Ondřej Peisar

Rozměr: px
Začít zobrazení ze stránky:

Download "Ondřej Peisar"

Transkript

1

2 Motivace Merkur generuje vlastní magnetické pole (dynamo) slabé magnetické pole na povrchu (1% zemského), dominantní příspěvek dipólového členu velké jádro (75 % poloměru planety) zajímá nás příspěvek Jouleovského tepla k plášťové konvekci

3 Formulace řeším sférickou rovnici B + k 2 s B = 0, kde k 2 s = ıωµ 0 σ s vrstevnatý model, vodivost v jednotlivých vrstvách považuji za konstantní magnetické pole generováno hluboko ve vnitřním jádru (Christensen, 2006)

4 Formulace dvouslupkový model poloměr spodku stabilní vrstvy: r 0 = 1250km poloměr na hranici jádro-plášť: r CMB = 1900km poloměr planety: r p = 2440km uvažujeme nulový vnější ponteciál: U (ext) = 0 předepisujeme radiální složku pole na spodní hranici (hranice vnitřního jádra a stabilní vrstvy) normálová a tečná složka musí být spojitá na hranicích vrstev

5 Vztahy magnetické pole uvnitř B = j j=1 m= j j+1 l=j 1 αl w l(kr) Y l (ϑ, ϕ) potenciál U = r j p j=1 m= j [( r r p ) j G (e) + ( rp r )j+1 G (i) ]Y (ϑ, ϕ) vede na vztah pro mag. pole vně B = U = j j=1 m= j [ j(2j + 1)( r r p ) j 1 G (e) Y j 1 (ϑ, ϕ) + r (j + 1)(2j + 1)( p r )j+2 G (i) Y j+1 (ϑ, ϕ)]

6 Vztahy žádné plošné proudy, podmínka spojitosti B na rozhraní e r. B s = j 2j+1 αj 1 [w j 1(k s r) + w j+1 (k s r)]y (ϑ, ϕ) = j(2j + 1)α j 1 w j (k sr) k sr Y (ϑ, ϕ) e r B s = i j+1 2j+1 αj 1 [w j 1(k s r) j j+1 w j+1(k s r)] Y j (ϑ, ϕ) 2j+1 = i j+1 αj 1 1 d k sr dr (rw j(k s r)) Y j parametry α jsou v daných vrstvách konstantní

7 Označení h (r) := α j 1 1 k sr w j(k s r) t (r) := d dr (rw j(k s r)) αj 1 k s což vede na jednodušší zápis: e r. B s = 1 r e r B s = i r j 2j+1 h (r)y j+1 2j+1 t (r) Y j

8 Maticový tvar α j 1 k s w j (k s r) = a s J j(k s r) + b s Y j(k s r) = h (r) t (r) = a s d dr (rj j(k s r)) + b s d dr (ry j(k s r)) maticově: kde ( h t ( A s j (r) = ) (r) = A s j (r) ( a s b s ) J j (k s r) Y j (k s r) d dr (rj j(k s r)) d dr (ry j(k s r)) )

9 Maticový tvar ze vztahu na dolní, resp. horní, hranici: ( ) ( h a (r t s 1 ) = A s s ) j (r s 1 ) b s t ( h t ) (r s ) = A s j (r s ) ( a s b s získáme maticový vztah na hranicích dané vrstvy ( ) ( ) h (r s ) = A s j (r s )[A s j (r s 1 )] 1 h (r t s 1 ) (Pěč et al., 1985) )

10 Maticový tvar přenosová matice s-té vrstvy má tvar ( Bj s P = j + z 2 Q j P j + z 1 R j + z 2 Q j + z 1 z 2 S j kde z 1 = k s r s a z 2 = k s r s 1 P j P j z 1 R j ) z 2 P j+1 = S j + j2 z 1 z 2 P j j z 1 Q j j z 2 R j Q j+1 = j z 1 P j j+2 z 2 P j+1 R j R j+1 = j z 2 P j j+2 z 1 P j+1 Q j S j+1 = R j (j+2)2 z 1 z 2 P j+1 j+2 z 1 Q j+1 j+2 z 2 R j+1

11 Maticový tvar kontrolní součin a počáteční podmínky mají tvar: P j S j Q j R j = 1 z 2 1 z2 2 P 0 = sin(z 2 z 1 ) z 1 z 2 Q 0 = cos(z 2 z 1 ) z 1 z 2 sin(z 2 z 1 ) z 1 z 2 2 R 0 = cos(z 2 z 1 ) z 1 z 2 sin(z 2 z 1 ) z 2 1 z 2 S 0 = sin(z 2 z 1 ) z 1 z 2 cos(z 2 z 1 ) z 2 1 z 2 + cos(z 2 z 1 ) z 1 z sin(z 2 z 1 ) z 2 1 z2 2

12 Maticový tvar vztah pole na spodní hranici výpočetní oblasti (horní hranice magnetokonvekce) a pole na povrchu h (r p ) = rp [jg (e) j(2j+1) t (r p ) = r p (j + 1) kde C = 2 s=n Bs známe: G (e), h (r 0 ) počítáme: G (i), t (r 0 ) ( h = C. t j 2j+1 (i) (j + 1)G ] ) (r 0 ) [G (e) + G (i) ]

13 Momentální stav používaný kód byl otestován na správné použití rekurzí Besselových funkcí proti kódu prof. Martince uvažujeme periodu T = yr ve stabilní vrstvě předpokládáme vodivost σ = 10 6 S.m 1 v plášti pak σ = 1S.m 1 a menší (až o dva řády) z pak nabývá ve stabilní vrstvě hodnot okolo 1, v plášti pak 10 4 program funguje dobře pro malá j (do j=4) snahy o zlepšení výpočtů: čtyřnásobná přesnost 1 vytknutí z 1 z 2 počítání Besselových funkcí jako nekonečné řady

14

15 Jouleovské teplo počítáme Jouleovské teplo 1 r µ 0 H 2 dv lze pomocí rekurzí pro Besselovy funkce a vztahy pro sférické harmoniky upravit na tvar 1 µ 0 r 2 j j=1 n= j (αj 1 2j+1 )2 j+1 (k sw j (k s r)) 2 dr r

16 Co nás čeká stabilizace kódu pro větší j integrace vztahu obsahujícího Besselovy funkce, pomocí knihovny slatec spočítání výsledků pro různé hodnoty vodivosti

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Fyzikální geodézie 2/7 Gravitační potenciál a jeho derivace

Více

Tělesa Sluneční soustavy: analýza vnitřní stavby na základě topografie a gravitačního pole

Tělesa Sluneční soustavy: analýza vnitřní stavby na základě topografie a gravitačního pole Tělesa Sluneční soustavy: analýza vnitřní stavby na základě topografie a gravitačního pole vedoucí práce: Doc. RNDr. Ondřej Čadek, CSc. katedra geofyziky MFF UK 7.5.28 Obsah prezentace Motivace Závěr Motivace:

Více

Skalární a vektorový popis silového pole

Skalární a vektorový popis silového pole Skalární a vektorový popis silového pole Elektrické pole Elektrický náboj Q [Q] = C Vlastnost materiálových objektů Interakce (vzájemné silové působení) Interakci (vzájemné silové působení) mezi dvěma

Více

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je:

Řešení: Nejdříve musíme určit sílu, kterou působí kladka proti směru pohybu padajícího vědra a napíná tak lano. Moment síly otáčení kladky je: Přijímací zkouška na navazující magisterské studium - 16 Studijní program Fyzika - všechny obory kromě Učitelství fyziky-matematiky pro střední školy, Varianta A Příklad 1 (5 bodů) Jak dlouho bude padat

Více

Lekce 9 Metoda Molekulární dynamiky III. Technologie

Lekce 9 Metoda Molekulární dynamiky III. Technologie Lekce 9 Metoda molekulární dynamiky III Technologie Osnova 1. Výpočet sil. Výpočet termodynamických parametrů 3. Ekvilibrizační a simulační část MD simulace Výpočet sil Pohybové rovnice ɺɺ W mk rk = FK,

Více

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r

Elektromagnetické pole je generováno elektrickými náboji a jejich pohybem. Je-li zdroj charakterizován nábojovou hustotou ( r r Záření Hertzova dipólu, kulové vlny, Rovnice elektromagnetického pole jsou vektorové diferenciální rovnice a podle symetrie bývá vhodné je řešit v křivočarých souřadnicích. Základní diferenciální operátory

Více

Cvičení F2070 Elektřina a magnetismus

Cvičení F2070 Elektřina a magnetismus Cvičení F2070 Elektřina a magnetismus 20.3.2009 Elektrický potenciál, elektrická potenciální energie, ekvipotenciální plochy, potenciál bodového náboje, soustavy bodových nábojů, elektrického pole dipólu,

Více

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e =

Atom vodíku. Nejjednodušší soustava: p + e Řešitelná exaktně. Kulová symetrie. Potenciální energie mezi p + e. e = Atom vodíku Nejjednodušší soustava: p + e Řešitelná exaktně Kulová symetrie Potenciální energie mezi p + e V 2 e = 4πε r 0 1 Polární souřadnice využití kulové symetrie atomu Ψ(x,y,z) Ψ(r,θ, φ) x =? y=?

Více

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21

Elektrické pole vybuzené nábojem Q2 působí na náboj Q1 silou, která je stejně veliká a opačná: F 12 F 21 Příklad : Síla působící mezi dvěma bodovými náboji Dva bodové náboje na sebe působí ve vakuu silou, která je dána Coulombovým zákonem. Síla je přímo úměrná velikosti nábojů, nepřímo úměrná kvadrátu vzdálenosti,

Více

Viskoelastická deformace v geofyzikálních aplikacích

Viskoelastická deformace v geofyzikálních aplikacích Viskoelastická deformace v geofyzikálních aplikacích Řešitel: Kateřina Sládková Vedoucí: doc. RNDr. Ondřej Čadek, CSc. (KG) Konzultant: RNDr. Ondřej Souček, Ph.D. (MÚ) Termální konvekce v zemském plášti

Více

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace

Dvě varianty rovinného problému: rovinná napjatost. rovinná deformace Rovinný problém Řešíme plošné konstrukce zatížené a uložené v jejich střednicové rovině. Dvě varianty rovinného problému: rovinná napjatost rovinná deformace 17 Rovinná deformace 1 Obsahuje složky deformace

Více

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty.

a) [0,4 b] r < R, b) [0,4 b] r R c) [0,2 b] Zakreslete obě závislosti do jednoho grafu a vyznačte na osách důležité hodnoty. Příklady: 24. Gaussův zákon elektrostatiky 1. Na obrázku je řez dlouhou tenkostěnnou kovovou trubkou o poloměru R, která nese na povrchu náboj s plošnou hustotou σ. Vyjádřete velikost intenzity E jako

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Mtemtické nlýzy 1. - 1. prosince 18 11.1 (cylindrické souřdnice) Zpište integrály pomocí cylindrických souřdnic pk je spočítejte: () x x x +y (x + y ) dz dy dx. (b) 1 1 x 1 1 x x y (x + y

Více

VI. Derivace složené funkce.

VI. Derivace složené funkce. VI. Derivace složené funkce. 17. Parciální derivace složené funkce Budeme uvažovat složenou funkci F = f(g, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce,

Více

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro

7 Gaussova věta 7 GAUSSOVA VĚTA. Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro 7 Gaussova věta Zadání Použitím Gaussovy věty odvod te velikost vektorů elektrické indukce a elektrické intenzity pro následující nabitá tělesa:. rovnoměrně nabitou kouli s objemovou hustotou nábojeρ,

Více

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli

FYZIKA II. Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli FYZIKA II Petr Praus 7. Přednáška stacionární magnetické pole náboj v magnetickém poli Osnova přednášky Stacionární magnetické pole Lorentzova síla Hallův jev Pohyb a urychlování nabitých částic (cyklotron,

Více

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce.

Zavedeme-li souřadnicový systém {0, x, y, z}, pak můžeme křivku definovat pomocí vektorové funkce. KŘIVKY Křivka = dráha pohybujícího se bodu = = množina nekonečného počtu bodů, které závisí na parametru (čase). Proto můžeme křivku také nazvat jednoparametrickou množinou bodů. Zavedeme-li souřadnicový

Více

Vnitřní život krátkoperiodických exoplanet

Vnitřní život krátkoperiodických exoplanet Vnitřní život krátkoperiodických exoplanet Semianalytický model a ukázka jeho aplikací Michaela Walterová a Marie Běhounková Geodynamický seminář 23. 5. 2018 Motivace Jak vypadá vzájemná vazba mezi vývojem

Více

Geomagnetismus a geoelektřina II test

Geomagnetismus a geoelektřina II test .............. Geomagnetismus a geoelektřina II test 1. Seřad následující materiály podle vzrůstající vodivosti: částečně natavené bazalty při 1200 C 2 grafit 4 mořská voda 3 suchý olivín při 1200 C 1...

Více

Numerické řešení modelu proudění v porézní hornině s puklinou

Numerické řešení modelu proudění v porézní hornině s puklinou Numerické řešení modelu proudění v porézní hornině s puklinou Martin Hanek Úvod Vedoucí práce prof. RNDr. Pavel Burda, CSc. Zajímá nás jednofázová tekutina v puklině porézní horniny. Studie je provedena

Více

VI. Nestacionární vedení tepla

VI. Nestacionární vedení tepla VI. Nestacionární vedení tepla Nestacionární vedení tepla stagnantním prostředím, tj. tělesy a kapalinou, ve které se neprojevuje přirozená konvekce. F. K. rovnice " ρ c p = q + Q! = λ + Q! ( g) 2 ( g)

Více

GAUSSŮV ZÁKON ELEKTROSTATIKY

GAUSSŮV ZÁKON ELEKTROSTATIKY GAUSSŮV ZÁKON ELEKTROSTATIKY PLOCHA JAKO VEKTOR Matematický doplněk n n Elementární plocha ΔS ds Ploše přiřadíme vektor, který 1) je k této ploše kolmý 2) má velikost rovnou velikosti (obsahu) plochy Δ

Více

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 2. 3. 2018 Matematika II, úroveň A ukázkový test č. 1 (2018) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5)

Nosné desky. 1. Kirchhoffova teorie ohybu tenkých desek (h/l < 1/10) 3. Mindlinova teorie pro tlusté desky (h/l < 1/5) Nosné desky Deska je těleso, které má jeden rozměr mnohem menší než rozměry zbývající. Zatížení desky je orientováno výhradně kolmo k její střednicové rovině. 1. Kirchhoffova teorie ohybu tenkých desek

Více

13. cvičení z Matematické analýzy 2

13. cvičení z Matematické analýzy 2 . cvičení z atematické analýz 2 5. - 9. května 27. konzervativní pole, potenciál Dokažte, že následující pole jsou konzervativní a najděte jejich potenciál. i F x,, z x 2 +, 2 + x, ze z, ii F x,, z x 2

Více

VoF-Navier-Stokesových rovnic při. Jakub Smutek

VoF-Navier-Stokesových rovnic při. Jakub Smutek Vliv diskretizace konvekčních členů VoF-Navier-Stokesových rovnic při simulaci kapilaritou řízených dějů Jakub Smutek VŠCHT Praha, Ústav Matematiky 2. Seminář VŠCHT k OpenFOAM, Praha 13. Prosince Teoretický

Více

Otázku, kterými body prochází větev implicitní funkce řeší následující věta.

Otázku, kterými body prochází větev implicitní funkce řeší následující věta. 1 Implicitní funkce Implicitní funkce nejsou funkce ve smyslu definice, že funkce bodu z definičního oboru D přiřadí právě jednu hodnotu z oboru hodnot H. Přesnější termín je funkce zadaná implicitně.

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Základy fyzikální geodézie 3/19 Legendreovy přidružené funkce

Více

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU

PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU PŘEDNÁŠKA 9 KŘIVKOVÝ A PLOŠNÝ INTEGRÁL 1. DRUHU 6.1 Křivkový integrál 1. druhu Definice 1. Množina R n se nazývá prostá regulární křivka v R n právě tehdy, když existuje vzájemně jednoznačné zobrazení

Více

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0.

Diferenciální počet 1 1. f(x) = ln arcsin 1 + x 1 x. 1 x 1 a x 1 0. f(x) = (cos x) cosh x + 3x. x 0 je derivace funkce f(x) v bodě x0. Nalezněte definiční obor funkce Diferenciální počet f = ln arcsin + Definiční obor funkce f je určen vztahy Z těchto nerovností plyne < + ln arcsin + je tedy D f =, Určete definiční obor funkce arcsin

Více

Odhad změny rotace Země při změně poloměru

Odhad změny rotace Země při změně poloměru Odhad změny rotace Země při změně poloměru NDr. Pavel Samohýl. Seznam symbolů A, A, A součinitel vztahu pro závislost hustoty Země na vzdálenosti od středu, totéž v minulosti a současnosti B, B, B součinitel

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Tomáš Salač Ú UK, FF UK LS 2017/18 Tomáš Salač ( Ú UK, FF UK ) 9. Vícerozměrná integrace LS 2017/18 1 / 29 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných

Více

Fyzika atomového jádra

Fyzika atomového jádra Fyzika atomového jádra (NJSF064) František Knapp http://www-ucjf.troja.mff.cuni.cz/~knapp/jf/ frantisek.knapp@mff.cuni.cz Slupkový model jádra evidence magických čísel: hmoty, separační energie, vazbové

Více

Diferenciáln. lní geometrie ploch

Diferenciáln. lní geometrie ploch Diferenciáln lní geometrie ploch Vjádřen ení ploch Eplicitní: z = f(,) ; [,] Ω z Implicitní: F(,,z)=0 + + z = r z = sin 0, π ; 0,1 Implicitní ploch bloob objects,, meta balls Izoploch: F(,,z)=konst. Implicitní

Více

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e

Řešit atom vodíku znamená nalézt řešení Schrödingerovy rovnice s příslušným hamiltoniánem. 1 4πǫ 0. 2m e 8 Atom vodíku Správné řešení atomu vodíku je jedním z velkých vítězství kvantové mechaniky. Podle klasické fyziky náboj, který se pohybuje se zrychlením (elektron obíhající vodíkové jádro proton), by měl

Více

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb

Kinematika tuhého tělesa. Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Kinematika tuhého tělesa Pohyb tělesa v rovině a v prostoru, posuvný a rotační pohyb Úvod Tuhé těleso - definice všechny body tělesa mají stálé vzájemné vzdálenosti těleso se nedeformuje, nemění tvar počet

Více

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL

4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL 4.2.3 ŠÍŘE FREKVENČNÍHO PÁSMA CHOROVÉHO ELEMENTU A DISTRIBUČNÍ FUNKCE VLNOVÝCH NORMÁL V předchozích dvou podkapitolách jsme ukázali, že chorové emise se mohou v řadě případů šířit nevedeným způsobem. Připomeňme

Více

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí

7. Derivace složené funkce. Budeme uvažovat složenou funkci F = f(g), kde některá z jejich součástí 202-m3b2/cvic/7slf.tex 7. Derivace složené funkce. Budeme uvažovat složenou funkci F = fg, kde některá z jejich součástí může být funkcí více proměnných. Předpokládáme, že uvažujeme funkce, které mají

Více

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY

SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY SIGNÁLY A SOUSTAVY, SIGNÁLY A SYSTÉMY TEMATICKÉ OKRUHY Signály se spojitým časem Základní signály se spojitým časem (základní spojité signály) Jednotkový skok σ (t), jednotkový impuls (Diracův impuls)

Více

Přednáška č. 5: Jednorozměrné ustálené vedení tepla

Přednáška č. 5: Jednorozměrné ustálené vedení tepla Přednáška č. 5: Jednorozměrné ustálené vedení tepla Motivace Diferenciální rovnice problému Gradient teploty Energetická bilance Fourierův zákon Diferenciální rovnice vedení tepla Slabé řešení Diskretizace

Více

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne:

PRAKTIKUM I. Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK. Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: Oddělení fyzikálních praktik při Kabinetu výuky obecné fyziky MFF UK PRAKTIKUM I. Úloha č. VII Název: Studium kmitů vázaných oscilátorů Pracoval: Pavel Ševeček stud. skup.: F/F1X/11 dne: 27. 2. 2012 Odevzdal

Více

17 Vlastnosti molekul

17 Vlastnosti molekul 17 Vlastnosti molekul Experimentálně molekuly charakterizujeme pomocí nejrůznějších vlastností: můžeme změřit třeba NMR posuny, elektrické či magnetické parametry či třeba jejich optickou otáčivost. Tyto

Více

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska

DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE Fakulta strojní Ústav mechaniky DIPLOMOVÁ PRÁCE Nelineární řízení magnetického ložiska 2004 Jan KRYŠTŮFEK Motivace Účel diplomové práce: Porovnání nelineárního řízení

Více

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny.

KLASICKÁ MECHANIKA. Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. MECHANIKA 1 KLASICKÁ MECHANIKA Předmětem mechaniky matematický popis mechanického pohybu v prostoru a v čase a jeho příčiny. Klasická mechanika rychlosti těles jsou mnohem menší než rychlost světla ve

Více

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014

NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 NUMERICKÝ MODEL NESTACIONÁRNÍHO PŘENOSU TEPLA V PALIVOVÉ TYČI JADERNÉHO REAKTORU VVER 1000 SVOČ FST 2014 Miroslav Kabát, Západočeská univerzita v Plzni, Univerzitní 8, 306 14 Plzeň Česká republika ABSTRAKT

Více

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou.

Obsah. Obsah. 2.3 Pohyby v radiálním poli Doplňky 16. F g = κ m 1m 2 r 2 Konstantu κ nazýváme gravitační konstantou. Obsah Obsah 1 Newtonův gravitační zákon 1 2 Gravitační pole 3 2.1 Tíhové pole............................ 5 2.2 Radiální gravitační pole..................... 8 2.3..................... 11 3 Doplňky 16

Více

Insolace a povrchová teplota na planetách mimo sluneční soustavu. Michaela Káňová

Insolace a povrchová teplota na planetách mimo sluneční soustavu. Michaela Káňová Insolace a povrchová teplota na planetách mimo sluneční soustavu Michaela Káňová Obsah Extrasolární planety Insolace Rovnice vedení tepla v 1D a 3D Testy Výsledky Závěr Extrasolární planety k 11.6. potvrzeno

Více

Povrchová teplota na kamenných exoplanetách. Michaela Káňová pod vedením RNDr. Marie Běhounkové, Ph.D.

Povrchová teplota na kamenných exoplanetách. Michaela Káňová pod vedením RNDr. Marie Běhounkové, Ph.D. Povrchová teplota na kamenných exoplanetách Michaela Káňová pod vedením RNDr. Marie Běhounkové, Ph.D. Kamenné exoplanety exoplanet.eu : 1782 extrasolárních planet se známou drahou 115 planet o hmotnosti

Více

Země jako dynamické těleso. Martin Dlask, MFF UK

Země jako dynamické těleso. Martin Dlask, MFF UK Země jako dynamické těleso Martin Dlask, MFF UK Úvod aneb o čem to dnes bude Povíme si: - Kdy a jak vznikla Země. - Jak Země vypadá a z čeho se skládá. - Jak můžeme zemi zkoumat. - Jak se v zemi šíří teplo.

Více

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon

ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon ELEKTŘINA A MAGNETIZMUS Řešené úlohy a postupy: Gaussův zákon Peter Dourmashkin MIT 006, překlad: Jan Pacák (007) Obsah 3. GAUSSŮV ZÁKON 3.1 ALGORITMUS PRO ŘEŠENÍ PROBLÉMŮ POMOCÍ GAUSSOVA ZÁKONA ÚLOHA

Více

14. cvičení z Matematické analýzy 2

14. cvičení z Matematické analýzy 2 4. cvičení z atematické analýzy 2 8. - 2. ledna 28 4. (Greenova věta) Použijte Greenovu větu k nalezení práce síly F (x, y) (2xy 3, 4x 2 y 2 ) vykonané na částici podél křivky Γ, která je hranicí oblasti

Více

Numerická stabilita algoritmů

Numerická stabilita algoritmů Numerická stabilita algoritmů Petr Tichý 9. října 2013 1 Numerická stabilita algoritmů Pravidla v konečné aritmetice Pro počítání v konečné aritmetice počítače platí určitá pravidla, která jsou důležitá

Více

9. Vícerozměrná integrace

9. Vícerozměrná integrace 9. Vícerozměrná integrace Aplikovaná matematika II, NMAF072 M. Rokyta, KMA MFF UK LS 2016/17 9.1 Elementy teorie míry Poznámka Na R n definujeme systém tzv. měřitelných množin, M n, který má následující

Více

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2

Gyrační poloměr jako invariant relativistického pohybu. 2 Nerovnoměrný pohyb po kružnici v R 2 Gyrační poloměr jako invariant relativistického pohybu nabité částice v konfiguraci rovnoběžného konstantního vnějšího elektromagnetického pole 1 Popis problému Uvažujme pohyb nabité částice v E 3 v takové

Více

7 Hallůvjevvkovuapolovodiči

7 Hallůvjevvkovuapolovodiči Zadání 7 Hallůvjevvkovuapolovodiči 1. Změřte Hallův koeficient pro kov a polovodič při laboratorní teplotě. 2. Změřte měrnou vodivost obou vzorků. 3. Pro několik hodnot proudu a magnetické indukce ověřte,

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze U218 Ústav procesní a zpracovatelské techniky FS ČVU v Praze Seminář z PHH 3. ročník Fakulta strojní ČVU v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Seminář z PHH - eplo U218 Ústav procesní

Více

Univerzita Karlova v Praze procesy II. Zuzana. funkce

Univerzita Karlova v Praze   procesy II. Zuzana. funkce Náhodné 1 1 Katedra pravděpodobnosti a matematické statistiky Univerzita Karlova v Praze email: praskova@karlin.mff.cuni.cz 11.-12.3. 2010 1 Outline Lemma 1: 1. Nechť µ, ν jsou konečné míry na borelovských

Více

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015

Jiří Cajthaml. ČVUT v Praze, katedra geomatiky. zimní semestr 2014/2015 Kartografie 1 - přednáška 1 Jiří Cajthaml ČVUT v Praze, katedra geomatiky zimní semestr 2014/2015 Úvod přednášky, cvičení, zápočty, zkoušky Jiří Cajthaml (přednášky, cvičení) potřebné znalosti: vzorce

Více

Příklady Kosmické záření

Příklady Kosmické záření Příklady Kosmické záření Kosmické částice 1. Jakou kinetickou energii získá proton při pádu z nekonečné výšky na Zem? Poloměr Zeměje R Z =637810 3 maklidováenergieprotonuje m p c 2 =938.3MeV. 2. Kosmickékvantum

Více

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE FAKULTA STAVEBNÍ OBOR GEODÉZIE A KARTOGRAFIE KATEDRA VYŠŠÍ GEODÉZIE název předmětu úloha/zadání název úlohy Kosmická geodézie 2/99 Tektonika zemských desek školní rok

Více

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb

FYZIKA I. Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA FAKULTA STROJNÍ FYZIKA I Rovnoměrný, rovnoměrně zrychlený a nerovnoměrně zrychlený rotační pohyb Prof. RNDr. Vilém Mádr, CSc. Prof. Ing. Libor Hlaváč, Ph.D.

Více

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w

Rovinná úloha v MKP. (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v. prostorové úlohy: u, v, w Rovinná úloha v MKP Hledané deformační veličiny viz klasická teorie pružnosti (mohou být i jejich derivace!): rovinná napjatost a r. deformace (stěny,... ): u, v desky: w, ϕ x, ϕ y prostorové úlohy: u,

Více

Příloha č. 1. Pevnostní výpočty

Příloha č. 1. Pevnostní výpočty Příloha č. 1 Pevnostní výpočty Pevnostní výpočty navrhovaného CKT byly provedeny podle normy ČSN 69 0010 Tlakové nádoby stabilní. Technická pravidla. Vzorce a texty v této příloze jsou převzaty z této

Více

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v

1. a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z 3 3xy 8 = 0 v . a) Určete parciální derivace prvního řádu funkce z = z(x, y) dané rovnicí z xy 8 = v bodě A =, ]. b) e grafu funkce f najděte tečnou rovinu, která je rovnoběžná s rovinou ϱ. f(x, y) = x + y x, ϱ : x

Více

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 22. 2. 2016 Matematika II, úroveň A ukázkový test č. 1 (2016) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze

U218 Ústav procesní a zpracovatelské techniky FS ČVUT v Praze. Seminář z PHTH. 3. ročník. Fakulta strojní ČVUT v Praze Seminář z PHTH 3. ročník Fakulta strojní ČVUT v Praze U218 - Ústav procesní a zpracovatelské techniky 1 Přenos tepla 2 Mechanismy přenosu tepla Vedení (kondukce) Fourierův zákon homogenní izotropní prostředí

Více

Petr Zikán. Studentský seminář, Březen 2011

Petr Zikán. Studentský seminář, Březen 2011 Sondová měření v plazmatu Petr Zikán Studentský seminář, Březen 2011 Přehled prezentace 1 Child-Langmuirův zákon Přehled prezentace 1 Child-Langmuirův zákon 2 Sheath a pre-sheath Přehled prezentace 1 Child-Langmuirův

Více

Kapitola 10: Diferenciální rovnice 1/14

Kapitola 10: Diferenciální rovnice 1/14 Kapitola 10: Diferenciální rovnice 1/14 Co je to diferenciální rovnice? Definice: Diferenciální rovnice je vztah mezi hledanou funkcí y(x), jejími derivacemi y (x), y (x), y (x),... a nezávisle proměnnou

Více

1 Projekce a projektory

1 Projekce a projektory Cvičení 3 - zadání a řešení úloh Základy numerické matematiky - NMNM20 Verze z 5. října 208 Projekce a projektory Opakování ortogonální projekce Definice (Ortogonální projekce). Uvažujme V vektorový prostor

Více

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0

Matematika I (KX001) Užití derivace v geometrii, ve fyzice 3. října f (x 0 ) (x x 0) Je-li f (x 0 ) = 0, tečna: x = 3, normála: y = 0 Rovnice tečny a normály Geometrický význam derivace funkce f(x) v bodě x 0 : f (x 0 ) = k t k t je směrnice tečny v bodě [x 0, y 0 = f(x 0 )] Tečna je přímka t : y = k t x + q, tj y = f (x 0 ) x + q; pokud

Více

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem

Cvičební texty 2003 programu celoživotního vzdělávání MŠMT ČR Požární odolnost stavebních konstrukcí podle evropských norem 2.5 Příklady 2.5. Desky Příklad : Deska prostě uložená Zadání Posuďte prostě uloženou desku tl. 200 mm na rozpětí 5 m v suchém prostředí. Stálé zatížení je g 7 knm -2, nahodilé q 5 knm -2. Požaduje se

Více

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC

SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC SOUSTAVY LINEÁRNÍCH ALGEBRAICKÝCH ROVNIC Pojm: Algebraická rovnice... rovnice obsahující pouze celé nezáporné mocnin neznámé, tj. a n n + a n 1 n 1 +... + a 2 2 + a 1 + a 0 = 0, kde n je přirozené číslo.

Více

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů.

Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Atomové a molekulové orbitaly Ion molekuly vodíku. Molekula vodíku Heitler-Londonovou metodou. Metoda LCAO. Báze atomových orbitalů. Ion molekuly vodíku H + 2 První použití metody je demonstrováno při

Více

Funkce. Limita a spojitost

Funkce. Limita a spojitost Funkce. Limita a spojitost skriptum J. Neustupa text Funkce (úvod) na této web stránce III.2 Fce - základní pojmy 1. Definice, def. obor D(f), obor hodnot H(f), graf 2. Fce složená, omezená, 3. Fce sudá,

Více

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008

10. Sluneční skvrny. Michal Švanda. Astronomický ústav MFF UK Astronomický ústav AV ČR. Sluneční fyzika LS 2007/2008 10. Sluneční skvrny Sluneční fyzika LS 2007/2008 Michal Švanda Astronomický ústav MFF UK Astronomický ústav AV ČR Magnetická pole na Slunci Pozorována Ve fotosféře (skvrny, knoty, fakule, póry, jasné body)

Více

Geodézie pro architekty. Úvod do geodézie

Geodézie pro architekty. Úvod do geodézie Geodézie pro architekty Úvod do geodézie Geodézie pro architekty Ing. Tomáš Křemen, Ph.D. B905 http://k154.fsv.cvut.cz/~kremen/ tomas.kremen@fsv.cvut.cz Doporučená literatura: Hánek, P. a kol.: Stavební

Více

1. Cvičení: Opakování derivace a integrály

1. Cvičení: Opakování derivace a integrály . Cvičení: Opakování derivace a integrál Derivace Příklad: Určete derivace následujících funkcí. f() e 5 ( 5 cos + sin ) f () 5e 5 ( 5 cos + sin ) + e 5 (5 sin + cos ) e 5 cos + 65e 5 sin. f() + ( + )

Více

3. Přednáška: Line search

3. Přednáška: Line search Úloha: 3. Přednáška: Line search min f(x), x R n kde x R n, n 1 a f : R n R je dvakrát spojitě diferencovatelná. Iterační algoritmy: Začínám v x 0 a vytvářím posloupnost iterací {x k } k=0, tak, aby minimum

Více

Mechanika - kinematika

Mechanika - kinematika Mechanika - kinematika Hlavní body Úvod do mechaniky, kinematika hmotného bodu Pohyb přímočarý rovnoměrný rovnoměrně zrychlený. Pohyb křivočarý. Pohyb po kružnici rovnoměrný rovnoměrně zrychlený Pohyb

Více

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D.

Generování pseudonáhodných. Ing. Michal Dorda, Ph.D. Generování pseudonáhodných čísel při simulaci Ing. Michal Dorda, Ph.D. 1 Úvodní poznámky V simulačních modelech se velice často vyskytují náhodné proměnné. Proto se budeme zabývat otázkou, jak při simulaci

Více

TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace

TA Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace Jaroslav Lacina, Martin Zlámal SANACE TUNELŮ TECHNOLOGIE A MATERIÁLY, SPÁROVACÍ HMOTY PRO OSTĚNÍ TA03030851 Sanace tunelů - technologie, materiály a metodické postupy Zesilování Optimalizace Petr ŠTĚPÁNEK,

Více

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené

Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené 28. 2. 2017 Matematika II, úroveň A ukázkový test č. 1 (2017) 1. a) Napište postačující podmínku pro diferencovatelnost funkce n-proměnných v otevřené mn. M E n. Zapište a načrtněte množinu D, ve které

Více

Projekty - Vybrané kapitoly z matematické fyziky

Projekty - Vybrané kapitoly z matematické fyziky Projekty - Vybrané kapitoly z matematické fyziky Klára Švarcová klara.svarcova@tiscali.cz 1 Obsah 1 Průlet tělesa skrz Zemi 3 1.1 Zadání................................. 3 1. Řešení.................................

Více

11. cvičení z Matematické analýzy 2

11. cvičení z Matematické analýzy 2 11. cvičení z Matematické analýzy 11. - 15. prosince 17 11.1 (trojný integrál - Fubiniho věta) Vypočtěte (i) xyz dv, kde je ohraničeno plochami y x, x y, z xy a z. (ii) y dv, kde je ohraničeno shora rovinou

Více

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM

Přijímací zkouška na navazující magisterské studium 2017 Studijní program: Fyzika Studijní obory: FFUM Přijímací zkouška na navazující magisterské studium 207 Studijní program: Fyzika Studijní obory: FFUM Varianta A Řešení příkladů pečlivě odůvodněte. Příklad (25 bodů) Nechť (a) Spočtěte lim n x n. (b)

Více

Fluktuace termodynamických veličin

Fluktuace termodynamických veličin Kvantová a statistická fyzika (Termodynamika a statistická fyzika Fluktuace termodynamických veličin Fluktuace jsou odchylky hodnot fyzikálních veličin od svých středních (rovnovážných hodnot. Mají původ

Více

Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)?

Dynamická viskozita oleje (Pa.s) Souřadný systém (proč)? Viskozimetr kužel-deska S pomocí rotačního viskozimetru s uspořádáním kužel-deska, viz obrázek, byla měřena dynamická viskozita oleje. Při použití kužele o průměru 40 mm, který se otáčel úhlovou rychlostí

Více

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti:

Definice 1.1. Nechť je M množina. Funkci ρ : M M R nazveme metrikou, jestliže má následující vlastnosti: Přednáška 1. Definice 1.1. Nechť je množina. Funkci ρ : R nazveme metrikou, jestliže má následující vlastnosti: (1 pro každé x je ρ(x, x = 0; (2 pro každé x, y, x y, je ρ(x, y = ρ(y, x > 0; (3 pro každé

Více

Název testu: /01 Test na učebně prez. Fyzika LS 10/11

Název testu: /01 Test na učebně prez. Fyzika LS 10/11 Název testu: 516212/01 Test na učebně prez. Fyzika LS 10/11 Následující test obsahuje několik druhů otázek. Jednak můžete vybrat správnou odpověď (více odpovědí) z nabízených možností. Dále se může jednat

Více

14. přednáška. Přímka

14. přednáška. Přímka 14 přednáška Přímka Začneme vyjádřením přímky v prostoru Přímku v prostoru můžeme vyjádřit jen parametricky protože obecná rovnice přímky v prostoru neexistuje Přímka v prostoru je určena bodem A= [ a1

Více

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák

STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ. J. Pruška, T. Parák STANOVENÍ SPOLEHLIVOSTI GEOTECHNICKÝCH KONSTRUKCÍ J. Pruška, T. Parák OBSAH: 1. Co je to spolehlivost, pravděpodobnost poruchy, riziko. 2. Deterministický a pravděpodobnostní přístup k řešení problémů.

Více

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině.

Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Dynamika tekutin popisuje kinematiku (pohyb částice v času a prostoru) a silové působení v tekutině. Přehled proudění Vazkost - nevazké - vazké (newtonské, nenewtonské) Stlačitelnost - nestlačitelné (kapaliny

Více

Spojitý nosník. Příklady

Spojitý nosník. Příklady Spojitý nosník Příklady Příklad, zadání A = konst. =, m I = konst. =,6 m 4 E = konst. = GPa q =kn / m F kn 3 = M = 5kNm F = 5kN 8 F3 = 8kN 4,5 . způsob řešení n p = (nepočítáme pootočení ve styčníku č.3)

Více

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu

1.1 Existence a jednoznačnost řešení. Příklad 1.1: [M2-P1] diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu [M2-P1] KAPITOLA 1: Diferenciální rovnice 1. řádu diferenciální rovnice (DR) řádu n: speciálně nás budou zajímat rovnice typu G(x, y, y, y,..., y (n) ) = 0 y (n) = F (x, y, y,..., y (n 1) ) Příklad 1.1:

Více

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty

Příloha č. 1. amplitudová charakteristika filtru fázová charakteristika filtru / frekvence / Hz. 1. Určení proudové hustoty Příloha č. 1 Při hodnocení expozice nízkofrekvenčnímu elektromagnetickému poli (0 Hz 10 MHz) je určující veličinou modifikovaná proudová hustota J mod indukovaná v tělesné tkáni. Jak je uvedeno v nařízení

Více

ÚVOD DO TERMODYNAMIKY

ÚVOD DO TERMODYNAMIKY ÚVOD DO TERMODYNAMIKY Termodynamika: Nauka o obecných zákonitostech, kterými se se řídí transformace CELKOVÉ energie makroskopických systémů v její různé formy. Je založena na výsledcích experimentílních

Více

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ

VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ VYSOKÉ UČENÍ TECHNICKÉ V BRNĚ FAKULTA STROJNÍHO INŽENÝRSTVÍ ÚSTAV MECHANIKY TĚLES, MECHATRONIKY A BIOMECHANIKY Komentovaný metodický list č. 1/4 Vytvořil: Ing. Oldřich Ševeček & Ing. Tomáš Profant, Ph.D.

Více

FUNKCE A JEJICH VLASTNOSTI

FUNKCE A JEJICH VLASTNOSTI PŘEDNÁŠKA 3 FUNKCE A JEJICH VLASTNOSTI Pojem zobrazení a funkce Uvažujme libovolné neprázdné množiny A, B. Přiřadíme-li každému prvku x A právě jeden prvek y B, dostáváme množinu F uspořádaných dvojic

Více

Ž ř ú ř ř ř Šř ř ř ú ň Ž Ž ů ú ů šř ů ú ů ř ř Ž ř ř Č ř ř ř Č šř ů Ú Ř Ú ů ř ú ů š šř ř š ú š ř ř š š ř ř ú Ž Š ů š ř š ř Ž ů ú ů Ú Ž ř ú ř Ú ú šř ů š ů Ž Ž ř ů Ž Ú ů Ž ř ř ř ť ů ň ř ů Á ř ň ř ů Ř ú ó

Více

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování

Neideální plyny. Z e dr dr dr. Integrace přes hybnosti. Neideální chování eideální plyny b H Q(, V, T )... e dp 3... dpdr... dr! h Integrace přes hybnosti QVT (,, ) pmkt! h 3 / e dr dr dr /... U kt... eideální chování p kt r B ( T) r B ( T) r 3 3 Vyšší koeficinety velice složité

Více