Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)

Rozměr: px
Začít zobrazení ze stránky:

Download "Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor)"

Transkript

1 Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Přímá a inverzní kinematika manipulátoru pro NDT (implementační poznámky) (varianta 2: RRPR manipulátor) Martin Švejda msvejda@kky.zcu.cz

2 Obsah 1 Popis manipulátoru 3 2 Přímá (PKÚ) a inverzní (IKÚ) kinematická úloha PKÚ: {θ 1, θ 2, d 3, θ 4 } {X, Y, Z, φ} IKÚ: Přímá okamžitá (PKÚ) a inverzní okamžitá (IKÚ) kinematická úloha POKÚ: IOKÚ: Singulární polohy, pracovní prostor manipulátoru 8 2

3 1 Popis manipulátoru Sériový manipulátor v druhé variantě je tvořen třemi rotačními aktuátory a jedním aktuátorem prizmatickým (manipulátor typu RRPR). První kloub manipulátoru opět reprezentuje pojezd po potrubí kruhového průřezu. Koncový efektor manipulátoru opět umožňuje posunutí UZ sondy libovolně v prostoru (3 translační DoF) a její orientaci vzhledem k svislé ose pojezdu (1 rotační DoF). Obrázek 1 znázorňuje schématické uspořádání manipulátoru včetně zavedených souřadných systémů dle D-H úmluvy. D-H parametry manipulátoru pro vzájemnou polohu zavedených s.s. na Obrázku 1 lze stanovit následovně: i d i θ i a i α i 1 0 θ 1 a 1 π 2 π 2 0 θ d π θ 4 a 4 0 Tabulka 1: D-H parametry manipulátoru - Varianta 2 Link 3 Link 2 Link 4 Link 1 Obrázek 1: Sériový manipulátor - Varianta 2 (BEZ kompenzace polohy konc. efektoru) Kompenzace polohy koncového efektoru: Vzhledem k tomu, že se předpokládá umístění UZ sondy v nějaké definované poloze, která nemusí být identická s umístěním posledního s.s. manipulátoru F 4, zavádíme tzv. kompenzaci polohy koncového efektoru T 4 e. Jedná se o transformaci z polohy s.s. F 4 (posledního ramena manipulátoru) na s.s. F e (s.s. koncového efektoru = s.s. UZ sondy), viz Obrázek 2. 3

4 Transformační matice T 4 e: T 4 e = R 4 e O 4 e , kde R4 e = cos(φ k ) sin(φ k ) 0 sin(φ k ) cos(φ k ) 0, O 4 e = x k y k z k (1) kde x k, y k, z k definují posunutí s.s. konc. efektoru F e vzhledem k s.s. posledního ramene manipulátoru F 4 a φ je úhel natočení s.s. F e vzhledem k s.s. F 4 okolo osy z 4. Obrázek 2: Kompenzace polohy konc. efektoru Polohy kloubů manipulátoru jsou určeny kloubovými souřadnicemi Q jako: Q = [ θ 1 θ 2 d 3 θ 4 ] T (2) Návrhové parametry manipulátoru ξ představují délky jednotlivých ramen a parametry kompenzace polohy koncového efektoru: ξ = [ a 1 a 4 x k y k z k φ k ] T (3) kde a 1 = O 0 O 1, a 4 = O 3 O 4 a x k, y k, z k a φ k jsou parametry kompenzace polohy konc. efektoru (umístění NDT sondy), viz dále. Poloha koncového efektoru lze popsat zobecněnými souřadnicemi X: X = [ X Y Z φ ] T (4) kde x, y, z jsou souřadnice bodu O e vzhledem k s.s. F 0 a φ je vzájemné natočení s.s. F e a F 1 okolo osy z 1, tedy matice rotace R 1 e = rot(z, φ). 2 Přímá (PKÚ) a inverzní (IKÚ) kinematická úloha 2.1 PKÚ: {θ 1, θ 2, d 3, θ 4 } {X, Y, Z, φ} X = [ X Y Z φ ] T (5) 4

5 X = (( y k cos (θ 4 ) + ( x k a 4 ) sin (θ 4 ) + d 3 ) sin (θ 2 ) + + ((x k + a 4 ) cos (θ 4 ) sin (θ 4 ) y k ) cos (θ 2 ) + a 1 ) cos (θ 1 ) sin (θ 1 ) z k Y = (( y k cos (θ 4 ) + ( x k a 4 ) sin (θ 4 ) + d 3 ) sin (θ 2 ) + + ((x k + a 4 ) cos (θ 4 ) sin (θ 4 ) y k ) cos (θ 2 ) + a 1 ) sin (θ 1 ) + cos (θ 1 ) z k Z = ( y k cos (θ 4 ) + ( x k a 4 ) sin (θ 4 ) + d 3 ) cos (θ 2 ) sin (θ 2 ) ((x k + a 4 ) cos (θ 4 ) sin (θ 4 ) y k ) φ = θ 2 + θ 4 + φ k 2.2 IKÚ: Kloubová souřadnice θ 1 : θ 1 = atan2(y ( ) ( ) ± X 2 + Y 2 zk 2 Xz k, X ± X 2 + Y 2 zk 2 + Y z k ) (6) w x = (( x k a 4 ) cos (φ) + sin (φ) y k ) cos (φ k ) + + ( cos (φ) y k sin (φ) (x k + a 4 )) sin (φ k ) + sin (θ 1 ) Y a 1 + X cos (θ 1 )) (7) w y = ( cos (φ) y k sin (φ) (x k + a 4 )) cos (φ k ) + ((x k + a 4 ) cos (φ) sin (φ) y k ) sin (φ k ) Z (8) Kloubová souřadnice d 3 : Kloubová souřadnice θ 2 : Kloubová souřadnice θ 4 : d 3 = ± wx 2 + wy 2 (9) θ 2 = atan2( w x d 3, w y d 3 ) (10) θ 4 = φ θ 2 φ k (11) 3 Přímá okamžitá (PKÚ) a inverzní okamžitá (IKÚ) kinematická úloha Kinematický jakobián je definován v závislosti na známé poloze kloubových souřadnic Q (potažmo poloze konc. efektoru X, viz IKÚ) jako: kde j 1,1 j 1,2 j 1,3 j 1,4 J = J(Q) = j 2,1 j 2,2 j 2,3 j 2,4 j 3,1 j 3,2 j 3,3 j 3,4 (12) j 4,1 j 4,2 j 4,3 j 4,4 5

6 j1,1 = 1/2 a4 sin ( θ4 + θ1 θ2) 1/2 d3 cos (θ1 θ2) 1/2 a4 sin (θ4 + θ1 + θ2)+1/2 d3 cos (θ1 + θ2)+1/2 ((2 sin (θ4) yk 2 xk cos (θ4)) cos (θ2) 2 a1+ +2 yk sin (θ2) cos (θ4) + 2 xk sin (θ2) sin (θ4)) sin (θ1) cos (θ1) zk j1,2 = 1/2 a4 sin ( θ4 + θ1 θ2) + 1/2 d3 cos (θ1 θ2) 1/2 a4 sin (θ4 + θ1 + θ2) + 1/2 d3 cos (θ1 + θ2) cos (θ1) ((yk cos (θ4) + xk sin (θ4)) cos (θ2) + + sin (θ2) ( sin (θ4) yk + xk cos (θ4))) j1,3 = 1/2 sin (θ1 + θ2) 1/2 sin (θ1 θ2) j1,4 = 1/2 a4 sin ( θ4 + θ1 θ2) 1/2 a4 sin (θ4 + θ1 + θ2) + (( xk sin (θ4) yk cos (θ4)) cos (θ2) + sin (θ2) (sin (θ4) yk xk cos (θ4))) cos (θ1) j2,1 = 1/2 a4 cos ( θ4 + θ1 θ2) 1/2 d3 sin (θ1 θ2)+1/2 a4 cos (θ4 + θ1 + θ2)+1/2 d3 sin (θ1 + θ2)+1/2 ((2 xk cos (θ4) 2 sin (θ4) yk) cos (θ2) + 2 a1 2 yk sin (θ2) cos (θ4) 2 xk sin (θ2) sin (θ4)) cos (θ1) sin (θ1) zk j2,2 = 1/2 a4 cos ( θ4 + θ1 θ2) + 1/2 d3 sin (θ1 θ2) + 1/2 a4 cos (θ4 + θ1 + θ2) + 1/2 d3 sin (θ1 + θ2) + (( xk sin (θ4) yk cos (θ4)) cos (θ2) + + sin (θ2) (sin (θ4) yk xk cos (θ4))) sin (θ1) j2,3 = 1/2 cos (θ1 θ2) 1/2 cos (θ1 + θ2) j2,4 = 1/2 a4 cos ( θ4 + θ1 θ2) + 1/2 a4 cos (θ4 + θ1 + θ2) + (( xk sin (θ4) yk cos (θ4)) cos (θ2) + sin (θ2) (sin (θ4) yk xk cos (θ4))) sin (θ1) 6

7 j3,1 = 0 j3,2 = a4 cos (θ2 + θ4) + ( d3 + yk cos (θ4) + xk sin (θ4)) sin (θ2) + cos (θ2) (sin (θ4) yk xk cos (θ4)) j3,3 = cos (θ2) j3,4 = a4 cos (θ2 + θ4) + yk sin (θ2) cos (θ4) + yk cos (θ2) sin (θ4) xk cos (θ2) cos (θ4) + xk sin (θ2) sin (θ4) j4,1 = 0 j4,2 = 1 j4,3 = 0 j4,4 = 1 7

8 Časová derivace kinematického jakobiánu lze vyjádřit následovně, v závislosti na poloze Q a rychlosti Q kloubových souřadnic: j 1,1 j 1,2 j 1,3 j 1,4 J = J(Q, Q) = j 2,1 j 2,2 j 2,3 j 2,4 j 3,1 j 3,2 j 3,3 j 3,4 (13) j 4,1 j 4,2 j 4,3 j 4,4 kde časové derivace jednotlivých prvků kinematického jakobiánu zde nejsou vypsány. V příloze dokumentu jsou zpracovány v zápisu Matlabu. 3.1 POKÚ: Pro rychlosti: Ẋ = J Q Ẋ θ 1 Ẏ Ż = J θ 2 d 3 (14) φ θ 4 Pro zrychlení: Ẍ = J Q + J Q Ẍ θ 1 θ 1 Ÿ Z = J θ 2 d 3 + J θ 2 d 3 (15) φ θ 4 θ IOKÚ: Pro rychlosti: Q = J 1 Ẋ θ 1 Ẋ θ 2 d 3 = J 1 Ẏ Ż (16) θ 4 φ Pro zrychlení: ) Q = J 1 (Ẍ J Q θ 1 Ẍ θ 1 θ 2 d 3 = J 1 Ÿ Z J θ 2 d 3 (17) θ 4 φ θ 4 4 Singulární polohy, pracovní prostor manipulátoru Manipulátor se může pro některé polohy koncového efektoru nacházet v tzv. singulárních polohách. V těchto polohách dochází ke ztrátě hodnosti matice kinematického jakobiánu J: Rank(J) < min(m, n) nebo ekvivalentně det(j) = 0 (18) kde m resp. n je počet řádků resp. sloupců matice J. 8

9 Tzn., existují nenulové rychlosti kloubových souřadnic manipulátoru Q, při kterých je výsledná rychlost koncového efektoru nulová Ẋ. Jinými slovy, manipulátor v těchto polohách ztrácí (lokálně) DoF koncového efektoru, resp. pro manipulátor v singulární poloze existují směry v prostoru zobecněných souřadnic, ve kterých se koncový efektor nemůže pohybovat s uvažováním konečných rychlostí pohybu aktuátorů. V blízkosti singulárních poloh můžou tak nastávat situace, kdy malé rychlosti zobecněných souřadnic vyvolají nerealizovatelně vysoké požadavky na rychlosti aktuátorů. Z podmínky det(j) = 0 lze dva případy pro robot nacházející se v singulární poloze: Singularita 1: d 3 = 0 Lineární aktuátor je vysunut na nulovou délku, tzn. rotační osy kloubů Joint 2 a joint 4 jsou ztotožněny. Vzhledem k faktu, že plánování pohybu manipulátoru je prováděno při koordinovaném pohybu výhradně v prostoru zobecněných souřadnic, je rozumné zobrazit singularitu nikoliv v prostoru kloubových, ale v prostoru zobecněných souřadnic. Dosazením podmínky pro singulární polohu d 3 = 0 a podmínky závislosti kloubových a zobecněných souřadnic (viz. PKÚ resp.ikú) θ 2 + θ 4 = φ φ k, dostáváme parametrický předpis pro polohu koncového efektoru manipulátoru [ ] T X Y Z při známé orientaci φ, který definuje podmnožinu pracovního prostoru manipulátoru, pro kterou je manipulátoru v singularitě 1. R cos(α) X sing1 = R sin(α) (19) x k sin (φ φ k ) y k cos (φ φ k ) a 4 sin (φ φ k ) kde α 0, 2π a R = (x k + a 4 + y k ) (x k + a 4 y k ) (cos (φ φ k )) (x k + a 4 ) (a 1 y k sin (φ φ k )) cos (φ φ k ) + z k 2 + a y k 2 2 y k sin (φ φ k ) a 1 (20) Podmnožina poloh koncového efektoru má tedy tvar kružnice, jejíž parametry jsou výhradně určeny návrhovými parametry manipulátoru ξ a aktuální požadovanou orientací koncového efektoru φ. Singularita 2: d 3 = (y k cos (θ 4 ) + sin (θ 4 ) (x k + a 4 )) sin (θ 2 ) + (( x k a 4 ) cos (θ 4 ) + y k sin (θ 4 )) cos (θ 2 ) a 1 sin (θ 2 ) V prostoru zobecněných souřadnic singulární polohy odpovídají válcové ploše, parametrizované pouze návrhovými parametry manipulátoru ξ: z k cos(α) X sing2 = z k sin(α) (21) libovolné kde α 0, 2π, φ = libovolné 9

10 Singularita 2 Singularita 1, pro: Obrázek 3: Singulární polohy manipulátoru vyjádřené jako podmnožiny prostoru zobecněných souřadnic (polohy koncového efektoru) koncový efektor koncový efektor (a) Singularita 1 pro φ = 120 o a kinematické parametry ξ = [ 0.65, 0.3, 0.05, 0.03, 0.1, π 2 ] T d 3 = 0 (b) Singularita 2 pro kinematické parametry ξ = [ ] 0.65, 0.3, 0.05, 0.03, 0.1, π T 2 Obrázek 4: Koncový efektor manipulátoru v singulárních polohách 10

11 Reference [1] MapleSoft, Maple. [2] The MathWorks, Matlab. [3] Bláha, L.: Groebnerova báze a teorie řízení. Práce ke státní doktorské zkoušce, Katedra kybernetiky, FAV, ZČU v Plzni, [4] Švejda, M.: Kinematika robotických architektur. Práce ke státní doktorské zkoušce, Katedra kybernetiky, FAV, ZČU v Plzni,

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren

Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Robotické architektury pro účely NDT svarových spojů komplexních potrubních systémů jaderných elektráren Projekt TA ČR č. TA01020457: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních

Více

Technická zpráva. Název projektu: Výukový model pro robotiku. (Číslo projektu: VS ) Název zprávy:

Technická zpráva. Název projektu: Výukový model pro robotiku. (Číslo projektu: VS ) Název zprávy: Technická zpráva Název projektu: Výukový model pro robotiku (Číslo projektu: VS-14-019) Název zprávy: Kinematika a dynamika manipulátoru pro výukové účely Zapsáno (místo, datum): KKY, 30. ledna 2015 Autor:

Více

Průběžná zpráva. Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku:

Průběžná zpráva. Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku: Průběžná zpráva Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku: Zařízení pro kontroly součástí primárního okruhu tlakovodních jaderných reaktorů

Více

Semestrální práce z p edm tu URM (zadání), 2014/2015:

Semestrální práce z p edm tu URM (zadání), 2014/2015: Semestrální práce z p edm tu URM (zadání), 2014/2015: 1. Vyzna te na globusu cestu z jihu Grónska na jih Afriky, viz Obrázek 1. V po áte ní a cílové destinaci bude zapíchnutý ²pendlík sm ující do st edu

Více

Kinematika manipulátorů

Kinematika manipulátorů Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Kinematika manipulátorů 10. 9. 2011 Martin Švejda msvejda@kky.zcu.cz 1 Reprezentace obecného pohybu v robotice......................

Více

ZÁKLADY ROBOTIKY Kinematika a topologie robotů

ZÁKLADY ROBOTIKY Kinematika a topologie robotů ZÁKLADY ROBOTIKY Kinematika a topologie Ing. Josef Černohorský, Ph.D. TECHNICKÁ UNIVERZITA V LIBERCI Fakulta mechatroniky, informatiky a mezioborových studií Tento materiál vznikl v rámci projektu ESF

Více

Mechanika

Mechanika Mechanika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 Mechanika Kinematika 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27

Více

Kinematika robotických architektur

Kinematika robotických architektur ZÁPADOČESKÁ UNIVERZITA V PLZNI Fakulta aplikovaných věd Katedra kybernetiky Kinematika robotických architektur Práce ke státní doktorské zkoušce 2 Martin Švejda msvejda@kky.zcu.cz Obsah Úvod 3. Robotika

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

9.1 Definice a rovnice kuželoseček

9.1 Definice a rovnice kuželoseček 9. Kuželosečky a kvadriky 9.1 Definice a rovnice kuželoseček Kuželosečka - řez na kruhovém kuželi, množina bodů splňujících kvadratickou rovnici ve dvou proměnných. Elipsa parametricky: X(t) = (a cos t,

Více

BROB Základy robotiky. Ing. František Burian, Ph.D. Jan Macháček VUT ID: Martin Pavelka VUT ID:

BROB Základy robotiky. Ing. František Burian, Ph.D. Jan Macháček VUT ID: Martin Pavelka VUT ID: Předmět: BROB Základy robotiky Rok vypracování: 2018 Název projektu: Vedoucí práce: Realizace inverzní kinematiky manipulátoru Ing. František Burian, Ph.D. Autoři projektu: František Majvald VUT ID: 195601

Více

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma

Výukové texty. pro předmět. Automatické řízení výrobní techniky (KKS/ARVT) na téma Výukové texty pro předmět Automatické řízení výrobní techniky (KKS/ARVT) na téma Podklady a grafická vizualizace k určení souřadnicových systémů výrobních strojů Autor: Doc. Ing. Josef Formánek, Ph.D.

Více

Elementární křivky a plochy

Elementární křivky a plochy Příloha A Elementární křivky a plochy A.1 Analytický popis geometrických objektů Geometrické vlastnosti, které jsme dosud studovali, se týkaly především základních geometrických objektů bodů, přímek, rovin

Více

Průběžná zpráva. Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku:

Průběžná zpráva. Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku: Průběžná zpráva Název projektu: CANUT (Centre for Advanced Nuclear Technologies) (Pracovní balíček: PB7) Název balíčku: Zařízení pro kontroly součástí primárního okruhu tlakovodních jaderných reaktorů

Více

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27,

Řešíme tedy soustavu dvou rovnic o dvou neznámých. 2a + b = 3, 6a + b = 27, Přijímací řízení 2015/16 Přírodovědecká fakulta Ostravská univerzita v Ostravě Navazující magisterské studium, obor Aplikovaná matematika (1. červen 2016) Příklad 1 Určete taková a, b R, aby funkce f()

Více

Veličiny charakterizující geometrii ploch

Veličiny charakterizující geometrii ploch Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

1 Analytická geometrie

1 Analytická geometrie 1 Analytická geometrie 11 Přímky Necht A E 3 a v R 3 je nenulový Pak p = A + v = {X E 3 X = A + tv, t R}, je přímka procházející bodem A se směrovým vektorem v Rovnici X = A + tv, t R, říkáme bodová rovnice

Více

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83

Rovnice rovnováhy: ++ =0 x : =0 y : =0 =0,83 Vypočítejte moment síly P = 4500 N k osám x, y, z, je-li a = 0,25 m, b = 0, 03 m, R = 0,06 m, β = 60. Nositelka síly P svírá s tečnou ke kružnici o poloměru R úhel α = 20.. α β P y Uvolnění: # y β! x Rovnice

Více

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2

2D transformací. červen Odvození transformačního klíče vybraných 2D transformací Metody vyrovnání... 2 Výpočet transformačních koeficinetů vybraných 2D transformací Jan Ježek červen 2008 Obsah Odvození transformačního klíče vybraných 2D transformací 2 Meto vyrovnání 2 2 Obecné vyjádření lineárních 2D transformací

Více

Statika. fn,n+1 F = N n,n+1

Statika. fn,n+1 F = N n,n+1 Statika Zkoumá síly a momenty působící na robota v klidu. Uvažuje tíhu jednotlivých ramen a břemene. Uvažuje sílu a moment, kterou působí robot na okolí. Uvažuje konečné tuhosti ramen a kloubů. V našem

Více

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky

l, l 2, l 3, l 4, ω 21 = konst. Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj. analyticky Kinematické řešení čtyřkloubového mechanismu Dáno: Cíl: l, l, l 3, l, ω 1 konst Proved te kinematické řešení zadaného čtyřkloubového mechanismu, tj analyticky určete úhlovou rychlost ω 1 a úhlové zrychlení

Více

1 Veličiny charakterizující geometrii ploch

1 Veličiny charakterizující geometrii ploch 1 Veličiny charakterizující geometrii ploch Jedná se o veličiny charakterizující geometrii průřezu tělesa. Obrázek 1: Těleso v rovině. Těžiště plochy Souřadnice těžiště plochy, na které je hmota rovnoměrně

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA ELEKTROTECHNIKY A KOMUNIKAČNÍCH TECHNOLOGIÍ ÚSTAV AUTOMATIZACE A MĚŘICÍ TECHNIKY FACULTY OF ELECTRICAL ENGINEERING AND COMMUNICATION

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

Kvaterniony, duální kvaterniony a jejich aplikace

Kvaterniony, duální kvaterniony a jejich aplikace 1 / 16 Kvaterniony, duální kvaterniony a jejich aplikace Jitka Prošková Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra matematiky 17. 6. 21 2 / 16 Zadání Základní charakteristika tělesa

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ.

Transformujte diferenciální výraz x f x + y f do polárních souřadnic r a ϕ, které jsou definovány vztahy x = r cos ϕ a y = r sin ϕ. Ukázka 1 Necht má funkce z = f(x, y) spojité parciální derivace. Napište rovnici tečné roviny ke grafu této funkce v bodě A = [ x 0, y 0, z 0 ]. Transformujte diferenciální výraz x f x + y f y do polárních

Více

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt

JEDNOTKY. E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze. Abstrakt SIMULAČNÍ MODEL KLIKOVÉ HŘÍDELE KOGENERAČNÍ JEDNOTKY E. Thöndel, Ing. Katedra mechaniky a materiálů, FEL ČVUT v Praze Abstrakt Crankshaft is a part of commonly produced heat engines. It is used for converting

Více

2. Kinematika bodu a tělesa

2. Kinematika bodu a tělesa 2. Kinematika bodu a tělesa Kinematika bodu popisuje těleso nebo také bod, který se pohybuje po nějaké trajektorii, křivce nebo jinak definované dráze v závislosti na poloze bodu na dráze, rychlosti a

Více

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha.

Kinematika. Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Kinematika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Statika studuje vliv sil působících na robota v klidu a jejich vliv

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV AUTOMOBILNÍHO A DOPRAVNÍHO INŽENÝRSTVÍ FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF AUTOMOTIVE ENGINEERING

Více

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1]

transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím [1] [1] Afinní transformace je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím využití například v počítačové grafice Evropský sociální fond Praha & EU. Investujeme do

Více

Geometrické transformace pomocí matic

Geometrické transformace pomocí matic Geometrické transformace pomocí matic Pavel Strachota FJFI ČVUT v Praze 2. dubna 2010 Obsah 1 Úvod 2 Geometrické transformace ve 2D 3 Geometrické transformace ve 3D Obsah 1 Úvod 2 Geometrické transformace

Více

Přímá a inverzní kinematika otevřených kinematických řetězců. Robotika. Přímá a inverzní kinematika otevřených kinematických řetězců.

Přímá a inverzní kinematika otevřených kinematických řetězců. Robotika. Přímá a inverzní kinematika otevřených kinematických řetězců. Přímá a inverzní kinematika otevřených kinematických řetězců Robotika Přímá a inverzní kinematika otevřených kinematických řetězců Vladimír Smutný Centrum strojového vnímání Český institut informatiky,

Více

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32

Matematika 1 MA1. 1 Analytická geometrie v prostoru - základní pojmy. 4 Vzdálenosti. 12. přednáška ( ) Matematika 1 1 / 32 Matematika 1 12. přednáška MA1 1 Analytická geometrie v prostoru - základní pojmy 2 Skalární, vektorový a smíšený součin, projekce vektoru 3 Přímky a roviny 4 Vzdálenosti 5 Příčky mimoběžek 6 Zkouška;

Více

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE

Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE Západočeská univerzita v Plzni Fakulta aplikovaných věd Katedra kybernetiky DIPLOMOVÁ PRÁCE PLZEŇ, 2017 Bc. ONDŘEJ VANÍČEK Prohlášení Předkládám tímto k posouzení a obhajobě diplomovou práci zpracovanou

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava luk76/la1

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava    luk76/la1 Lineární algebra 5. přednáška: Báze a řešitelnost soustav Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://homel.vsb.cz/ luk76/la1 Text

Více

Vlastní čísla a vlastní vektory

Vlastní čísla a vlastní vektory 5 Vlastní čísla a vlastní vektor Poznámka: Je-li A : V V lineární zobrazení z prostoru V do prostoru V někd se takové zobrazení nazývá lineárním operátorem, pak je přirozeným požadavkem najít takovou bázi

Více

OPTIMALIZACE ROBOTICKÝCH ARCHITEKTUR. Ing. Martin Švejda

OPTIMALIZACE ROBOTICKÝCH ARCHITEKTUR. Ing. Martin Švejda Západočeská univerzita v Plzni Fakulta aplikovaných věd OPTIMALIZACE ROBOTICKÝCH ARCHITEKTUR Ing. Martin Švejda disertační práce k získání akademického titulu Doktor v oboru Kybernetika Školitel: Prof.

Více

TAČR Centrum kompetence CIDAM Survey: Existing methods and tools for optimization of mechatronic systems in terms of structure, parameters and control

TAČR Centrum kompetence CIDAM Survey: Existing methods and tools for optimization of mechatronic systems in terms of structure, parameters and control TAČR Centrum kompetence CIDAM Survey: Existing methods and tools for optimization of mechatronic systems in terms of structure, parameters and control Výzkumná zpráva WP3-D3.17 Martin Švejda 5.1.2015 Abstrakt

Více

Funkce a základní pojmy popisující jejich chování

Funkce a základní pojmy popisující jejich chování a základní pojmy ující jejich chování Pro zobrazení z reálných čísel do reálných čísel se používá termín reálná funkce reálné proměnné. 511 f bude v této části znamenat zobrazení nějaké neprázdné podmnožiny

Více

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA

Rovinné přetvoření. Posunutí (translace) TEORIE K M2A+ULA Rovinné přetvoření Rovinné přetvoření, neboli, jak se také často nazývá, geometrická transformace je vlastně lineární zobrazení v prostoru s nějakou soustavou souřadnic. Jde v něm o přepočet souřadnic

Více

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce

ŠROUBOVICE. 1) Šroubový pohyb. 2) Základní pojmy a konstrukce 1) Šroubový pohyb ŠROUBOVICE Šroubový pohyb vznikne složením dvou pohybů : otočení kolem dané osy o a posunutí ve směru této osy. Velikost posunutí je přitom přímo úměrná otočení. Konstantou této přímé

Více

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity)

Lineární zobrazení. 1. A(x y) = A(x) A(y) (vlastnost aditivity) 2. A(α x) = α A(x) (vlastnost homogenity) 4 Lineární zobrazení Definice: Nechť V a W jsou vektorové prostory Zobrazení A : V W (zobrazení z V do W nazýváme lineárním zobrazením, pokud pro všechna x V, y V a α R platí 1 A(x y = A(x A(y (vlastnost

Více

Základy matematiky pro FEK

Základy matematiky pro FEK Základy matematiky pro FEK 2. přednáška Blanka Šedivá KMA zimní semestr 2016/2017 Blanka Šedivá (KMA) Základy matematiky pro FEK zimní semestr 2016/2017 1 / 20 Co nás dneska čeká... Závislé a nezávislé

Více

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a

DERIVACE. ln 7. Urči, kdy funkce roste a klesá a dále kdy je konkávní a DERIVACE 1. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x 3. Zderivuj funkci y = 3 e sin2 (x 2 ) 4. Zderivuj funkci y = x3 +2x 2 +sin x x 5. Zderivuj funkci y = cos2 x

Více

Průběžná zpráva. Název projektu:

Průběžná zpráva. Název projektu: Průběžná zpráva Název projektu: Výzkum, vývoj a validace univerzální technologie pro potřeby moderních ultrazvukových kontrol svarových spojů komplexních potrubních systémů jaderných elektráren (Číslo

Více

15 Fourierova transformace v hypersférických souřadnicích

15 Fourierova transformace v hypersférických souřadnicích 15 HYPERSFÉRICKÉ SOUŘADNICE 1 15 Fourierova transformace v hypersférických souřadnicích 151 Definice hypersférických souřadnic r, ϑ N,, ϑ 1, ϕ v E N Hypersférické souřadnice souvisejí s kartézskými souřadnicemi

Více

Merkur perfekt Challenge Studijní materiály

Merkur perfekt Challenge Studijní materiály Merkur perfekt Challenge Studijní materiály T: 541 146 120 IČ: 00216305, DIČ: CZ00216305 / www.feec.vutbr.cz/merkur / steffan@feec.vutbr.cz 1 / 15 Název úlohy: Kresba čtyřlístku pomocí robotické ruky Anotace:

Více

Afinní transformace Stručnější verze

Afinní transformace Stručnější verze [1] Afinní transformace Stručnější verze je posunutí plus lineární transformace má svou matici vzhledem k homogenním souřadnicím body a vektory: afinní prostor využití například v počítačové grafice a)

Více

Matematika I 12a Euklidovská geometrie

Matematika I 12a Euklidovská geometrie Matematika I 12a Euklidovská geometrie Jan Slovák Masarykova univerzita Fakulta informatiky 3. 12. 2012 Obsah přednášky 1 Euklidovské prostory 2 Odchylky podprostorů 3 Standardní úlohy 4 Objemy Plán přednášky

Více

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem

7 Transformace 2D. 7.1 Transformace objektů obecně. Studijní cíl. Doba nutná k nastudování. Průvodce studiem 7 Transformace 2D Studijní cíl Tento blok je věnován základním principům transformací v rovinné grafice. V následujícím textu bude vysvětlen rozdíl v přístupu k transformacím u vektorového a rastrového

Více

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ

Přijímací zkoušky z matematiky pro akademický rok 2018/19 NMgr. studium Učitelství matematiky ZŠ, SŠ Přijímací zkoušky z matematiky pro akademický rok 8/9 NMgr studium Učitelství matematiky ZŠ, SŠ Datum zkoušky: Varianta Registrační číslo uchazeče: Příklad 3 4 5 Celkem Body Ke každému příkladu uved te

Více

5. cvičení z Matematiky 2

5. cvičení z Matematiky 2 5. cvičení z Matematiky 2 21.-25. března 2016 5.1 Nalezněte úhel, který v bodě 1, 0, 0 svírají grafy funkcí fx, y ln x 2 + y 2 a gx, y sinxy. Úhel, který svírají grafy funkcí je dán jako úhel mezi jednotlivými

Více

Transformace dat mezi různými datovými zdroji

Transformace dat mezi různými datovými zdroji Transformace dat mezi různými datovými zdroji Zpracovali: Datum prezentace: BUČKOVÁ Dagmar, BUC061 MINÁŘ Lukáš, MIN075 09. 04. 2008 Obsah Základní pojmy Souřadnicové systémy Co to jsou transformace Transformace

Více

Lineární algebra : Změna báze

Lineární algebra : Změna báze Lineární algebra : Změna báze (13. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 8. dubna 2014, 10:47 1 2 13.1 Matice přechodu Definice 1. Nechť X = (x 1,..., x n ) a Y = (y 1,...,

Více

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení

(0, y) 1.3. Základní pojmy a graf funkce. Nyní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení .. Výklad Nní se již budeme zabývat pouze reálnými funkcemi reálné proměnné a proto budeme zobrazení M R, kde M R nazývat stručně funkce. Zopakujeme, že funkce je každé zobrazení f : M R, M R, které každému

Více

Příklady pro předmět Aplikovaná matematika (AMA) část 1

Příklady pro předmět Aplikovaná matematika (AMA) část 1 Příklady pro předmět plikovaná matematika (M) část 1 1. Lokální extrémy funkcí dvou a tří proměnných Nalezněte lokální extrémy funkcí: (a) f 1 : f 1 (x, y) = x 3 3x + y 2 + 2y (b) f 2 : f 2 (x, y) = 1

Více

Modelování blízkého pole soustavy dipólů

Modelování blízkého pole soustavy dipólů 1 Úvod Modelování blízkého pole soustavy dipólů J. Puskely, Z. Nováček Ústav radioelektroniky, Fakulta elektrotechniky a komunikačních technologií, VUT v Brně Purkyňova 118, 612 00 Brno Abstrakt Tento

Více

Lineární algebra : Metrická geometrie

Lineární algebra : Metrická geometrie Lineární algebra : Metrická geometrie (16. přednáška) František Štampach, Karel Klouda LS 2013/2014 vytvořeno: 6. května 2014, 10:42 1 2 Úvod Zatím jsme se lineární geometrii věnovali v kapitole o lineárních

Více

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava

Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava Lineární algebra 9. přednáška: Ortogonalita Dalibor Lukáš Katedra aplikované matematiky FEI VŠB Technická univerzita Ostrava email: dalibor.lukas@vsb.cz http://www.am.vsb.cz/lukas/la Text byl vytvořen

Více

3.2. ANALYTICKÁ GEOMETRIE ROVINY

3.2. ANALYTICKÁ GEOMETRIE ROVINY 3.2. ANALYTICKÁ GEOMETRIE ROVINY V této kapitole se dozvíte: jak popsat rovinu v třídimenzionálním prostoru; jak analyzovat vzájemnou polohu bodu a roviny včetně jejich vzdálenosti; jak analyzovat vzájemnou

Více

Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni

Technická zpráva Katedra kybernetiky, Fakulta aplikovaných věd Západočeská univerzita v Plzni Technická zpráva Kaedra kyberneiky, Fakula aplikovaných věd Západočeská univerzia v Plzni Kinemaická a dynamická analýza roboických archiekur pro pořeby moderních ulrazvukových konrol svarových spojů komplexních

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.

INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28. INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ Modernizace studijního programu Matematika na PřF Univerzity Palackého v Olomouci CZ.1.07/2.2.00/28.0141 Báze vektorových prostorů, transformace souřadnic Michal Botur Přednáška

Více

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m.

Matice. Je dána matice A R m,n, pak máme zobrazení A : R n R m. Matice lineárních zobrazení [1] Připomenutí Zobrazení A : L 1 L 2 je lineární, když A( x + y ) = A( x ) + A( y ), A(α x ) = α A( x ). Což je ekvivalentní s principem superpozice: A(α 1 x 1 + + α n x n

Více

7 Analytické vyjádření shodnosti

7 Analytické vyjádření shodnosti 7 Analytické vyjádření shodnosti 7.1 Analytická vyjádření shodných zobrazení v E 2 Osová souměrnost Osová souměrnost O(o) podle osy o s obecnou rovnicí o : ax + by + c =0: x = x 2a (ax + by + c) a 2 +

Více

VIDEOSBÍRKA DERIVACE

VIDEOSBÍRKA DERIVACE VIDEOSBÍRKA DERIVACE. Zderivuj funkci y = ln 2 (sin x + tg x 2 ) 2. Zderivuj funkci y = 2 e x2 cos x. Zderivuj funkci y = e sin2 (x 2 ). Zderivuj funkci y = x +2x 2 +sin x x 5. Zderivuj funkci y = cos2

Více

Dvojné a trojné integrály příklad 3. x 2 y dx dy,

Dvojné a trojné integrály příklad 3. x 2 y dx dy, Spočtěte = { x, y) ; 4x + y 4 }. Dvojné a trojné integrály příklad 3 x y dx dy, Řešení: Protože obor integrace je symetrický vzhledem k ose x, tj. vzhledem k substituci [x; y] [x; y], a funkce fx, y) je

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Tvorba výpočtového modelu MKP

Tvorba výpočtového modelu MKP Tvorba výpočtového modelu MKP Jaroslav Beran (KTS) Modelování a simulace Tvorba výpočtového modelu s využitím MKP zahrnuje: Tvorbu (import) geometrického modelu Generování sítě konečných prvků Definování

Více

Diferenciáln. lní geometrie ploch

Diferenciáln. lní geometrie ploch Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní

Více

Rozdíly mezi MKP a MHP, oblasti jejich využití.

Rozdíly mezi MKP a MHP, oblasti jejich využití. Rozdíly mezi, oblasti jejich využití. Obě metody jsou vhodné pro určitou oblast problémů. základě MKP vyžaduje rozdělení těles na vhodný počet prvků, jejichž analýza je poměrně snadná a pro většinu částí

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

Mechanika. Použité pojmy a zákony mohou být použity na jakékoliv mechanické stroje.

Mechanika. Použité pojmy a zákony mohou být použity na jakékoliv mechanické stroje. Mechanika Kinematika studuje geometrii pohybu robotu a trajektorie, po kterých se pohybují jednotlivé body. Klíčový pojem je poloha. Statika studuje vliv sil působících na robota v klidu a jejich vliv

Více

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1,

MATEMATIKA III. π π π. Program - Dvojný integrál. 1. Vypočtěte dvojrozměrné integrály v obdélníku D: ( ), (, ): 0,1, 0,3, (2 4 ), (, ) : 1,3, 1,1, MATEMATIKA III Program - vojný integrál. Vpočtěte dvojrozměrné integrál v obdélníku : + dd = { < > < > } ( 3), (, ) : 0,, 0,, dd = { < > < > } ( 4 ), (, ) :,3,,, + dd = { < > < > } ( ), (, ):,0,,, + dd=

Více

III. MKP vlastní kmitání

III. MKP vlastní kmitání Jiří Máca - katedra mechaniky - B325 - tel. 2 2435 4500 maca@fsv.cvut.cz III. MKP vlastní kmitání 1. Rovnice vlastního kmitání 2. Rayleighova Ritzova metoda 3. Jacobiho metoda 4. Metoda inverzních iterací

Více

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u.

příkladů do cvičení. V textu se objeví i pár detailů, které jsem nestihl (na které jsem zapomněl) a(b u) = (ab) u, u + ( u) = 0 = ( u) + u. Několik řešených příkladů do Matematiky Vektory V tomto textu je spočteno několik ukázkových příkladů které vám snad pomohou při řešení příkladů do cvičení. V textu se objeví i pár detailů které jsem nestihl

Více

5. Lokální, vázané a globální extrémy

5. Lokální, vázané a globální extrémy 5 Lokální, vázané a globální extrémy Studijní text Lokální extrémy 5 Lokální, vázané a globální extrémy Definice 51 Řekneme, že f : R n R má v bodě a Df: 1 lokální maximum, když Ka, δ Df tak, že x Ka,

Více

Shodnostní Helmertova transformace

Shodnostní Helmertova transformace Shodnostní Helmertova transformace Toto pojednání ukazuje, jak lze určit transformační koeficienty Helmertovy transformace za požadavku, aby představovaly shodnostní transformaci. Pro jednoduchost budeme

Více

Circular Harmonics. Tomáš Zámečník

Circular Harmonics. Tomáš Zámečník Circular Harmonics Tomáš Zámečník Úvod Circular Harmonics Reprezentace křivky, která je: podmonožinou RxR uzavřená funkcí úhlu na intervalu Dále budeme hovořit pouze o takovýchto křivkách/funkcích

Více

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému

0 = 2e 1 (z 3 1)dz + 3z. z=0 z 3 4z 2 + 3z + rez. 4. Napište Fourierův rozvoj vzhledem k trigonometrickému systému periodickému 2 1 1 0.8 0.6 0.4 0.2 0.2 0.4 0.6 0.8 1 x 1 2 Jméno a příjmení: ID.č. 9.5.2016 1. Řešte diferenciální rovnici: y + 2xy x 2 + 3 = sin x x 2 + 3. y = C cos x x 2 + 1 2. Vypočtěte z 2 e z dz, kde je křivka

Více

Kinematika pístní skupiny

Kinematika pístní skupiny Kinematika pístní skupiny Centrický mechanismus s = r( cos(α)) + l [ ( λ 2 sin 2 α) 2] Dva členy z binomické řady s = r [( cos (α)) + λ ( cos (2α))] 4 I. harmonická s I = r( cos (α)) II. harmonická s II

Více

1 Báze a dimenze vektorového prostoru 1

1 Báze a dimenze vektorového prostoru 1 1 Báze a dimenze vektorového prostoru 1 Báze a dimenze vektorového prostoru 1 2 Aritmetické vektorové prostory 7 3 Eukleidovské vektorové prostory 9 Levá vnější operace Definice 5.1 Necht A B. Levou vnější

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi.

Z teorie je nutné znát pojmy: lineární funkcionál, jádro, hodnost a defekt lineárního funkcionálu. Také využijeme 2. větu o dimenzi. Lineární funkcionál Z teorie je nutné znát pojm: lineární funkcionál jádro hodnost a defekt lineárního funkcionálu Také vužijeme větu o dimenzi [cvičení] Nechť je definován funkcionál ϕ : C C pro každé

Více

SIMULAČNÍ MODELOVÁNÍ PARALELNÍHO MECHANISMU TYPU RPR

SIMULAČNÍ MODELOVÁNÍ PARALELNÍHO MECHANISMU TYPU RPR VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ BRNO UNIVERSITY OF TECHNOLOGY FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY FACULTY OF MECHANICAL ENGINEERING INSTITUTE OF SOLID MECHANICS,

Více

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5.

1. výpočet reakcí R x, R az a R bz - dle kapitoly 3, q = q cosα (5.1) kolmých (P ). iz = P iz sinα (5.2) iz = P iz cosα (5.3) ix = P ix cosα (5. Kapitola 5 Vnitřní síly přímého šikmého nosníku Pojem šikmý nosník je používán dle publikace [1] pro nosník ležící v souřadnicové rovině xz, který je vůči vodorovné ose x pootočen o úhel α. Pro šikmou

Více

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH

PRUŽNOST A PEVNOST 2 V PŘÍKLADECH VYSOKÁ ŠKOLA BÁŇSKÁ TECNICKÁ UNIVEZITA OSTAVA FAKULTA STOJNÍ PUŽNOST A PEVNOST V PŘÍKLADEC Kvadratický moment I doc. Ing. Karel Frydrýšek, Ph.D., ING-PAED IGIP Ing. Milan Sivera Ing. ichard Klučka Ing.

Více

Rotace ve 3D a kvaterniony. Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16

Rotace ve 3D a kvaterniony. Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16 Rotace ve 3D a kvaterniony Eva Blažková a Zbyněk Šír MÚ UK Eva Blažková a Zbyněk Šír (MÚ UK) - Rotace ve 3D a kvaterniony 1 / 16 Eulerovy úhly http://www.youtube.com/watch?v=upsmnytvqqi Eva Blažková a

Více

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE

PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE PŘEDNÁŠKA 6 INTEGRACE POMOCÍ SUBSTITUCE Příklad Představme si, že máme vypočítat integrál I = f(, y) d dy, M kde M = {(, y) R 2 1 < 2 + y 2 < 4}. y M je mezikruží mezi kružnicemi o poloměru 1 a 2 a se

Více

DEFINICE Z LINEÁRNÍ ALGEBRY

DEFINICE Z LINEÁRNÍ ALGEBRY DEFINICE Z LINEÁRNÍ ALGEBRY Skripta Matematické metody pro statistiku a operační výzkum (Nešetřilová, H., Šařecová, P., 2009). 1. definice Vektorovým prostorem rozumíme neprázdnou množinu prvků V, na které

Více

Zobecněné klínové plochy

Zobecněné klínové plochy Zobecněné klínové plochy Mgr. Jana Vecková Fakulta stavební, ČVUT v Praze Tato práce byla inspirována články Václava Havla [1] - [3] a prací studentů [4]. Moji snahou bylo zobecnit klasické pojetí klínových

Více

PRŮŘEZOVÉ CHARAKTERISTIKY

PRŮŘEZOVÉ CHARAKTERISTIKY . cvičení PRŮŘEZOVÉ CHRKTERISTIKY Poznámka Pojem průřezu zavádíme u prutových konstrukčních prvků. Průřez je rovinný obrazec, který vznikne myšleným řezem vedeným kolmo k podélné ose nedeformovaného prutu,

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace

Vektory a matice. Obsah. Aplikovaná matematika I. Carl Friedrich Gauss. Základní pojmy a operace Vektory a matice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Vektory Základní pojmy a operace Lineární závislost a nezávislost vektorů 2 Matice Základní pojmy, druhy matic Operace s maticemi

Více

3. Obecný rovinný pohyb tělesa

3. Obecný rovinný pohyb tělesa . Obecný rovinný pohyb tělesa Při obecném rovinném pohybu tělesa leží dráhy jeho jednotlivých bodů v navzájem rovnoběžných rovinách. Těmito dráhami jsou obecné rovinné křivky. Všechny body ležící na téže

Více

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy,

označme j = (0, 1) a nazvěme tuto dvojici imaginární jednotkou. Potom libovolnou (x, y) = (x, 0) + (0, y) = (x, 0) + (0, 1)(y, 0) = x + jy, Komplexní čísla Množinu všech uspořádaných dvojic (x, y) reálných čísel x, y nazýváme množinou komplexních čísel C, jestliže pro každé dvě takové dvojice (x, y ), (x 2, y 2 ) je definována rovnost, sčítání

Více

1. Přímka a její části

1. Přímka a její části . Přímka a její části přímka v rovině, v prostoru, přímka jako graf funkce, konstrukce přímky nebo úsečky, analytická geometrie přímky, přímka jako tečna grafu, přímka a kuželosečka Přímka v rovině a v

Více