Limita a spojitost funkce
|
|
- Peter Ovčačík
- před 9 lety
- Počet zobrazení:
Transkript
1 Limita a spojitost funkce Základ všší matematik Dana Říhová Mendelu Brno Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu reg. č. CZ..7/2.2./28.2 Obsah Definice it funkce Okoĺı bodu Limita funkce Nevlastní ita Limita v nevlastním bodě 2 Vlastnosti it 3 Spojitost funkce 4 Vlastnosti spojitých funkcí 5 Výpočet it Pravidla pro počítání s itami Spojitá funkce Složená funkce Podíl funkcí Polnom a racionální funkce Karl Theodor Wilhelm Weierstrass
2 Limita funkce - okoĺı bodu Definice (okoĺı bodu) Necht a δ > jsou reálná čísla. Okoĺım bodu nazýváme otevřený interval ( δ, + δ), značíme O δ ( ). δ + δ Jestliže z okoĺı O δ ( ) vjmeme bod, hovoříme o rzím okoĺı bodu, značíme Ōδ( ). δ + δ Rzím okoĺım bodu rozumíme ted množinu ( δ, ) (, + δ). Rzí okoĺı bodu se nazývá také prstencové okoĺı bodu. Definice (jednostranné okoĺı bodu) Necht a δ jsou reálná čísla, δ >. Pravým okoĺım bodu nazýváme interval, + δ). + δ Levým okoĺım bodu nazýváme interval ( δ,. δ Pravým rzím okoĺım bodu nazveme interval (, + δ). + δ Levým rzím okoĺım bodu nazveme interval ( δ, ). δ
3 Příklad (pojem ita) Sledujme chování funkce = v okoĺı bodu = 4. V tomto bodě není 4 daná funkce definovaná: D(f) = R {4}, tj. 4. = = ( 4)( + ) 4 = + 5 Píšeme = 5 4 Pokud jsou hodnot bĺızké číslu 4 (avšak různé od 4), jsou funkční hodnot bĺızké číslu 5. Limita funkce Definice (ita funkce) Řekneme, že funkce f má v bodě R itu L R, jestliže ke každému ε > eistuje δ > takové, že pro všechna z rzího okoĺı Ō δ ( ) bodu platí f() O ε (L). Píšeme f() = L. Nepřesně zápis f() = L znamená, že jsou-li hodnot bĺızké (avšak ), jsou funkční hodnot f() bĺızké L. Hodnota it nezávisí na funkční hodnotě v bodě, funkce v tomto bodě nemusí být vůbec definována. Zvoĺıme-li libovolně úzký pás kolem přímk = L, pak k němu musíme umět najít interval kolem bodu tak, ab graf funkce f na množině ( δ, ) (, + δ) ležel celý ve zvoleném pásu.
4 Poznámka (geometrický význam it) f() = L L + ε L L ε δ + δ V rzím okoĺı bodu probíhá graf funkce f v pásu ohraničeném přímkami = L ε, = L + ε. Šířku 2ε tohoto pásu voĺıme libovolně. Jednostranné it Definice (jednostranné it) Nahradíme-li v definici it rzí okoĺı bodu pravým rzím okoĺım, dostáváme definici it zprava f() = L. + Nahradíme-li v definici it rzí okoĺı bodu levým rzím okoĺım, dostáváme definici it zleva f() = L. Tto it nazýváme jednostranné it. V případě it zleva bereme v úvahu jen bod ležící vlevo od, tj. ( δ, ). V případě it zprava uvažujeme pouze bod ležící vpravo od, tj. (, + δ).
5 Definice (Rozšířená množina reálných čísel) Rozšířenou množinou reálných čísel R rozumíme množinu reálných čísel R rozšířenou o bod a +. Ted R = R {, + }. Bod ± nazýváme nevlastní bod, zatímco bod množin R nazýváme vlastní bod. Pro a R definujeme operace: a + = = a = = + = ( ) ( ) = Je-li a >, pak a =, a ( ) = Je-li a <, pak a =, a ( ) = Nejsou definován operace, ±, ± ± Tto výraz se nazývají neurčité výraz. ( ) = ± = a = a = a není definováno dělení nulou. Variant it Možné variant it vlastní ita ve vlastním bodě: f() = L, nevlastní ita ve vlastním bodě: vlastní ita v nevlastním bodě: nevlastní ita v nevlastním bodě: kde, L R. f() = ±, f() = L, ± f() = ±, ± O itě ve vlastním bodě mluvíme, kdž se přibližuje ke konečnému číslu, a o itě v nevlastním bodě, kdž se bĺıží k + nebo k. O vlastní itě mluvíme, pokud je ita rovna konečnému číslu, a o nevlastní itě, pokud je ita rovna + nebo.
6 Nevlastní ita Definice (nevlastní ita) Funkce f má v bodě R nevlastní itu +, jestliže ke každému číslu h R eistuje δ > takové, že pro všechna z rzího okoĺı Ō δ ( ) bodu platí f() > h. Píšeme f() = +. Funkce f má v bodě R nevlastní itu, jestliže ke každému číslu d R eistuje δ > takové, že pro všechna z rzího okoĺı Ō δ ( ) bodu platí f() < d. Píšeme f() =. Nevlastní ita vjadřuje skutečnost, že v okoĺı bodu funkce neomezeně roste nebo klesá. Analogick s použitím pravého (levého) rzího okoĺı v definici nevlastní it můžeme definovat nevlastní itu zprava (zleva). Poznámka (geometrický význam nevlastní it) f() = + h δ + δ Graf funkce f na množině ( δ, + δ) { } leží celý nad přímkou = h.
7 Příklad (nevlastní ita) 2 = + neeistuje Limita eistuje, i kdž funkce není definována v bodě. + = + a = Limita v nevlastním bodě Definice (ita v nevlastním bodě) Funkce f má v nevlastním bodě + itu L R, jestliže ke každému číslu ε > eistuje číslo k R takové, že pro všechna reálná čísla > k platí f() O ε (L). Píšeme f() = L. + Funkce f má v nevlastním bodě itu L R, jestliže ke každému číslu ε > eistuje číslo m R takové, že pro všechna reálná čísla < m platí f() O ε (L). Píšeme f() = L.
8 Poznámka (geometrický význam it v nevlastním bodě) f() = L + L + ε L L ε k Graf funkce f leží pro každé > k uvnitř pásu o šířce 2ε, který je sestrojen kolem přímk = L. Příklad (ita v nevlastním bodě) + ( + ) =, ( + ) = = +
9 Nevlastní ita v nevlastním bodě Předchozí definici it v nevlastních bodech lze rozšířit i na případ, kd hodnota it bude nevlastní. Příklad (nevlastní ita v nevlastním bodě) ln = e = +, ale e = e e Vlastnosti it Věta (jednoznačnost it) Funkce má v každém bodě nejvýše jednu itu. Věta (souvislost it s jednostrannými itami) Funkce f má ve vlastním bodě itu právě, kdž má v tomto bodě itu zprava i zleva a obě jsou si rovn: f() = L právě, kdž + f() = f() = L. Limita neeistuje, jestliže některá z jednostranných it neeistuje, jednostranné it jsou navzájem různé.
10 Příklad Funkce f je zadaná grafem, D(f) = R {, }: f() = 3 f() = 3 f() neeistuje, nebot f() =, f() = + f() = f() neeistuje, nebot 3 f() = 3 3, f() = f() = Spojitost funkce Definice (Spojitost v bodě) Funkce f se nazývá spojitá v bodě R, je-li v tomto bodě definována a má v bodě itu rovnou funkční hodnotě, tj. f() = f( ). Definice (spojitost zprava a zleva) Řekneme, že funkce f je spojitá zprava v bodě R, jestliže spojitá zleva v bodě R, jestliže + f() = f( ), f() = f( ).
11 Definice (spojitost na intervalu) Řekneme, že funkce f je spojitá na otevřeném intervalu (a, b), jestliže je spojitá v každém vnitřním bodě tohoto intervalu. Řekneme, že funkce f je spojitá na uzavřeném intervalu a, b, jestliže je spojitá ve všech jeho vnitřních bodech, v bodě a je spojitá zprava a v bodě b je spojitá zleva. Definice (bod nespojitosti) Bod, ve kterých funkce f není spojitá, se nazývají bod nespojitosti. Příklad (bod nespojitosti) Funkce f zadaná grafem má bod nespojitosti 3,,, 3, v bodě 3 je spojitá zleva
12 Věta (spojitost elementárních funkcí) Základní elementární funkce a funkce, které vznikl součtem, rozdílem, součinem, podílem a skládáním těchto funkcí, tzn. elementární funkce, jsou spojité v každém vnitřním bodě svého definičního oboru. Poznámka Bod nespojitosti základních elementárních funkcí jsou bod, v nichž tto funkce nejsou definované. Bod nespojitosti funkce = tg jsou bod π 2 + kπ, k Z, funkce = cotg jsou bod kπ, k Z, racionální lomené funkce jsou nulové bod jmenovatele. Vlastnosti spojitých funkcí Věta (Weierstrassova věta) Necht f je funkce spojitá na uzavřeném intervalu a, b. Pak je na intervalu a, b ohraničená, nabývá na intervalu a, b své největší a nejmenší hodnot. ma = f() b a min
13 Věta (Bolzanova věta) Necht funkce f je spojitá na uzavřeném intervalu a, b. Pak f nabývá na a, b všech hodnot mezi svou nejmenší a největší hodnotou. Jestliže platí f(a) f(b) < (tj. f(a) a f(b) mají opačná znaménka), pak eistuje číslo c (a, b) s vlastností, že f(c) =. = f() f(a) f(b) c b a Graf funkce f protíná osu v bodě c. Na Bolzanova větě je založena metoda půlení intervalů. Výpočet it Věta (pravidla pro počítání s itami) Necht f a g jsou funkce, které mají itu v bodě R a necht c R je libovolná konstanta. Pak platí c = c, c f() = c f(), ( ) f() ± g() = f() ± g(), ( ) f() g() = f() g(), f() g() = f() g() pokud g(). Tto vzorce můžeme použít i při počítání s nevlastními itami, pokud nevedou k neurčitým výrazům,,.
14 Příklad (pravidla pro počítání s itami) (3e 2e ) = 3 e 2 e = 3 2 = 2 (arctg + arccotg ) = arctg + arccotg = π 2 + = π 2 3 ln(2 ) = ln(2 ) (2 + 4) = 5 = 4 (e ) cos = (e ) cos = = Limita spojité funkce Je-li funkce f spojitá v bodě, je hodnota it rovna funkční hodnotě v bodě. Limitu počítáme dosazením do funkce. Příklad (výpočet it dosazením) = = arctg( ) = arctg( ) = arctg = π 4
15 Limita složené funkce Věta (ita složené funkce) Necht g() = b a f(u) = L. Necht eistuje takové rzí okoĺı Ō δ ( ) u b bodu, že pro všechna z tohoto okoĺı je g() b. Pak složená funkce f (g()) má v bodě itu a platí f (g()) = f(u) = L. u b Při výpočtu it složené funkce nejprve určíme itu vnitřní složk. Pokud je ita vnitřní složk vlastní, dosadíme její hodnotu do vnější složk. nevlastní nebo pokud obdržíme nedefinovaný výraz, použijeme substituci a uvedenou větu. Příklad (ita složené funkce) cos(e ) = cos =, protože e = 2 earctg = e π 2, protože arctg = π 2 3 ln + = ln u =, protože u + = 4 arctg (e ) = arctg u = π, protože u 2 e =
16 Limita podílu funkcí -. úprava funkce Věta (Limita funkcí shodujících se v rzím okoĺı) Jestliže pro všechna z rzího okoĺı Ō δ ( ) bodu platí f() = g() a eistuje g() = L, pak také f() = L. Větu můžeme použít při výpočtu it racionální lomené funkce tpu. Příklad = = 4 ( 4)( + ) 4 = 4 ( + ) = 5. Limita podílu funkcí - 2. ita tpu k Věta (ita tpu k ) Necht f() = k, k R a g() =. Eistuje-li rzí okoĺı bodu, že pro všechna z tohoto okoĺı platí f() f() >, pak g() g() = +, f() f() <, pak g() g() =. Věta platí i pro jednostranná okoĺı a příslušné jednostranné it. Při výpočtu it tpu k, kde k, k R je potřeba určit obě jednostranné it a zjistit, zda se rovnají. Není-li tomu tak, ita neeistuje.
17 Příklad (ita tpu k ) 2 = + neeistuje, protože =, = 2 ( ) 2 = + 2 ( ) 2 = 2 = +, protože 2 = +, + = = ( ) 2 = 2 = +. + Limita podílu funkcí - 3. ita tpu k Věta (ita tpu k ) Necht f() = k, k R a g() = ±. Pak f() g() =. Pokud dostaneme po dosazení do it podílu funkcí f() g() výraz tpu k, kde k R (číslo k je konečné), potom je ita rovna nule. Příklad (Limita tpu k 4 2 = 2 + sin ln = ) 4 = =
18 Limita polnomu a racionální lomené funkce v ± Věta (ita polnomu a racionální lomené funkce v nevlastních bodech) Platí (a n + a n + + a n + a n ) = a n, ± ± ± Příklad a n + a n + + a n + a n b m + b m + + b m + b m = ( ) = 33 = ( 3) = = = = = = = ± a n b m. 3 = = = 3 4 = = Poznámka Limit tpu a se řeší pomocí derivací a tzv. l Hospitalova pravidla.
19 Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného základu reg. č. CZ..7/2.2./28.2 za přispění finančních prostředků EU a státního rozpočtu České republik
Limita a spojitost LDF MENDELU
Limita a spojitost Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceLIMITA FUNKCE, SPOJITOST FUNKCE
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin
VíceFunkce a limita. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Funkce a limita Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem
VíceDerivace funkce. Obsah. Aplikovaná matematika I. Isaac Newton. Mendelu Brno. 2 Derivace a její geometrický význam. 3 Definice derivace
Derivace funkce Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Směrnice přímk Derivace a její geometrický význam 3 Definice derivace 4 Pravidla a vzorce pro derivování 5 Tečna a normála 6 Derivace
VíceEuklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.
Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost. Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a
VíceNejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou
4 Cíle Nejčastějšími funkcemi, s kterými se setkáváme v matematice i v jejích aplikacích, jsou funkce, jejichž ita v bodě 0 je rovna funkční hodnotě v tomto bodě Seznámíme se s vlastnostmi takových funkcí
VícePřednáška 3: Limita a spojitost
3 / 1 / 17, 1:38 Přednáška 3: Limita a spojitost Limita funkce Nejdříve je potřeba upřesnit pojmy, které přesněji popisují (topologickou) strukturu množiny reálných čísel, a to zejména pojem okolí 31 Definice
Více30. listopadu Derivace. VŠB-TU Ostrava. Dostupné: s1a64/cd/index.htm.
KMA/MAT1 Přednáška a cvičení č. 11 30. listopadu 2017 [KS] Jaromír Kuben Petra Šarmanová: Diferenciální počet funkcí jedné proměnné. VŠB-TU Ostrava. Dostupné: http://homel.vsb.cz/ s1a64/cd/inde.htm. 1
VíceMENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny společného
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
Více2 Fyzikální aplikace. Předpokládejme, že f (x 0 ) existuje. Je-li f (x 0 ) vlastní, pak rovnice tečny ke grafu funkce f v bodě [x 0, f(x 0 )] je
Derivace funkce a jej geometrický význam Je dána funkce f) 3 6 + 9 + a naším úkolem je určit směrnici tečny v bodě [; f)] Pro libovolné lze směrnici sečny danou body [; f)] a [; f)] spočítat jako f) f)
VíceObsah. Aplikovaná matematika I. Gottfried Wilhelm Leibniz. Základní vlastnosti a vzorce
Neurčitý integrál Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Primitivní funkce, neurčitý integrál Základní vlastnosti a vzorce Základní integrační metody Úpravy integrandu Integrace racionálních
Více1 LIMITA FUNKCE Definice funkce. Pravidlo f, které každému x z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné x.
1 LIMITA FUNKCE 1. 1 Definice funkce Pravidlo f, které každému z množiny D přiřazuje právě jedno y z množiny H se nazývá funkce proměnné. Píšeme y f ( ) Někdy používáme i jiná písmena argument (nezávisle
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplín společného
VíceKapitola 2: Spojitost a limita funkce 1/20
Kapitola 2: Spojitost a limita funkce 1/20 Okolí bodu 2/20 Značení: a R, ε > 0 O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a)
VíceLIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA LIMITA FUNKCE, SPOJITOST FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceFUNKCE, ZÁKLADNÍ POJMY
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA FUNKCE, ZÁKLADNÍ POJMY Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na disciplin společného
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Základ všší matematik LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakult MENDELU v Brně (LDF) s ohledem na discipĺın společného
VícePojem limity funkce charakterizuje chování funkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých funkce není definovaná. platí. < ε.
LIMITA FUNKCE Pojem ity unkce charakterizuje chování unkce v blízkém okolí libovolného bodu, tedy i těch bodů, ve kterých unkce není deinovaná Zápis ( ) L Přesněji to vyjadřuje deinice: znamená, že pro
VíceLimita a spojitost funkce a zobrazení jedné reálné proměnné
Přednáška 4 Limita a spojitost funkce a zobrazení jedné reálné proměnné V několika následujících přednáškách budeme studovat zobrazení jedné reálné proměnné f : X Y, kde X R a Y R k. Protože pro každé
VíceLimita a spojitost funkce
Přednáška 5 Limita a spojitost funkce V této přednášce se konečně dostaneme k diferenciálnímu počtu funkce jedné reálné proměnné. Diferenciální počet se v podstatě zabývá lokálním chováním funkce v daném
VíceDerivace úvod. Jak zjistit míru změny?
Derivace úvod P ČEZ Jak zjistit míru změny? Derivace nám dá odpověď jestli je funkce: rostoucí/klesající konkávní/konvení jak moc je strmá jak moc roste kde má maimum/minimum 1000 700 P ČEZ P ČEZ 3% 4%
VíceOznačení derivace čárkami, resp. římskými číslicemi, volíme při nižším řádu derivace, jinak užíváme horní index v závorce f (5), f (6),... x c g (x).
9 Využití derivace 9.1 Derivace vyšších řádů Definice 1. Nechť funkce má derivaci v nějakém okolí bodu c D(f). Nechť funkce ϕ() =f () máderivacivboděc. Pak hodnotu ϕ (c) nazýváme derivací 2. řádu (2. derivací)
Více7B. Výpočet limit L Hospitalovo pravidlo
7B. Výpočet it L Hospitalovo pravidlo V prai často potřebujeme určit itu výrazů, které vzniknou operacemi nebo složením několika spojitých funkcí. Většinou pomohou pravidla typu ita součtu násobku, součinu,
Více9. Limita a spojitost
OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a + r), kde r > 0; značí se O(a, r), případně jen O(a) (obr. 9..). Číslo r se nazývá poloměr okolí. O(a, r) 0 a r a a + r Obrázek
VíceAplikace derivace a průběh funkce
Aplikace derivace a průběh funkce Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného
Více{ } Ox ( 0) 4.2. Konvexnost, konkávnost, inflexe. Definice Obr. 52. Poznámka. nad tečnou
Konvenost, konkávnost, inflee 4.. Konvenost, konkávnost, inflee Definice 4... Nechť eistuje f ( ), D f. Řekneme, že funkce f ( ) je v bodě konkávní, jestliže eistuje { } O ( ) tak, že platí D : O( )\ f(
VíceLimita posloupnosti a funkce
Limita posloupnosti a funkce Petr Hasil Přednáška z Matematické analýzy I c Petr Hasil (MUNI) Limita posloupnosti a funkce MA I (M1101) 1 / 90 Obsah 1 Posloupnosti reálných čísel Úvod Limita posloupnosti
Více5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky. Definice 5.1. Mějme funkci f : D R a bod x 0 R.
5. Limita funkce a spojitost strana 1/5 2018/KMA/MA1/přednášky Definice 5.1. Mějme funkci f : D R a bod 0 R. a) Číslo c R je částečná ita funkce f v bodě 0, pokud eistuje posloupnost ( n ) taková, že platí
VíceDiferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.
Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin
VíceLimita a spojitost funkce. 3.1 Úvod. Definice: [MA1-18:P3.1]
KAPITOLA 3: Limita a spojitost funkce [MA-8:P3.] 3. Úvod Necht je funkce f definována alespoň na nějakém prstencovém okolí bodu 0 R. Číslo a R je itou funkce f v bodě 0, jestliže pro každé okolí Ua) bodu
VíceMetody výpočtu limit funkcí a posloupností
Metody výpočtu limit funkcí a posloupností Martina Šimůnková, 6. listopadu 205 Učební tet k předmětu Matematická analýza pro studenty FP TUL Značení a terminologie R značí množinu reálných čísel, rozšířenou
VíceNEURČITÝ INTEGRÁL - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA NEURČITÝ INTEGRÁL - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Vícef(c) = 0. cn pro f(c n ) > 0 b n pro f(c n ) < 0
KAPITOLA 5: Spojitost a derivace na intervalu [MA-8:P5] 5 Funkce spojité na intervalu Věta 5 o nulách spojité funkce: Je-li f spojitá na uzavřeném intervalu a, b a fa fb < 0, pak eistuje c a, b tak, že
Více( + ) ( ) f x x f x. x bude zmenšovat nekonečně přesný. = derivace funkce f v bodě x. nazýváme ji derivací funkce f v bodě x. - náš základní zápis
1.. Derivace elementárních funkcí I Předpoklad: 1 Shrnutí z minulé hodin: Chceme znát jakým způsobem se mění hodnot funkce f ( f ( + f ( přibližná hodnota změn = přesnost výpočtu se bude zvětšovat, kdž
Více3. LIMITA A SPOJITOST FUNKCE
3. LIMITA A SPOJITOST FUNKCE Okolí reálného čísla a 3.1. Deinice Okolím reálného čísla a nazýváme otevřený interval a, a, kde je libovolné kladné číslo. Je to tedy množina reálných čísel x, která vyhovují
VíceDefinice derivace v bodě
Definice derivace v bodě tgϕ = f ( ) f () f () : = tgϕ = lim f f () tgϕ = f f () Obecně: f f f ( ) ( ) : = lim f ( + h) f f : = lim h h Derivace zleva (zprava): f ( ) : = lim f f ( ) f ( ) : = lim + +
VíceSpojitost a limita funkce
Spojitost a ita funkce Okolí bodu Značení: a R ε > 0 označujeme O ε (a) = (a ε, a + ε) ε-ové okolí bodu a O + ε (a) = a, a + ε) pravé okolí, O ε (a) = (a ε, a levé okolí P ε (a) = O ε (a) \ {a} x a ε-ové
VíceMonotonie a lokální extrémy. Konvexnost, konkávnost a inflexní body. 266 I. Diferenciální počet funkcí jedné proměnné
66 I. Diferenciální počet funkcí jedné proměnné I. 5. Vyšetřování průběhu funkce Monotonie a lokální etrémy Důsledek. Nechť má funkce f) konečnou derivaci na intervalu I. Je-li f ) > 0 pro každé I, pak
Více0.1 Úvod do matematické analýzy
Matematika I (KMI/PMATE) 1 0.1 Úvod do matematické analýzy 0.1.1 Limita a spojitost funkce Lineární funkce Lineární funkce je jedna z nejjednodušších a možná i nejpoužívanějších funkcí. f(x) = kx + q D(f)
VíceDerivace funkce. Přednáška MATEMATIKA č Jiří Neubauer
Přednáška MATEMATIKA č. 9-11 Katedra ekonometrie FEM UO Brno kancelář 69a, tel. 973 442029 email:jiri.neubauer@unob.cz Šotová, J., Doudová, L. Diferenciální počet funkcí jedné proměnné Motivační příklady
VíceJe založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si zopakovat a orientovat se v pojmech: funkce, D(f), g 2 : y =
0.1 Diferenciální počet Je částí infinitezimálního počtu, což je souhrnný název pro diferenciální a integrální počet. Je založen na pojmu derivace funkce a její užití. Z předchozího studia je třeba si
VíceFunkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015
Funkce jedné reálné proměnné Derivace Přednáška 2 15. října 2015 Obsah 1 Funkce 2 Limita a spojitost funkce 3 Derivace 4 Průběh funkce Informace Literatura v elektronické verzi (odkazy ze STAGu): 1 Lineární
VíceLDF MENDELU. Simona Fišnarová (MENDELU) Průběh funkce ZVMT lesnictví 1 / 21
Průběh funkce Základy vyšší matematiky LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
Více3. Derivace funkce Definice 3.1. Nechť f : R R je definována na nějakém okolí U(a) bodu a R. Pokud existuje limita f(a + h) f(a) lim
3 a b s = (a + b) 2 f(s) 3,46 4,680 3,93-2,9422 3,93 4,680 4,2962-2,034 4,2962 4,680 4,4886-0,0954 4,4886 4,680 4,5848 3,2095 4,4886 4,5848 4,5367,0963 4,4886 4,5367 4,526 0,427 4,4886 4,526 4,5006 0,508
VíceZáklady matematiky pro FEK
Základ matematik pro FEK 7. přednáška Blanka Šedivá KMA zimní semestr 06/07 Blanka Šedivá (KMA) Základ matematik pro FEK zimní semestr 06/07 / 5 Jednostranné limit Definice: Vlastní limita ve vlastním
VíceDerivace. Petr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu (reg. č. CZ.1.07/2.2.00/28.0021)
VícePetr Hasil. Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF)
Neurčitý integrál Petr Hasil Přednáška z matematiky Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipĺıny společného základu
Více9. Limita a spojitost funkce
Moderní technologie ve studiu aplikované fyziky CZ..07/..00/07.008 9. Limita a spojitost funkce OKOLÍ BODU, VNITŘNÍ A HRANIČNÍ BOD Okolí bodu a je libovolný interval (a r, a r), kde r > 0; značí se O (a,
Více1. Funkce dvou a více proměnných. Úvod, limita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu
22- a3b2/df.te. Funkce dvou a více proměnných. Úvod, ita a spojitost. Definiční obor, obor hodnot a vrstevnice grafu. Určete definiční obor funkce a proveďte klasifikaci bodů z R 2 vzhledem k a rozhodněte
Více1 Množiny, výroky a číselné obory
1 Množiny, výroky a číselné obory 1.1 Množiny a množinové operace Množinou rozumíme každé shrnutí určitých a navzájem různých objektů (které nazýváme prvky) do jediného celku. Definice. Dvě množiny jsou
Vícef( x) x x 4.3. Asymptoty funkce Definice lim f( x) =, lim f( x) =, Jestliže nastane alespoň jeden z případů
3 Výklad Definice 3 Jestliže nastane alespoň jeden z případů lim =, lim =, + + lim =, lim =, kde ( D ), pak říkáme, že přímka = je asymptotou funkce f() v bodě f Jestliže lim ( k q) =, resp lim ( k q)
VíceFunkce základní pojmy a vlastnosti
Funkce základní pojm a vlastnosti Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah Pojem funkce Vlastnosti funkcí Inverzní funkce 4 Základní elementární funkce Mocninné Eponenciální Logaritmické
VíceIV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel
Matematická analýza IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel na množině R je definováno: velikost (absolutní hodnota), uspořádání, aritmetické operace; znázornění:
VíceI. 4. l Hospitalovo pravidlo
I. 4. l Hospitalovo pravidlo 235 I. 4. l Hospitalovo pravidlo Věta (l Hospitalovo pravidlo). Buď 0 R. Nechť je splněna jedna z podmínek 0 f() 0 g() 0, 0 g() +. Eistuje-li (vlastní nebo nevlastní) 0 0 f
Více2.6. Limita funkce. Nechť c R jevnitřnínebokrajníbodintervaludefiničníhooborufunkce
2.6. Limita funkce Nechť c R jevnitřnínebokrajníbod intervalu definičního oboru funkce f.(funkce v něm může, ale nemusí být definovaná.) Jestliže vzorům x blízkým bodu c, ale různýmod c, (tedy x (c d,
VíceMatematika 1. 1 Derivace. 2 Vlastnosti a použití. 3. přednáška ( ) Matematika 1 1 / 16
Matematika 1 3. přednáška 1 Derivace 2 Vlastnosti a použití 3. přednáška 6.10.2009) Matematika 1 1 / 16 1. zápočtový test již během 2 týdnů. Je nutné se něj registrovat přes webové rozhraní na https://amos.fsv.cvut.cz.
VíceMATEMATIKA. Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik
MATEMATIKA Robert Mařík Ústav matematiky, LDF, MZLU 5. patro, budova B marik@mendelu.cz user.mendelu.cz/marik P. Rádl, B. Černá, L. Stará: Základy vyšší matematiky, skriptum MZLU Text přednášky na user.mendelu.cz/marik,
VíceManagement rekreace a sportu. 10. Derivace
Derivace Derivace Před mnoha lety se matematici snažily o obecné vyřešení úlohy, jak sestrojit tečnu k dané křivce a také yzici zápolili s problémem určení rychlosti nerovnoměrného pohybu K zásadnímu obratu
VíceVII. Limita a spojitost funkce
VII. Limita a spojitost funkce VII.1. Limita funkce Úvodní poznámky: Limita funkce f v bodě c R hodnota a R, k níž se přibližují hodnoty f(x), jestliže x se blíží k hodnotě c; funkce f nemusí být definovaná
VícePRŮBĚH FUNKCE - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA PRŮBĚH FUNKCE - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VícePetr Hasil. Prvákoviny c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny / 57
Úvod do infinitezimálního počtu Petr Hasil Prvákoviny 2015 c Petr Hasil (MUNI) Úvod do infinitezimálního počtu Prvákoviny 2015 1 / 57 Obsah 1 Úvod Funkce Reálná čísla a posloupnosti Limita a spojitost
VíceDERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA DERIVACE FUNKCE, L HOSPITALOVO PRAVIDLO - CVIČENÍ Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně LDF)
Více2. LIMITA A SPOJITOST FUNKCE
. LIMITA A SPOJITOST FUNKCE Průvodce studiem Funkce y = je definována pro ( ) (>. Z grafu funkce (obr. 3) a z tabulky (a) je vidět že čím více se hodnoty blíží k -3 tím více se funkční hodnoty blíží ke
VíceAlgebraické rovnice. Obsah. Aplikovaná matematika I. Ohraničenost kořenů a jejich. Aproximace kořenů metodou půlení intervalu.
Algebraické rovnice Aplikovaná matematika I Dana Říhová Mendelu Brno Obsah 1 Základní pojm 2 Metod řešení algebraických rovnic Algebraické řešení Grafické řešení Numerické řešení 3 Numerické řešení Ohraničenost
VíceMatematika (KMI/PMATE)
Matematika (KMI/PMATE) Přednáška druhá aneb Úvod do matematické analýzy Limita a spojitost funkce Matematika (KMI/PMATE) 1 / 30 Osnova přednášky lineární funkce y = kx + q definice lineární funkce význam
VíceLimita posloupnosti, limita funkce, spojitost. May 26, 2018
Limita posloupnosti, limita funkce, spojitost May 26, 2018 Definice (Okolí bodu) Okolím bodu a R (také ε- okolím) rozumíme množinu U(a, ε) = {x R; x a < ε} = (a ε, a + ε), bod a se nazývá střed okolí a
Více2.7. Průběh funkce. Vyšetřit průběh funkce znamená určit (ne nutně v tomto pořadí): 1) Definiční obor; sudost, lichost; periodičnost
.7. Průběh unkce Všetřit průběh unkce znamená určit ne nutně v tomto pořadí: deiniční obor; sudost, lichost; periodičnost, interval spojitosti a bod nespojitosti, průsečík grau unkce s osami, interval,
VíceTexty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech
Texty k přednáškám z MMAN3: 4. Funkce a zobrazení v euklidovských prostorech 1. července 2008 1 Funkce v R n Definice 1 Necht n N a D R n. Reálnou funkcí v R n (reálnou funkcí n proměnných) rozumíme zobrazení
VíceÚvodní informace. 17. února 2018
Úvodní informace Funkce více proměnných Přednáška první 17. února 2018 Obsah 1 Úvodní informace. 2 Funkce více proměnných Definiční obor Limita a spojitost Derivace, diferencovatelnost, diferenciál Úvodní
Víceanalytické geometrie v prostoru s počátkem 18. stol.
4.. Funkce více proměnných, definice, vlastnosti Funkce více proměnných Funkce více proměnných se v matematice začal používat v rámci rozvoje analtické geometrie v prostoru s počátkem 8. stol. I v sami
VíceSpojitost funkce. Kapitola 8. ale kromě toho zajímá, jestli daný experiment probíhal kontinuálně, nebo nastaly. Intuitivní představy o pojmu spojitost
Kapitola 8 Spojitost funkce V následující kapitole se budeme zabývat tzv. spojitostí funkce a to, jak spojitostí v bodě, tak spojitostí na množině. S pojmem spojitosti se dále váží pojmy jako je okolí
Více5. Limita a spojitost
5. Limita a spojitost 5. Limita posloupnosti 5. Limita a spojitost Verze 16. prosince 2016 Diferenciální počet a integrální počet tvoří klasický základ Matematické analýzy. Diferenciální počet zkoumá lokální
VíceDerivace funkce. prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky BI-ZMA ZS 2009/2010
Derivace funkce prof. RNDr. Čestmír Burdík DrCs. prof. Ing. Edita Pelantová CSc. Katedra matematiky České vysoké učení technické v Praze c Čestmír Burdík, Edita Pelantová 2009 Základy matematické analýzy
VíceDiferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy
Diferenciální počet - II. část (Taylorův polynom, L Hospitalovo pravidlo, extrémy funkcí, průběh funkce) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 5. přednáška z AMA1 Michal Fusek (fusekmi@feec.vutbr.cz)
VíceIntegrální počet - I. část (neurčitý integrál a základní integrační metody)
Integrální počet - I. část (neurčitý integrál a základní integrační metody) Michal Fusek Ústav matematiky FEKT VUT, fusekmi@feec.vutbr.cz 6. přednáška z AMA Michal Fusek (fusekmi@feec.vutbr.cz) / 23 Obsah
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 2. Spojitost funkce 2.2. Spojitost funkce v intervalu 2 Spojitost funkce v intervalu Od spojitosti funkce v bodě přejdeme ke spojitosti funkce v intervalu. Nejprve
VíceParciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceDiferenciální počet funkcí jedné proměnné
Diferenciální počet funkcí jedné proměnné 1 4. Derivace funkce 4.3. Průběh funkce 2 Pro přesné určení průběhu grafu funkce je třeba určit bližší vlastnosti funkce. Monotónnost funkce Funkce monotónní =
VíceParciální derivace a diferenciál
Parciální derivace a diferenciál Vyšší matematika, Inženýrská matematika LDF MENDELU Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem
VíceZákladní elementární funkce
Základní elementární funkce Základní elementární funkce Za základní elementární funkce považujeme funkce: a) eponenciální a logaritmické; b) obecné mocninné; c) goniometrické a cklometrické; d) hperbolické
VíceFunkce. Limita a spojitost
Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,
Více(FAPPZ) Petr Gurka aktualizováno 12. října Přehled některých elementárních funkcí
1. Reálná funkce reálné proměnné, derivování (FAPPZ) Petr Gurka aktualizováno 12. října 2011 Obsah 1 Přehled některých elementárních funkcí 1 1.1 Polynomické funkce.......................... 1 1.2 Racionální
VícePřednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce
Přednáška 9, 28. listopadu 2014 Část 4: limita funkce v bodě a spojitost funkce Zápisem f : M R rozumíme, že je dána funkce definovaná na neprázdné množině M R reálných čísel, což je množina dvojic f =
Více1 L Hospitalovo pravidlo
L Hospitalovo pravidlo Věta.. Bud R R R {± }). Necht je splněna jedna z podmínek i) ii) f) g), g). Eistuje-li vlastní nebo nevlastní) f ) g ) Obdobné tvrzení platí i pro jednostranné ity., pak eistuje
Více14. Monotonnost, lokální extrémy, globální extrémy a asymptoty funkce
. Monotonnost, lokální extrém, globální extrém a asmptot funkce Studijní text. Monotonnost, lokální extrém, globální extrém a asmptot funkce A. Rostoucí a klesající funkce Pojm rostoucí, klesající a konstantní
Více6. DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH
Funkce více proměnných 6 DIFERENCIÁLNÍ POČET FUNKCE VÍCE PROMĚNNÝCH Ve čtvrté kapitole jsme studovali vlastnosti funkcí jedné nezávisle proměnné K popisu mnoha reálných situací však s jednou nezávisle
VíceFunkce. RNDR. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou
Funkce RNDR. Yvetta Bartáková Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Derivace funkce VY INOVACE_05 0_M Gmnázium, SOŠ a VOŠ Ledeč nad Sázavou Definice Mějme funkci f definovanou v okolí bodu 0. Eistuje-li
VíceLimita funkce. FIT ČVUT v Praze. (FIT) Limita funkce 3.týden 1 / 39
Limita funkce FIT ČVUT v Praze 3.týden (FIT) Limita funkce 3.týden 1 / 39 Definice funkce. Zobrazení (f, D f ), jehož definiční obor D f i obor hodnot H f je podmnožinou množiny reálných čísel, se nazývá
VíceMASARYKOVA UNIVERZITA. Řešené příklady na extrémy a průběh funkce se zaměřením na ekonomii
MASARYKOVA UNIVERZITA Přírodovědecká fakulta Řešené příklad na etrém a průběh funkce se zaměřením na ekonomii Bakalářská práce Veronika Kruttová Brno 008 Prohlášení: Prohlašuji, že jsem svou bakalářskou
VíceŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
VíceVybrané kapitoly z matematiky
Vybrané kapitoly z matematiky VŠB-TU Ostrava 8-9 Vybrané kapitoly z matematiky 8-9 / 6 Funkce více proměnných Vybrané kapitoly z matematiky 8-9 / 6 Definice Necht M R n, M. Funkcí n proměnných je zobrazení
VíceKapitola 7: Integrál.
Kapitola 7: Integrál. Neurčitý integrál. Definice: Necht f je funkce definovaná na intervalu I. Funkci F definovanou na intervalu I, pro kterou platí F (x) = f(x) x I nazýváme primitivní funkcí k funkci
VíceMatematická analýza pro informatiky I. Derivace funkce
Matematická analýza pro informatiky I. 7. přednáška Derivace funkce Jan Tomeček tomecek@inf.upol.cz http://aix-slx.upol.cz/ tomecek/index Univerzita Palackého v Olomouci 31. března 2011 Jan Tomeček, tomecek@inf.upol.cz
VíceŘešení 1a Budeme provádět úpravu rozšířením směřující k odstranění odmocniny v čitateli. =lim = 0
Příklad Vypočítejte ity funkcí: a) b) c) d) Poznámka Po dosazení do všech těchto úloh dostaneme nedefinovaný výraz. Proto je třeba provést úpravy vedoucí k vykrácení a následně k výsledku. Řešení a Budeme
VíceŘEŠENÍ NELINEÁRNÍCH ROVNIC
MENDELOVA UNIVERZITA V BRNĚ LDF MT MATEMATIKA ŘEŠENÍ NELINEÁRNÍCH ROVNIC Podpořeno projektem Průřezová inovace studijních programů Lesnické a dřevařské fakulty MENDELU v Brně (LDF) s ohledem na discipliny
Více1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH
1. DIFERENCIÁLNÍ POČET FUNKCE DVOU PROMĚNNÝCH V minulém semestru jsme studovali vlastnosti unkcí jedné nezávislé proměnné. K popisu mnoha reálných situací obvkle s jednou proměnnou nevstačíme. FUNKCE DVOU
VíceAsymptoty funkce. 5,8 5,98 5,998 5,9998 nelze 6,0002 6,002 6,02 6, nelze
Asymptoty funkce 1 Asymptota bez směrnice 6 Máme dvě funkce f 1 : y a 3 f : y 3 Člověk nemusí být matematický génius, aby pochopil, že do předpisu obou funkcí lze dosadit za libovolné reálné číslo kromě
Více