské studium, obor M Přijímací zkoušky na magisterské studium, obor M 1. S jakou vnitřní strukturou silikátů (křemičitanů), tedy uspořádáním tetraedrů, se setkáváme v přírodě? a) izolovanou b) strukturovanou c) polymorfní

Více

Sedmé cvičení bude vysvětlovat tuto problematiku:

Sedmé cvičení bude vysvětlovat tuto problematiku: Sedmé cvičení bude vysvětlovat tuto problematiku: Velmi stručně o parciálních derivacích Castiglianova věta k čemu slouží Castiglianova věta jak ji použít Castiglianova věta staticky určité přímé nosníky

Více

Spojitý nosník. Příklady

Spojitý nosník. Příklady Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)

Více

Příklad 1 Osově namáhaný prut průběhy veličin

Příklad 1 Osově namáhaný prut průběhy veličin Příkld 1 Osově nmáhný prut průběhy veličin Zdání Oelový sloup složený ze dvou částí je neposuvně ukotven n obou koníh v tuhém rámu. Dolní část je vysoká, m je z průřezu 1 - HEB 16 (průřezová ploh A b =

Více

Řešený příklad: Stabilita prutové konstrukce s posuvem styčníků

Řešený příklad: Stabilita prutové konstrukce s posuvem styčníků Dokument SX008a-CZ-EU Strana 1 z 9 Řešený příklad: Stabilita prutové konstrukce s posuvem Tento příklad řeší celkovou stabilitu prutové konstrukce a stabilitu s posuvem. Řešen je nevztužený dvoupodlažní

Více

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů

Řešení úloh 1. kola 59. ročníku fyzikální olympiády. Kategorie D Autor úloh: J. Jírů Řešení úo. koa 59. ročníku fyzikání oympiáy. Kategorie D Autor úoh: J. Jírů Obr. 1 1.a) Označme v veikost rychosti pavce vzheem k voě a v 0 veikost rychosti toku řeky. Pak patí Číseně vychází α = 38. b)

Více

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02)

semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) Požadavky pro písemné vypracování domácích cvičení cvičící: Vladimír Šána, B380 semestr: Letní 2014/2015 předmět: Stavební mechanika 2 (SM02) 1 Docházka na cvičení Docházka na cvičení je dobrovolná a nebude

Více

STATIKA STAVEBNÍCH KONSTRUKCÍ I

STATIKA STAVEBNÍCH KONSTRUKCÍ I VŠB Technická univerzita Ostrava Fakulta stavební, Ludvíka Podéště 1875, 708 33 Ostrava Ivan Kološ, Martin Krejsa, Stanislav Pospíšil, Oldřich Sucharda STATIKA STAVEBNÍCH KONSTRUKCÍ I Vzdělávací pomůcka

Více

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D.

Veronika Drobná VB1STI02 Ing. Michalcová Vladimíra, Ph.D. Příklad 1: 3;4 3;4 = =4 9 2;1,78 = = 4 9 4=16 9 =1,78 =2 =2 2 4 9 =16 9 1 = 1+ =0,49 = 1+ =0,872 =0 =10 6+ 2,22=0 =3,7 6+ 2,22=0 =3,7 + =0 3,7+3,7=0 0=0 =60,64 =0 =0 + =0 =3,7 á čá 5+ 2,22=0 =3,7 5+ 2,22+

Více

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO

Předpokládáme ideální chování, neuvažujeme autoprotolýzu vody ve smyslu nutnosti číselného řešení simultánních rovnováh. CH3COO Pufr ze slabé kyseliny a její soli se silnou zásaou např CHCOOH + CHCOONa Násleujíí rozbor bue vyházet z počátečního stavu, ky konentrae obou látek jsou srovnatelné (největší pufrační kapaita je pro ekvimolární

Více

Í ř Á Á Č Č ř Š ó ř Č ř š ř ů ř ň ň ň ř Ž Ž Ž ň ř ť ň Ť ř ř ů ř ř Ž ř š ň É ó Ť š š ř ř ř š ř ř ř ř š ř š ř ř š ř š š ř ť ř ň š ř ř ť ř ř š Ť ř ř ř š ř Ť š ř ř ř š ř š ř ř ř š ů ř š ř ř š ř ř š ř ř ť š

Více

Téma 12, modely podloží

Téma 12, modely podloží Téma 1, modely podloží Statika stavebních konstrukcí II., 3.ročník bakalářského studia Úvod Winklerův model podloží Pasternakův model podloží Pružný poloprostor Nosník na pružném Winklerově podloží, řešení

Více

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016

příklad 16 - Draft verze pajcu VUT FAST KDK Pešek 2016 příklad - Drat vere pajcu VUT FAST KDK Pešek 0 VZPĚR SOŽEÉHO PRUTU A KŘÍŽOVÉHO PRUTU ZE DVOU ÚHEÍKŮ Vpočítejte návrhovou vpěrnou únosnost prutu délk 84 milimetrů kloubově uloženého na obou koncí pro všen

Více

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D

Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D Stavební mechanika 2 (K132SM02) Přednáší: doc. Ing. Matěj Lepš, Ph.D. Katedra mechaniky K132 místnost D2034 e-mail: matej.leps@fsv.cvut.cz Organizace předtermínu a N & O zápočtových testů ze SM02 Předtermín

Více

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem)

Téma 4 Normálové napětí a přetvoření prutu namáhaného tahem (prostým tlakem) Pružnost a pasticita, 2.ročník bakaářského studia Téma 4 ormáové napětí a přetvoření prutu namáhaného tahem (prostým takem) Zákadní vztahy a předpokady řešení apětí a přetvoření osově namáhaného prutu

Více

Rovinné nosníkové soustavy

Rovinné nosníkové soustavy Stvení sttik, 1.ročník kominovného stui Rovinné nosníkové soustvy Složené rovinné nosníkové soustvy Sttiká určitost neurčitost rovinnýh soustv Gererův nosník Trojklouový rám Trojklouový rám s táhlem Kter

Více

Betonové konstrukce (S) Přednáška 3

Betonové konstrukce (S) Přednáška 3 Betonové konstrukce (S) Přednáška 3 Obsah Účinky předpětí na betonové prvky a konstrukce Silové působení kabelu na beton Ekvivalentní zatížení Staticky neurčité účinky předpětí Konkordantní kabel, Lineární

Více

PŘÍKLAD 7: / m (včetně vlastní tíhy) a osamělým břemenem. = 146, 500kN uprostřed rozpětí. Průvlak je z betonu třídy C 30/37 vyztuženého ocelí třídy

PŘÍKLAD 7: / m (včetně vlastní tíhy) a osamělým břemenem. = 146, 500kN uprostřed rozpětí. Průvlak je z betonu třídy C 30/37 vyztuženého ocelí třídy yoká škola báňká Tehniá univerzita Otrava Fakulta tavební Texty přenášek z přemětu Prvky betonovýh kontrukí navrhování pole Eurooe PŘÍKLAD 7: Navrhněte mykovou výztuž v krajníh čáteh průvlaku zatíženého

Více

K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku

K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku K133 - BZKA Variantní návrh a posouzení betonového konstrukčního prvku 1 Zadání úlohy Vypracujte návrh betonového konstrukčního prvku (průvlak,.). Vypracujte návrh prvku ve variantě železobetonová konstrukce

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmyslová škola a Vyšší odborná škola technická Brno, Sokolská 1 Šablona: Inovace a zkvalitnění výuky prostřednictvím ICT Název: Téma: Autor: Číslo: Anotace: Mechanika, pružnost pevnost Nosníky

Více

1 Úvod. 2 Teorie. verze 1.0

1 Úvod. 2 Teorie. verze 1.0 Vícenásobný integrál verze. Úvod Následující tet se zabývá dvojným a trojným integrálem. ěl b sloužit především studentům předmětu ATEAT na Univerzitě Hradec Králové k přípravě na zkoušku. ohou se v něm

Více

Výpočet vnitřních sil lomeného nosníku

Výpočet vnitřních sil lomeného nosníku Stvní sttik, 1.ročník klářského stui ýpočt vnitřníh sil lomného nosníku omný nosník v rovinné úloz Kontrol rovnováhy uvolněného styčníku nitřní síly n uvolněném prutu rostorově lomný nosník Ktr stvní mhniky

Více

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN

Stanovení požární odolnosti. Přestup tepla do konstrukce v ČSN EN Stanovení požární odolnosti NAVRHOVÁNÍ OCELOVÝCH KONSTRUKCÍ NA ÚČINKY POŽÁRU ČSN EN 1993-1-2 Ing. Jiří Jirků Ing. Zdeněk Sokol, Ph.D. Prof. Ing. František Wald, CSc. 1 2 Přestup tepla do konstrukce v ČSN

Více

Ohyb - smyková napětí

Ohyb - smyková napětí Oh - smková napětí p + + - - l x ohýaný nosník - M σ x - x Průřeové charakteristik pro smková napětí a ohu jsou statický moment ploch S a moment setrvačnosti. S A části průr T [ m ] max Mení stav únosnosti

Více

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu:

Materiálové vlastnosti: Poissonův součinitel ν = 0,3. Nominální mez kluzu (ocel S350GD + Z275): Rozměry průřezu: Řešený příklad: Výpočet momentové únosnosti ohýbaného tenkostěnného C-profilu dle ČSN EN 1993-1-3. Ohybová únosnost je stanovena na základě efektivního průřezového modulu. Materiálové vlastnosti: Modul

Více

Linearní teplotní gradient

Linearní teplotní gradient Poznámky k semináři z předmětu Pružnost pevnost na K68 D ČVUT v Praze (pracovní verze). Tento materiá má pouze pracovní charakter a ude v průěhu semestru postupně dopňován. utor: Jan Vyčich E mai: vycich@fd.cvut.cz

Více

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu

Při výpočtu obsahu takto omezených rovinných oblastí mohou nastat následující základní případy : , osou x a přímkami. spojitá na intervalu Geometrické plikce určitého integrálu Osh rovinné olsti Je-li ploch ohrničen křivkou f () osou Při výpočtu oshu tkto omezených rovinných olstí mohou nstt následující zákldní přípd : Nechť funkce f () je

Více

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1

Podpora digitalizace a využití ICT na SPŠ CZ.1.07/1.5.00/34.0632 1 Střední průmysová škoa a Vyšší odborná škoa technická Brno, Sokoská 1 Šabona: Inovace a zkvaitnění výuky prostřednictvím ICT Název: Téma: Autor: Číso: Anotace: echanika, pružnost pevnost Nosníky stejné

Více

Zjednodušená deformační metoda (2):

Zjednodušená deformační metoda (2): Stavební mechanika 1SM Přednášky Zjednodušená deformační metoda () Prut s kloubově připojeným koncem (statická kondenzace). Řešení rovinných rámů s posuvnými patry/sloupy. Prut s kloubově připojeným koncem

Více

Deformace nosníků při ohybu.

Deformace nosníků při ohybu. Číslo projektu CZ.1.07/ 1.1.36/ 02.0066 Autor Pavel Florík Předmět Mechanika Téma Deformace nosníků při ohybu Metodický pokyn výkladový text s ukázkami Deformace nosníků při ohybu. Příklad č.2 Zalomený

Více

- Větší spotřeba předpínací výztuže, komplikovanější vedení

- Větší spotřeba předpínací výztuže, komplikovanější vedení 133 B04K BETONOVÉ KONSTRUKCE 4K Návrh předpětí Metoda vyrovnání napětí Metoda vyrovnání zatížení Metoda vyrovnání napětí Metoda vyrovnání zatížení - Princip vyrovnání napětí v průřezu - Větší spotřeba

Více

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc.

Předmět: SM02 PRŮBĚH VNITŘNÍCH SIL M(x), V(x), N(x) NA ROVINNÉM ŠIKMÉM PRUTU. prof. Ing. Michal POLÁK, CSc. Předmět: SM0 PRŮBĚH VNITŘNÍCH SIL M(), V(), N() NA ROVINNÉM ŠIKMÉM PRUTU pro. Ing. Michl POLÁK, CSc. Fkult stvení, ČVUT v Pre 004-014 PRŮBĚHY VNITŘNÍCH SIL M(), N(), V() NA ROVINNÉM ŠIKMÉM PRUTU: ZATÍŽENÍ

Více

4.5.5 Magnetické působení rovnoběžných vodičů s proudem

4.5.5 Magnetické působení rovnoběžných vodičů s proudem 4.5.5 Magnetické působení rovnoběžných voičů s prouem Přepoklay: 4502, 4503, 4504 Př. 1: Dvěma velmi louhými svislými voiči prochází elektrický prou. Rozhoni pomocí rozboru magnetických inukčních čar polí

Více

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312

( ) ( ) ( ) Vzdálenost bodu od přímky II. Předpoklady: 7312 .. Vzálenost bou o přímk II Přepokl: Pegogiká poznámk: Průběh hoin honě závisí n tom, jk oolní jsou stuenti v oszování o vzorů, které je nejtěžší částí hoin. Dlším problémem pk mohou být rovnie s bsolutní

Více

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica)

Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Tabulky únosností trapézových profilů ArcelorMittal (výroba Senica) Obsah: 1. Úvod 4 2. Statické tabulky 6 2.1. Vlnitý profil 6 2.1.1. Frequence 18/76 6 2.2. Trapézové profily 8 2.2.1. Hacierba 20/137,5

Více

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník

Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník EVROPSKÝ SOCIÁLNÍ FOND Průhyb ocelového nosníku. Nezatížený a rovnoměrně zatížený nosník PRAHA & EU INVESTUJEME DO VAŠÍ BUDOUCNOSTI České vysoké učení technické v Praze, Fakulta stavební, Katedra matematiky

Více