Hough & Radon transform - cvičení

Rozměr: px
Začít zobrazení ze stránky:

Download "Hough & Radon transform - cvičení"

Transkript

1 Hough & Radon transform - cvičení ROZ UTIA - ZOI Adam Novozámský (novozamsky@utia.cas.cz)

2 Motivace Co to je Houghova transformace a k čemu se používá?: metoda pro nalezení parametrického popisu objektů v obraze detekce jednoduchých objektů v obraze jako jsou přímky, kružnice, elipsy, atd. je používána především pro segmentaci objektů, jejichž hranice lze popsat jednoduchými křivkami aplikace také v 3D vidění 2 / 33

3 Motivace Aplikace: hledání úběžníků: Detekce hran / objektů: 3 / 33

4 Houghova transformace Bod v Houghově prostoru (x,y) je suma obrazových bodů náležících objektu s parametry x,y 1 bod v HP = právě 1 přímka v obrázku 4 / 33

5 HT Algoritmu Pro každý bod v HP Najdu přímku body, které jí náleží Každý bod v obrázku Započtu do všech přímek, kam náleží Tvoří sinusoidu v HP Pozn.: Bod hlasuje pro všechny směry Bod je nezávislý na okolí Výpočet trvá dlouho řád sekund 5 / 33

6 HT Příklad 6 / 33

7 HT Příklad hledání úběžníku 7 / 33

8 Úkol: Napište výpočet HT: otevřete skript houghstud.m a na vyznačené místo doplňte Nápověda I: paramatrizace přímky? : y y ax b y 0 θ r. r = x cos θ + y sin θ [1971]Duda & Hart x 0 x 8 / 33

9 Úkol: Nápověda I: paramatrizace přímky? : skript na zobrazení přímky je psán pro α = 90 θ, tedy: r = x cos(90 θ) + y sin(90 θ) = x sin α + y cos α v našem případě obrázku je [0,0] vlevo nahoře, takže pokud chceme dosazovat index matice, tak: r = x sin α y cos α x 0 -y 0 θ α r x. -y 9 / 33

10 Úkol: Napište výpočet HT: otevřete skript houghstud.m a na vyznačené místo doplňte Nápověda II: projděte v obrázku pixel po pixelu pokud je pixel nenulový, tak pro všechny směry přímek, které jím procházejí spočítám jejich vzdálenost od počátku tuto vzdálenost musím přeškálovat na vzdálenost <1,Delek> pro danou vzdálenost a úhel připočtu v matici Hits další zásah (+1) 10 / 33

11 Úkol: Napište výpočet HT: % projiti vsech pixelu snimku for Y = 1 : size(img,1) for X = 1 : size(img,2) % chci jen nenulove body if ~Img(Y,X) continue end % pro vsechny smery primek prochazejicich bodem pocitam jejich vzdalenost for U = 1 : Uhlu % uhel v radianech Alfa = U / Uhlu * pi; % vzdalenost primky od pocatku v pixelech C = sin(alfa) * X - cos(alfa) * Y; % vzdalenost preskalovana na 1 az Delek V = round(c*pixnadelky + (Delek-1)/2) + 1; % bod s uhlem U ma pro vzdalenost V dalsi hit Hits(V,U) = Hits(V,U) + 1; end end end 11 / 33

12 Úkol: Napište skript primkysnimku(img, Primek) najde a vykresli primky na snimku použijte kresliprimku.m Nápověda I: 1. detekujte hrany pomocí sobel.m 2. proveďte HT 3. najděte uhel a vzdálenost pro nejvyšší hodnotu 4. převeďte na stupně a pixely 5. vykreslete přímku pomocí kresliprimku.m 6. vynulujte tuto nejvyšší hodnotu v HP včetně malého okolí 7. opakujte bod 3 6 podle počtu hledaných přímek 12 / 33

13 Úkol: primkysnimku(img, Primek) : function primkysnimku(img, Primek) % primkysnimku(img, Primek) - najde a vykresli primky na snimku Hrany = sobel(img, 400); Hits = houghstud(hrany, 360, 800); zobr(img); % detekce hran % Houghova transformace % nachazeni nejvyznamnejsich primek Uhlopricka = norm(size(hrany)); for I = 1 : Primek waitforbuttonpress; % souradnice nejvetsi hodnoty v matici hitu [V,U] = find(hits == max(hits(:)),1); % prepocet uhlu na stupne Uhel = U / size(hits,2) * 180; % prepocet vzdalenosti na pixely Vzdal = V / size(hits,1) * 2 * Uhlopricka - Uhlopricka; % vykresleni kresliprimku(uhel, Vzdal, size(hrany,2), size(hrany,1)); % vynulovani Hits(U,V) a jeho okoli Hits(max(V-20,1):min(V+20,size(Hits,1)),... max(u-20,1):min(u+20,size(hits,2))) = 0; end 13 / 33

14 Motivace Co to je Houghova transformace a k čemu se používá?: metoda pro nalezení parametrického popisu objektů v obraze detekce jednoduchých objektů v obraze jako jsou přímky, kružnice, elipsy, atd. je používána především pro segmentaci objektů, jejichž hranice lze popsat jednoduchými křivkami aplikace také v 3D vidění 14 / 33

15 Radon Transform [Radon 1917] g ρ j, θ k = ඵ f x, y δ x cos θ k + y sin θ k ρ j dxdy y y g ρ j, θ k g ρ, θ k x θ k f x, y L ρ j, θ k x x cos θ k + y sin θ k = ρ j ρ j 15 / 33

16 Radon Transform [Radon 1917] g ρ j, θ k = ඵ f x, y δ x cos θ k + y sin θ k ρ j dxdy y y g ρ j, θ k g ρ, θ k x g ρ, θ = ඵ f x, y δ x cos θ + y sin θ ρ dxdy f x, y θ k x g ρ, θ = M 1 N 1 f x, y δ x cos θ + y sin θ ρ ρ j x=0 y=0 Illustration f x, y = ቊ A x2 + y 2 r 2 0 otherwise r 2 ρ 2 g ρ, θ = න Ady = g ρ = ቊ 2A r2 ρ 2 ρ r r 2 ρ 2 0 otherwise 16 / 33

17 Radon Back projection: formal interpretation for a single point, g ρ j, θ k, copying the line L ρ j, θ k onto the empty image with its intensity g ρ j, θ k repeating this process of all values of ρ j in the projected signal f θk x, y = g ρ, θ k = g x cos θ k + y sin θ k, θ k f θ x, y = g x cos θ + y sin θ, θ final image by integrating over all the back-projected images : f x, y = න 0 π f θ x, y dθ ~ π θ=0 f θ x, y laminogram 17 / 33

18 Radon Back projection: A little trick that almost works! Back Projection 18 / 33

19 Radon Back projection: A little trick that almost works! Back Projection 19 / 33

20 Radon [Gonzalez rd] Image / 33

21 Úkol: Spočítejte Radonovu Transformaci: Spočítejte Radonovu Transformaci obrázku Shepp-Logan phantom pro úhly [0..179] a zobrazte jeho sinogram Použijte Matlab funkce phantom(), radon() 21 / 33

22 Řešení I = phantom(); theta = 0:179; [R,xp] = radon(i,theta); subplot(1,2,1) obr(i,'nofig'); title('original'); subplot(1,2,2) imshow(r,[],'xdata',theta,'ydata',xp); title(sprintf('sinogram')); xlabel('\theta (degrees)') ylabel('\rho') colormap(gca,hot), colorbar 22 / 33

23 Úkol: Spočítejte inverzní Radonovu Transformaci: Načtěte si data ze souboru sinograms.mat a zobrazte si všechny tři sinogramy. Poté pomocí funkce iradon() pro ně spočtěte IRT bez filtrace naivní back-projection 23 / 33

24 Řešení load('sinogram180.mat'); load('sinogram90.mat'); load('sinogram45.mat'); theta = 0:179; I180 = iradon(r180,theta,'none'); theta = theta(1:2:end); I90 = iradon(r90,theta,'none'); theta = theta(1:2:end); I45 = iradon(r45,theta,'none'); subplot(1,3,1) obr(i180,'nofig'); title('theta = [0:179]'); subplot(1,3,2) obr(i90,'nofig'); title('theta = [0:2:179]'); subplot(1,3,3) obr(i45,'nofig'); title('theta = [0:4:179]'); 24 / 33

25 Úkol: Spočítejte inverzní Radonovu Transformaci: To samé s Ram-Lak filtarcí 25 / 33

26 Řešení load('sinogram180.mat'); load('sinogram90.mat'); load('sinogram45.mat'); theta = 0:179; I180 = iradon(r180,theta,'ram-lak'); theta = theta(1:2:end); I90 = iradon(r90,theta,'ram-lak'); theta = theta(1:2:end); I45 = iradon(r45,theta,'ram-lak'); subplot(1,3,1) obr(i180,'nofig'); title('theta = [0:179]'); subplot(1,3,2) obr(i90,'nofig'); title('theta = [0:2:179]'); subplot(1,3,3) obr(i45,'nofig'); title('theta = [0:4:179]'); 26 / 33

27 Děkuji za pozornost! ROZ UTIA - ZOI Adam Novozámský (novozamsky@utia.cas.cz)

ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů

ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů ROZ1 CVIČENÍ VI. Geometrická registrace (matching) obrazů REGISTRACI OBRAZU (IMAGE REGISTRATION) Více snímků téže scény Odpovídající pixely v těchto snímcích musí mít stejné souřadnice Pokud je nemají

Více

NPGR032 Cv. 01 - úvod

NPGR032 Cv. 01 - úvod NPGR032 Cv. 01 - úvod ZS 2014 ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz 2 / 44

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos 3x 3. Zderivuj funkci y = 3 e sin2 (x 2 ). Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y

Více

ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT

ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ZS ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz

Více

BPC2E_C08 Parametrické 3D grafy v Matlabu

BPC2E_C08 Parametrické 3D grafy v Matlabu BPC2E_C08 Parametrické 3D grafy v Matlabu Cílem cvičení je procvičit si práci se soubory a parametrickými 3D grafy v Matlabu. Úloha A. Protože budete řešit transformaci z kartézských do sférických souřadnic,

Více

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje.

1. Parametrické vyjádření přímky Přímku v prostoru můžeme vyjádřit jen parametricky, protože obecná rovnice přímky v prostoru neexistuje. 1/7 ANALYTICKÁ GEOMETRIE V PROSTORU Základní pojmy: Parametrické vyjádření přímky, roviny Obecná rovnice roviny Vzájemná poloha přímek a rovin Odchylka přímek a rovin Vzdálenosti www.karlin.mff.cuni.cz/katedry/kdm/diplomky/jan_koncel/

Více

Cvičení z Lineární algebry 1

Cvičení z Lineární algebry 1 Cvičení z Lineární algebry Michael Krbek podzim 2003 2392003 Hodina Jsou dána komplexní čísla z = +2 i a w = 2 i Vyjádřete c algebraickém tvaru (z + w) 3,, (zw), z w 2 Řešte v komplexním oboru rovnice

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI

ROZ1 - Cv. 2 - Fourierova transformace ÚTIA - ZOI Vzorečky Co to je FT? Vzorečky Co to je FT? Transformace signálu z časové (resp. obrazové) reprezentace f(t) do frekvenční reprezentace F(ψ) a zpět. Díky ní můžeme signál analyzovat ve frekvenční oblasti

Více

Mechanika II.A Třetí domácí úkol

Mechanika II.A Třetí domácí úkol Mechanika II.A Třetí domácí úkol (Zadání je částečně ze sbírky: Lederer P., Stejskal S., Březina J., Prokýšek R.: Sbírka příkladů z kinematiky. Skripta, vydavatelství ČVUT, 2003.) Vážené studentky a vážení

Více

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b.

x 2 = a 2 + tv 2 tedy (a 1, a 2 ) T + [(v 1, v 2 )] T A + V Příklad. U = R n neprázdná množina řešení soustavy Ax = b. 1. Afinní podprostory 1.1. Motivace. Uvažujme R 3. Jeho všechny vektorové podprostory jsou počátek, přímky a roviny procházející počátkem a celé R 3. Chceme-li v R 3 dělat geometrii potřebujeme i jiné

Více

Pracovní text a úkoly ke cvičením MF002

Pracovní text a úkoly ke cvičením MF002 Pracovní text a úkoly ke cvičením MF002 Ondřej Pokora, PřF MU, Brno 11. března 2013 1 Brownův pohyb (Wienerův proces) Základním stavebním kamenem simulací náhodných procesů popsaných pomocí stochastických

Více

ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT

ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ROZ II cv. 01 Dekonvoluce KM - FJFI - ČVUT ZS 2013 ÚTIA - ZOI zoi.utia.cas.cz Kontakty Ústav teorie informace a automatizace AV ČR, v.v.i. http://www.utia.cas.cz Zpracování obrazové informace http://zoi.utia.cas.cz

Více

Linearní algebra příklady

Linearní algebra příklady Linearní algebra příklady 6. listopadu 008 9:56 Značení: E jednotková matice, E ij matice mající v pozici (i, j jedničku a jinak nuly. [...]... lineární obal dané soustavy vektorů. Popište pomocí maticového

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

Laboratorní úloha č. 8: Elektroencefalogram

Laboratorní úloha č. 8: Elektroencefalogram Laboratorní úloha č. 8: Elektroencefalogram Cíle úlohy: Rozložení elektrod při snímání EEG signálu Filtrace EEG v časové oblasti o Potlačení nf a vf rušení o Alfa aktivita o Artefakty Spektrální a korelační

Více

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y

(3) vnitřek čtyřúhelníka tvořeného body [0, 0], [2, 4], [4, 0] a [3, 3]. (2) těleso ohraničené rovinami x = 1, y = 0 z = x a z = y 3. Násobné integrály 3.. Oblasti v R. Načrtněte množinu R a najděte meze integrálů f(x, y)dxdy, kde je dána: () = {(x, y) : x, y 3} () vnitřek trojúhelníka tvořeného body [, ], [, ] a [, ]. (3) vnitřek

Více

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného)

Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) Vyhodnocení 2D rychlostního pole metodou PIV programem Matlab (zpracoval Jan Kolínský, dle programu ing. Jana Novotného) 1 Obecný popis metody Particle Image Velocimetry, nebo-li zkráceně PIV, je měřící

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky

Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky 6. Vázané a absolutní extrémy. 01-a3b/6abs.tex Hledáme lokální extrémy funkce vzhledem k množině, která je popsána jednou či několika rovnicemi, vazebními podmínkami. Pokud jsou podmínky jednoduché, vyřešíme

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra

R β α. Obrázek 1: Zadání - profil složený ze třech elementárních obrazců: 1 - rovnoramenný pravoúhlý trojúhelník, 2 - čtverec, 3 - kruhová díra Zadání: Vypočtěte polohu těžiště, momenty setrvačnosti a deviační moment k centrálním osám a dále určete hlavní centrální momenty setrvačnosti, poloměry setrvačnosti a natočení hlavních centrálních os

Více

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést Úlohy k zamyšlení 1. Zdůvodněte, proč třetí řádek Hornerova schématu pro vyhodnocení polynomu p v bodě c obsahuje koeficienty polynomu r, pro který platí p(x) = (x c) r(x) + p(c). 2. Dokažte, že pokud

Více

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2

[obrázek γ nepotřebujeme, interval t, zřejmý, integrací polynomu a per partes vyjde: (e2 + e) + 2 ln 2. (e ln t = t) ] + y2 4.1 Křivkový integrál ve vektrovém poli přímým výpočtem 4.1 Spočítejte práci síly F = y i + z j + x k při pohybu hmotného bodu po orientované křivce, která je dána jako oblouk ABC na průnikové křivce ploch

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

Primární zpracování radarového signálu dopplerovská filtrace

Primární zpracování radarového signálu dopplerovská filtrace ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE K13137 - Katedra radioelektroniky A2M37RSY Jméno Stud. rok Stud. skupina Ročník Lab. skupina Václav Dajčar 2011/2012 2. 101 - Datum zadání Datum odevzdání Klasifikace

Více

17 Kuželosečky a přímky

17 Kuželosečky a přímky 17 Kuželosečky a přímky 17.1 Poznámka: Polára bodu M ke kuželosečce Nechť X = [x 0,y 0 ] je bod. Zavedeme následující úpravy: x x 0 x y y 0 y xy (x 0 y + xy 0 )/ x (x 0 + x)/ y (y 0 + y)/ (x m) (x 0 m)(x

Více

Rovnice přímky v prostoru

Rovnice přímky v prostoru Rovnice přímky v prostoru Každá přímka v prostoru je jednoznačně zadána dvěma body. K vyjádření všech bodů přímky lze použít parametrické rovnice. Parametrická rovnice přímky p Pokud A, B jsou dva různé

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7

SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7 SEMESTRÁLNÍ PRÁCE Z X37SAS Zadání č. 7 Daniel Tureček St-lichý týden, 9:15 Zadání Určete periodu signálu s(k), určete stejnosměrnou složku, výkon, autokorelační funkci. Záznam signálu je v souboru persig2.

Více

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz 1/15 ANALYTICKÁ GEOMETRIE Základní pojmy: Soustava souřadnic v rovině a prostoru Vzdálenost bodů, střed úsečky Vektory, operace s vektory, velikost vektoru, skalární součin Rovnice přímky Geometrie v rovině

Více

ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ

ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ ELIMINACE VLIVU DRUHÉ ROTACE PŘI AFINNĚ INVARIANTNÍM 2D ROZPOZNÁVÁNÍ K. Nováková 1, J. Kukal 1,2 1 Fakulta jaderná a fyzikálně inženýrská, ČVUT v Praze 2 Ústav počítačové a řídicí techniky, VŠCHT Praha

Více

Cvičné texty ke státní maturitě z matematiky

Cvičné texty ke státní maturitě z matematiky Cvičné texty ke státní maturitě z matematiky Pracovní listy s postupy řešení Brno 2010 RNDr. Rudolf Schwarz, CSc. Státní maturita z matematiky Úloha 1 1. a = s : 45 = 9.10180 45 = 9.101+179 45 = 9.10.10179

Více

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č.

Operace s obrazem I. Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno. prezentace je součástí projektu FRVŠ č. Operace s obrazem I Biofyzikální ústav Lékařské fakulty Masarykovy univerzity Brno prezentace je součástí projektu FRVŠ č.2487/2011 Osnova 1 Filtrování obrazu 2 Lineární a nelineární filtry 3 Fourierova

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

12 Trojný integrál - Transformace integrálů

12 Trojný integrál - Transformace integrálů Trojný integrál transformace integrálů) - řešené příklady 8 Trojný integrál - Transformace integrálů. Příklad Spočtěte x + y dxdydz, kde : z, x + y. Řešení Integrační obor určený vztahy z, x + y je válec.

Více

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou

I. Diferenciální rovnice. 3. Rovnici y = x+y+1. převeďte vhodnou transformací na rovnici homogenní (vzniklou Typy příkladů pro I. část písemky ke zkoušce z MA II I. Diferenciální rovnice. 1. Určete obecné řešení rovnice y = y sin x.. Určete řešení rovnice y = y x splňující počáteční podmínku y(1) = 0. 3. Rovnici

Více

Výpočet průsečíků paprsku se scénou

Výpočet průsečíků paprsku se scénou Výpočet průsečíků paprsku se scénou 1996-2008 Josef Pelikán, MFF UK Praha http://cgg.ms.mff.cuni.cz/~pepca/ Josef.Pelikan@mff.cuni.cz NPGR004, intersection.pdf 2008 Josef Pelikán, http://cgg.ms.mff.cuni.cz/~pepca

Více

Zadání. Goniometrie a trigonometrie

Zadání. Goniometrie a trigonometrie GONIOMETRIE A TRIGONOMETRIE Zadání Sestrojte graf funkce. Určete definiční obor R, obor hodnot H, určete interval, v němž funkce roste, v němž klesá. Určete souřadnice průsečíků s osou x a s osou y. )

Více

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly.

Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Kinematika rektifikace oblouku (Sobotkova a Kochaňského), prostá cykloida, prostá epicykloida, úpatnice paraboly. Výpočty trajektorií bodů při složených pohybech. Příklad 1: Je dána kružnice k s poloměrem

Více

Projektivní geometrie. Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni

Projektivní geometrie. Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Metody Počítačového Vidění (MPV) - 3D počítačové vidění Projektivní geometrie Ing. Zdeněk Krňoul, Ph.D. Katedra Kybernetiky Fakulta aplikovaných věd Západočeská univerzita v Plzni Metody Počítačového Vidění

Více

geekovo minimum počítačového Nadpis 1 Nadpis 2 Nadpis 3

geekovo minimum počítačového  Nadpis 1 Nadpis 2 Nadpis 3 geekovo minimum Nadpis 1 Nadpis 2 Nadpis 3 počítačového vidění Adam Herout (doc. Jméno Ing. Příjmení Ph.D.) Vysoké učení technické v Brně, Fakulta informačních technologií v Brně Vysoké učení technické

Více

KONSTRUKTIVNÍ GEOMETRIE

KONSTRUKTIVNÍ GEOMETRIE KONSTRUKTIVNÍ GEOMETRIE Přednáška Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)

Více

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů.

Trojúhelníky. a jejich různé středy. Součet vnitřních úhlů trojúhelníku = 180 neboli π radiánů. Úvod V této knize předkládáme čtenáři základní matematické a fyzikální vzorce v přívětivé a snadno použitelné podobě. Využití čísel a symbolů k modelování, předpovídání a ovládání reality je mocnou zbraní

Více

Obecný Hookeův zákon a rovinná napjatost

Obecný Hookeův zákon a rovinná napjatost Obecný Hookeův zákon a rovinná napjatost Základní rovnice popisující napěťově-deformační chování materiálu při jednoosém namáhání jsou Hookeův zákon a Poissonův zákon. σ = E ε odtud lze vyjádřit také poměrnou

Více

Deformace rastrových obrázků

Deformace rastrových obrázků Deformace rastrových obrázků 1997-2011 Josef Pelikán CGG MFF UK Praha pepca@cgg.mff.cuni.cz http://cgg.mff.cuni.cz/~pepca/ Warping 2011 Josef Pelikán, http://cgg.mff.cuni.cz/~pepca 1 / 22 Deformace obrázků

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 +

Příklad: Řešte soustavu lineárních algebraických rovnic 10x 1 + 5x 2 +70x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 100 8x 1 + 9x 2 + Příklad: Řešte soustavu lineárních algebraických rovnic 1x 1 + 5x 2 +7x 3 + 5x 4 + 5x 5 = 275 2x 1 + 7x 2 + 6x 3 + 9x 4 + 6x 5 = 1 A * x = b 8x 1 + 9x 2 + x 3 +45x 4 +22x 5 = 319 3x 1 +12x 2 + 6x 3 + 8x

Více

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ

VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ VZÁJEMNÁ POLOHA DVOU PŘÍMEK V ROVINĚ Dvě přímky v rovině mohou být: různoběžné - mají jediný společný bod, rovnoběžné různé - nemají společný bod, totožné - mají nekonečně mnoho společných bodů. ŘEŠENÉ

Více

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz)

NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe. Adam Novozámský (novozamsky@utia.cas.cz) NPGR032 CVIČENÍ III. Šum a jeho odstranění teorie&praxe Adam Novozámský (novozamsky@utia.cas.cz) TEORIE Šum a jeho odstranění ŠUM Co je to šum v obrázku a jak vzniká? Jaké známe typy šumu? ŠUM V obrázku

Více

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH

MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Krok za krokem k nové maturitě Maturita nanečisto 005 MA4 MANUÁL K ŘEŠENÍ TESTOVÝCH ÚLOH Matematika rozšířená úroveň Vážení vyučující! ředmětoví koordinátoři Centra pro zjišťování výsledků vzdělávání pro

Více

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R

Rovnice přímky. s = AB = B A. X A = t s tj. X = A + t s, kde t R. t je parametr. x = a 1 + ts 1 y = a 2 + ts 2 z = a 3 + ts 3. t R Rovnice přímky Přímka p je určená dvěma různými body (A, B)(axiom) směrový vektor nenulový rovnoběžný (kolineární) s vektorem s = AB = B A pro libovolný bod X na přímce platí: X A = t s tj. Vektorová rovnice

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Zadání domácích úkolů a zápočtových písemek

Zadání domácích úkolů a zápočtových písemek Konstruktivní geometrie (KG-L) Zadání domácích úkolů a zápočtových písemek Sestrojte elipsu, je-li dáno a = 5cm a b = 3cm. V libovolném bodě sestrojte její tečnu. Tento úkol je na krásu, tj. udělejte oskulační

Více

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY

3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY 3. ÚVOD DO ANALYTICKÉ GEOMETRIE 3.1. ANALYTICKÁ GEOMETRIE PŘÍMKY V této kapitole se dozvíte: jak popsat bod v rovině a v prostoru; vzorec na výpočet vzdálenosti dvou bodů; základní tvary rovnice přímky

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

Lineární algebra s Matlabem cvičení 3

Lineární algebra s Matlabem cvičení 3 Lineární algebra s Matlabem cvičení 3 Grafika v Matlabu Základní příkazy figure o vytvoří prázdné okno grafu hold on/hold off o zapne/vypne možnost kreslení více funkcí do jednoho grafu ezplot o slouží

Více

γ α β E k r r ρ ρ 0 θ θ G Θ G U( r, t) w(z) w 0 ω z R z U( r, t) 1 c 2 2 U( r, t) t 2 = 0, U( r, t) U( r, t) = E( r, t) U( r, t) = u( r)e iωt. u( r) + k 2 u( r) = 0, k = ω/c u( r) = A exp( i k r), k

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r,

P R O M Í T Á N Í. rovina π - průmětna vektor s r - směr promítání. a // s r, b// s r, P R O M Í T Á N Í Promítání je zobrazení prostorového útvaru do roviny. Je určeno průmětnou a směrem (rovnoběžné) nebo středem (středové) promítání. Princip rovnoběžného promítání rovina π - průmětna vektor

Více

Veronika Chrastinová, Oto Přibyl

Veronika Chrastinová, Oto Přibyl Integrální počet II. Příklady s nápovědou. Veronika Chrastinová, Oto Přibyl 16. září 2003 Ústav matematiky a deskriptivní geometrie FAST VUT Brno Obsah 1 Dvojný integrál 3 2 Trojný integrál 7 3 Křivkový

Více

Modelové úlohy přijímacího testu z matematiky

Modelové úlohy přijímacího testu z matematiky PŘÍRODOVĚDECKÁ FAKULTA UNIVERZITY KARLOVY V PRAZE Modelové úlohy přijímacího testu z matematiky r + s r s r s r + s 1 r2 + s 2 r 2 s 2 ( ) ( ) 1 a 2a 1 + a 3 1 + 2a + 1 ( a b 2 + ab 2 ) ( a + b + b b a

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

Kulová plocha, koule, množiny bodů

Kulová plocha, koule, množiny bodů Kulová plocha, koule, množiny bodů 1.Metodou souřadnic vyšetřete množinu všech bodů X roviny, které mají stejnou vzdálenost od dvou rovnoběžek p, q ležících v rovině. Zvolím p...osa x y =, q... y = 4,

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30

Roman Juránek. Fakulta informačních technologíı. Extrakce obrazových příznaků 1 / 30 Extrakce obrazových příznaků Roman Juránek Ústav počítačové grafiky a multimédíı Fakulta informačních technologíı Vysoké Učení technické v Brně Extrakce obrazových příznaků 1 / 30 Motivace Účelem extrakce

Více

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)

Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) 22.

Více

11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina.

11MAMY LS 2017/2018. Úvod do Matlabu. 21. února Skupina 01. reseni2.m a tak dále + M souborem zadané funkce z příkladu 3 + souborem skupina. 11MAMY LS 2017/2018 Cvičení č. 2: 21. 2. 2018 Úvod do Matlabu. Jan Přikryl 21. února 2018 Po skupinách, na které jste se doufám rozdělili samostatně včera, vyřešte tak, jak nejlépe svedete, níže uvedená

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Michal Zamboj. January 4, 2018

Michal Zamboj. January 4, 2018 Meziřádky mezi kuželosečkami - doplňkový materiál k přednášce Geometrie Michal Zamboj January 4, 018 Pozn. Najdete-li chybu, neváhejte mi napsat, může to ušetřit tápání Vašich kolegů. Pozn. v dokumentu

Více

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH

DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH DIPLOMOVÁ PRÁCE OPTIMALIZACE MECHANICKÝCH VLASTNOSTÍ MECHANISMU TETRASPHERE Vypracoval: Jaroslav Štorkán Vedoucí práce: prof. Ing. Michael Valášek, DrSc. CÍLE PRÁCE Sestavit programy pro kinematické, dynamické

Více

Vzdálenosti a východ Slunce

Vzdálenosti a východ Slunce Vzdálenosti a východ Slunce Zdeněk Halas KDM MFF UK, 2011 Aplikace matem. pro učitele Zdeněk Halas (KDM MFF UK, 2011) Vzdálenosti a východ Slunce Aplikace matem. pro učitele 1 / 8 Osnova Zdeněk Halas (KDM

Více

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16

Matematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16 Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.

Více

Odchylka ekliptiky od roviny Galaxie

Odchylka ekliptiky od roviny Galaxie Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy, Plasy 2 Gymnázium Botičská, Praha 3 Gymnázium Nad Štolou, Praha Týden Vědy, 2010 Jiří Kapr 1, Jakub Fuis 2, Tomáš Bárta 3 1 Gymnázium Plasy,

Více

10. cvičení z Matematické analýzy 2

10. cvičení z Matematické analýzy 2 . cvičení z Matematické analýzy 3. - 7. prosince 8. (dvojný integrál - Fubiniho věta Vhodným způsobem integrace spočítejte daný integrál a načrtněte oblast integrace (a (b (c y ds, kde : y & y 4. e ma{,y

Více

Hledání úhlů se známou hodnotou goniometrické funkce

Hledání úhlů se známou hodnotou goniometrické funkce 4 Hledání úhlů se známou hodnotou goniometrické funkce Předpoklady: 40 Př : Najdi všechny úhly x 0;π ), pro které platí sin x = Postřeh: Obrácená úloha než dosud Zatím jsme hledali pro úhly hodnoty goniometrických

Více

Substituce ve vícenásobném integrálu verze 1.1

Substituce ve vícenásobném integrálu verze 1.1 Úvod Substituce ve vícenásobném integrálu verze. Následující text popisuje výpočet vícenásobných integrálů pomocí věty o substituci. ěl by sloužit především studentům předmětu ATEAT k přípravě na zkoušku.

Více

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které

Kapitola 5. Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které Kapitola 5 Kuželosečky Seznámíme se ze základními vlastnostmi elipsy, hyperboly a paraboly, které společně s kružnicí jsou známy pod společným názvem kuželosečky. Říká se jim tak proto, že každou z nich

Více

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2

Geometrie v R n. z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2 Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.

Více

Geometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2

Geometrie v R n. student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje. (b d)2 + (c a) 2 Geometrie v R n Začněme nejjednodušší úlohou: Vypočtěme vzdálenost dvou bodů v rovině. Použijeme příkaz distance z balíku student. Poznamenejme, že vlastně počítáme délku úsečky, která oba body spojuje.

Více

Křivky kolem nás. Webinář. 20. dubna 2016

Křivky kolem nás. Webinář. 20. dubna 2016 Křivky kolem nás Webinář 20. dubna 2016 Přístup k funkcím Funkce (zobrazení) Předpis, který přiřazuje jedné hodnotě x hodnotu y = f (x). Je to množina F uspořádaných dvojic (x, y) takových, že pokud (x,

Více

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse

Filip Hroch. Astronomické pozorování. Filip Hroch. Výpočet polohy planety. Drahové elementy. Soustava souřadnic. Pohyb po elipse ÚTFA,Přírodovědecká fakulta MU, Brno, CZ březen 2005 březnového tématu Březnové téma je věnováno klasické sférické astronomii. Úkol se skládá z měření, výpočtu a porovnání výsledků získaných v obou částech.

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

Funkce a základní pojmy popisující jejich chování

Funkce a základní pojmy popisující jejich chování a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny

Více

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK

FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK FAKULTA STAVEBNÍ VUT V BRNĚ PŘIJÍMACÍ ŘÍZENÍ PRO AKADEMICKÝ ROK 00 007 TEST Z MATEMATIKY PRO PŘIJÍMACÍ ZKOUŠKY ČÍSLO FAST-M-00-0. tg x + cot gx a) sinx cos x b) sin x + cos x c) d) sin x e) +. sin x cos

Více

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech."

Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: Grafická data jsou u 2D vektorové grafiky uložena ve voxelech. Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Grafická data jsou u 2D vektorové grafiky uložena ve voxelech." Téma: Vektorová grafika. Určete pravdivost následujícího tvrzení: "Na

Více

Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský. Cesta k vědě 19.6.2011

Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský. Cesta k vědě 19.6.2011 Studium dynamických jevů v termickém plazmatu Rost Marek, Záruba Lukáš školitelé: Z. Sekerešová, J. Šonský Cesta k vědě 19.6.2011 M. Rost, L. Záruba (CkV) Studium jevů v plazmatu 19.6.2011 1 / 28 Obsah

Více

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci)

Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) 2. Diferenciál funkce, tečná rovina. Diferenciál funkce dvou proměnných. Má-li funkce f = f(x, y) spojité parciální derivace v bodě a, pak lineární formu (funkci) df(a, h) = x (a)h + (a)h 2, h = (h, h

Více

11. cvičení z Matematiky 2

11. cvičení z Matematiky 2 11. cvičení z Mateatiky. - 6. května 16 11.1 Vypočtěte 1 x + y + z dv, kde : x + y + z 1. Věta o substituci á analogický tva a podínky pouze zanedbatelné nožiny nyní zahnují i plochy, oviny atd.: f dv

Více

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KYBERNETIKA, AUTOMATIZACE A MĚŘENÍ. MRBT Projekt

FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KYBERNETIKA, AUTOMATIZACE A MĚŘENÍ. MRBT Projekt FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ KYBERNETIKA, AUTOMATIZACE A MĚŘENÍ MRBT Projekt S11. Jízda po čáře - optické snímání čáry Vypracoval: Program: Obor: Vedoucí:

Více

1 Základní funkce pro zpracování obrazových dat

1 Základní funkce pro zpracování obrazových dat 1 Základní funkce pro zpracování obrazových dat 1.1 Teoretický rozbor 1.1.1 Úvod do zpracování obrazu v MATLABu MATLAB je primárně určen pro zpracování a analýzu numerických dat. Pro analýzu obrazových

Více

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík

ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE. Matematika 0A1. Cvičení, zimní semestr. Samostatné výstupy. Jan Šafařík Vysoké učení technické v Brně Stavební fakulta ÚSTAV MATEMATIKY A DESKRIPTIVNÍ GEOMETRIE Matematika 0A1 Cvičení, zimní semestr Samostatné výstupy Jan Šafařík Brno c 2003 Obsah 1. Výstup č.1 2 2. Výstup

Více