VYSOKÁ ŠKOLA BÁŇSKÁ ECHNCKÁ UNVERZA OSRAVA UNVERZNÍ SUDJNÍ ROGRAM MECHARONKA KAEDRA AUOMAZAČNÍ ECHNKY A ŘÍZENÍ SROVNÁNÍ MEOD SYNÉZY RO ŘÍZENÍ SOUSAV S DORAVNÍM ZOŽDĚNÍM COMARSON OF SYNHESS MEHODS FOR LANS WH ME DELAY Autor baalářsé práce: Veoucí baalářsé práce: Martin Sucháne prof. ng. Miluše Vítečová, CSc. OSRAVA 5
Baalářsá práce Martin Sucháne
rohlášení stuenta rohlašuji, že jsem celou baalářsou práci včetně příloh vypracoval samostatně, po veením veoucího baalářsé práce a uvel jsem všechny použité polay a literaturu. V Ostravě. Martin Sucháne
rohlašuji, že: rohlášení stuenta byl jsem seznámen s tím, že na moji baalářsou práci se plně vztahuje záon č. / Sb. autorsý záon, zejména 35 užití íla v rámci občansých a nábožensých obřaů, v rámci šolních přestavení a užití íla šolního a 6 šolní ílo. beru na věomí, že Vysoá šola Báňsá echnicá univerzita Ostrava (ále jen VŠB-UO) má právo nevýělečně e své vnitřní potřebě baalářsou práci užít ( 35 ost. 3) souhlasím s tím, že jeen výtis baalářsé práce bue uložen v Úření nihovně VŠB-UO prezenčnímu nahlénutí a jeen výtis bue uložen u veoucího baalářsé práce. Souhlasím s tím, že úaje o baalářsé práci, obsažené v Záznamu o závěrečné práci, umístěném v příloze mé baalářsé práce, buou zveřejněny v informačním systému VŠB-UO. bylo sjenáno, že užit své ílo baalářsou práci nebo posytnout licenci jejímu využití mohou jen se souhlasem VŠB-UO, terá je oprávněna v taovém přípaě oe mne požaovat přiměřený příspěve na úhrau nálaů, teré byly VŠB-UO na vytvoření íla vynaloženy (až o jejich sutečné výše). beru na věomí, že oevzáním své práce souhlasím se zveřejněním své práce pole záona č. /998 Sb., o vysoých šolách a o změně a oplnění alších záonů (záon o vysoých šolách), ve znění pozějších přepisů, bez ohleu na výslee její obhajoby. V Ostravě, ne. Zalaatelů /3, řerov V. Henčlov, 75 Martin Sucháne
Baalářsá práce Martin Sucháne ANOACE BAKALÁŘSKÉ RÁCE SUCHÁNEK, M. Srovnání meto syntézy pro řízení soustav s opravním zpožěním. Ostrava: atera AŘ-35 VŠB U, 5. 5s. Baalářsá práce, veoucí prof. ng. Miluše Vítečová, CSc. ato práce se zabývá srovnáním meto syntézy pro řízení soustav s opravním zpožěním. ro proporcionální a integrační regulované soustavy s opravním zpožěním jsou vybrány metoy, teré jsou vhoné pro seřízení regulátoru. Zvolené metoy jsou v práci ověřeny pomocí číslicové simulace v programu MALAB/Simulin a porovnány s metoami SMC a,,univerzální experimentální. Vybrané metoy pro proporcionální regulovanou soustavu jsou rozěleny na ompenzační a neompenzační metoy. ro integrační regulovanou soustavu byl použit vele stanarního regulátoru i regulátor se věma stupni volnosti. V závěru jsou jenotlivé metoy porovnány z hleisa osažené vality regulace. Klíčová slova: roporcionální regulovaná soustava, ntegrační regulovaná soustava, regulátor, MALAB/Simulin, metoa Liptáova, Chenova a Yangova metoa, Huangova a Jengova metoa, metoa požaovaného moelu, metoa násobného ominantního pólu, Hubova a Žáové metoa, Chiambaranova a Sreeova metoa, Chiambaranova Sriviyova a Chiambaranova metoa. ANNOAON HE BACHELOR HESS. SUCHÁNEK, M. Comparison of synthesis methos for plants with time elay. Ostrava: Department AR-35 VSB - U, 5. 5s. Bachelor thesis, hea prof. ng. Miluše Vítečová, CSc. his thesis eals with the comparison of synthesis methos for control systems with traffic elay. Methos that are suitable for setting the regulator are chosen for proportional an integral controlle systems with traffic elay. Chosen methos are verifie thesis by numerical simulation in the MALAB/Simulin program an are compare with the SMC metho an,,universal an experimental metho. Chosen methos for proportional control system are ivie into compensatory an uncompensatory methos. A regulator with two egrees of latitue was use for integral control system in aition to the stanar regulator. n conclusion, there are various methos compare in terms of quality control achievements. Key wors: roportional control system, ntegral control system, regulator, MALAB/Simulin, Liptá's metho, Chen an Yang's metho, Huang an Jeng's metho, the metho of esire moel, the metho of multiple ominant pole, Hub an Žá's metho, Chiambaran an Sree's metho, Chiambaran Sriviy an Chiambaran's metho. 5
Baalářsá práce Martin Sucháne OBSAH SEZNAM OUŽÝCH ZNAČEK A ZKRAEK... 7 ÚVOD... 8 REGULAČNÍ OBVOD... 9 3 OUŽÉ MEODY SYNÉZY... 4 3. opis univerzální experimentální metoy... 4 3. opis metoy SMC... 5 3.3 Vybrané metoy pro roporcionální regulovanou soustavu... 7 3.4 Vybrané metoy pro ntegrační regulovanou soustavu... 9 4 OVĚŘENÍ A OROVNÁNÍ S VYBRANÝM MEODAM... 4. roporcionální regulovaná soustava... 4. ntegrační regulovaná soustava... 35 5 ZHODNOCENÍ A ZÁVĚR... 5 6
Baalářsá práce Martin Sucháne SEZNAM OUŽÝCH ZNAČEK A ZKRAEK b e G(s) G F G R G S - onstanta pro přenos filtru - regulační ochyla - (obrazový) L-přenos - přenos filtru - přenos regulátoru - přenos regulované soustavy - zesílení analogového regulátoru - oeficient přenosu soustavy s=α+jω - omplexní proměnná, nezávisle proměnná u obrazu v L- transformaci [s - ] t t r u v w y - (spojitý) čas [s] - opravní zpožění u spojitých systémů - integrační časová onstanta - oba regulace [s] - setrvačná časová onstanta soustavy - ační veličina - poruchová veličina - žáaná veličina - regulovaná, sutečná, výstupní veličina - relativní přemit [%] DOF Ch. a S. Ch. S. a Ch. MND MM RO SMC UEM - regulátor se věma stupni volnosti - Chiambaranova a Sreeova metoa - Chiambaranova Sriviyova a Chiambaranova metoa - metoa násobného ominantního pólu - metoa požaovaného moelu - proporcionálně integrační analogový regulátor - regulační obvo - metoa Sogesta s interním (vnitřním) moelem (internal moel control) - univerzální experimentální metoa 7
Baalářsá práce Martin Sucháne ÚVOD ři srovnání meto syntézy pro řízení soustav s opravním zpožěním se snažíme o určení nejvhonější metoy a to ja pro proporcionální regulovanou soustavu, ta i pro integrační regulovanou soustavu. V baalářsé práci bue využit jenouchý stanarní regulátor a regulátor se věma stupni volnosti pro typ regulátoru pro řízení integrační regulované soustavy s opravním zpožěním. Dále jsou z nihy O Dwyer voleny metoy syntézy, teré jsou vybírány pro regulátor typu a pole jenouchosti vztahů pro výpočet stavitelných parametrů regulátoru. V práci jsou pa vztahy uveeny v tabulách pro proporcionální i integrační regulovanou soustavu. Vybrané metoy pro proporcionální regulovanou soustavu jsou pa rozěleny na metoy ompenzační a neompenzační. ři ověřování meto syntézy je použit počítačový program MALAB/Simulin, ve terém se vytváří průběhy regulovaných a ačních veličin. řes program MALAB/Simulin jsou opočítány honoty relativního přemitu, oby regulace a integrálního ritéria AE, teré jsou násleně uveeny v práci v tabulách. omocí tabule a průběhů veličin je prováěno srovnání meto syntézy a vyhonocení nejvhonější metoy pro zaané parametry regulované soustavy. 8
Baalářsá práce Martin Sucháne REGULAČNÍ OBVOD V ané baalářsé práci se pracuje s jenouchým regulačním obvoem, terý vznine připojením regulátoru (říicího systému) regulované soustavě (řízenému systému) a zaveením zpětné vazby, terá pracuje jao záporná zpětná vazba. Do regulačního obvou vstupuje porucha (poruchová veličina) pře regulovanou soustavou viz obr. [Navrátil, ]. V(s) W(s) E(s) U(s) Y(s) G R (s) G S (s) Obr.. Bloové schéma regulačního obvou Na obr.. značí: G R (s) přenos regulátoru, G S (s) přenos regulované soustavy, W(s) obraz žáané veličiny w(t), E(s) obraz regulační ochyly e(t), U(s) obraz ační veličiny u(t), V(s) obraz poruchové veličiny v(t), Y(s) obraz regulované veličiny y(t). W(s) E(s) U(s) Y(s) V(s) G F (s) G R (s) G S (s) Obr.. Bloové schéma regulačního obvou s DOF regulátorem V přípaě integračních regulovaných soustav bue pro zlepšení vality regulace využit DOF regulátor (tj. regulátor se věma stupni volnosti), pa regulační obvo bue mít zapojení uázáno na obr.., e G F (s) je přenos filtru. Regulátor typu se věma stupni volnosti může být popsán v obrazech vztahem U( s) bw ( s) Y ( s) E( s), s s přenosem filtru b s GF ( s), (.) s 9
Baalářsá práce Martin Sucháne e onstanta b bue volena z intervalu <,> v závislosti na použité metoě [Balátě, 4; Nosievič, 999; Vítečová, Víteče,, 4; Víteče, Vítečová, 3]. Regulátory Regulátor je jeen z hlavních prvů regulačního obvou a existuje řaa regulátorů a regulačních principů. Jejich rozělení je rozsáhlé a můžeme je napříla rozělit pole ační veličiny (spojité, nespojité (isrétní)), pole nositele signálu (eletricé, pneumaticé, hyraulicé), pole příonu (přímé (bez vnější energie), nepřímé). Ve většině přípaů se v průmyslu využívají nepřímé regulátory, teré vyžaují pro svou funci vnější energii. Dále je možné regulátory rozělit pole jejich strutury, tj. regulátory s pevnou struturou (regulátory typu D) a regulátory s obecnou struturou (obecný lineární regulátor) [Balátě, 4; Navrátil, ]. V praxi jsou využívány i jenoušší typy onvenčních analogových regulátorů (používány jsou vztahy pouze s časovými onstantami): regulátor typu proporcionální, regulátor typu integrační, regulátor typu proporcionálně integrační, regulátor typu D proporcionálně erivační a regulátor typu D proporcionálně integračně erivační. Regulátor s erivační složou se nepoužívá, protože reaguje na časové změny regulační ochyly e(t) a v ustáleném stavu způsobí rozpojení regulačního obvou. řenosy uveených onvenčních analogových regulátorů jsou uveeny v tab.. [Vítečová, Víteče, 4]. ab.. řenosy onvenčních analogových regulátorů yp řenos G R (s) s 3 s 4 D s 5 D Ds s D ro zpracování této baalářsé práce bueme ále pracovat s regulátorem typu, jehož přenos je uveen v tab.. na řáu 3. Regulovaná soustava Regulovaná soustava je alším ůležitým prvem regulačního obvou. Vlastnosti regulovaných soustav popisujeme různými typy matematicých moelů. Nejčastěji používaným typem je L-přenos. yto přenosy soustav byly zvoleny z toho ůvou, že
Baalářsá práce Martin Sucháne složitější typy přenosů, můžeme zjenoušit právě na tyto přenosy se zachováním postatných vlastností. Nebuou uvažovány regulační soustavy s mitavými průběhy přechoových funcí. Regulovanou soustavu můžeme rozělit o tří hlavních supin pole ustálených stavů přechoových charateristi h. rvní je proporcionální regulovaná soustava h, terou můžeme ále rozělit, např. na proporcionální regulovanou soustavu bez setrvačnosti s nebo bez opravního zpožění, proporcionální regulovanou soustavu se setrvačností. řáu s nebo bez opravního zpožění a proporcionální regulovanou soustavu se setrvačností. řáu s nebo bez opravního zpožění. Další je erivační regulovaná soustava h, terou můžeme taé rozělit, např. na erivační regulovanou soustavu bez setrvačnosti s nebo bez opravního zpožění a erivační regulovanou soustavu se setrvačností. řáu s nebo bez opravního zpožění. oslení je integrační regulovaná soustava h, terou tatéž můžeme rozělit, např. na integrační regulovanou soustavu bez setrvačnosti s nebo bez opravního zpožění a integrační regulovanou soustavu se setrvačností. řáu s nebo bez opravního zpožění. ro účely zpracování této práce bueme ále uvažovat proporcionální regulovanou soustavu se setrvačností. řáu s opravním zpožěním (.) a integrační regulovanou soustavu bez setrvačnosti s opravním zpožěním (.3) [Balátě, 4; Nosievič, 999; Vítečová, Víteče, 4; Švarc a ol., ] GS ( s) e s G s s, (.) s S ( s) e. (.3) Stabilita V publiaci [Víteče, Vítečová, 3] je uveena efinice stability regulačních obvoů, cituji:,,stabilita (lineárního) regulačního obvou je jeho schopnost ustálit všechny veličiny na onečných honotách, pou se vstupní veličiny ustálí na onečných honotách. U regulačního obvou jsou vstupními veličinami žáané veličiny w(t) a všechny veličiny poruchové, teré jsou pa sloučeny o jené poruchové veličiny v(t) (viz obr.. a.). Kvalita Kvalita regulace je v této práci vyhonocena pole průběhu oezev regulačního obvou na soovou změnu vstupních veličin. Zajištěním vhoných vlastností regulačního obvou žáané veličině w(t) buou ve většině přípaů zajištěny i vlastnosti poruchové veličině v(t) působící pře regulovanou soustavou. V této práci buou vybrané metoy syntézy posuzovány z hleisa těchto valitativních uazatelů - relativního přemitu [%], oby regulace t r [s], integrálního ritéria AE.
Baalářsá práce Martin Sucháne Na obr..3 je oezva regulačního obvou (přechoová charateristia) na soovou změnu žáané veličiny w(t). Obr..3 řechoová charateristia regulačního obvou s vyznačenými uazateli vality [Vítečová, Víteče, 4] o pojmem přechoová charateristia se ze rozumí oezva na soovou změnu polohy, terá nemusí být vžy jenotová. Na obr..3 můžeme viět va typicé průběhy přechoových charateristi regulačního obvou způsobené soovou změnou žáané veličiny w(t). Je to průběh s přemitem a bez přemitu. Nejůležitějšími hleisy pro posouzení vality regulace jsou va uazatele, a to oba regulace t r (obr..) a relativní přemit y y( ) m [%], y m y ( t m). (.4) y( ) Doba regulace t r je ána časem, y regulovaná veličina y(t) veje o pásma o šířce Δ, tj. y( ) ± Δ, e tolerance regulace je ána vztahem y(),,, 5, ( 5)%. Kyž se uváí oba regulace t r musí se uvést taé honota relativní tolerance regulace. V této práci se přepoláá, že má honotu, ( %). Honota = opovíá nemitavému (aperioicému) regulačnímu pochou. Využívá se u procesů, u terých by přemit mohl způsobit nežáoucí účiny, např.: tepelné a chemicé procesy, pohyby robotů a manipulátorů. U nemitavého (aperioicého) regulačního pochou se často vyžauje, aby měl minimální obu regulace t r. aovým regulačním pochoům se říá mezní aperioicé. ro > je regulační pocho mitavý a je rychlejší než nemitavý pocho [Vítečová, Víteče, ].
Baalářsá práce Martin Sucháne Kritérium AE AE t e( t) t. (.5) ntegrální ritérium AE (AE = ntegral of ime multiplie by Absolute Error) má v sobě zahrnut čas i regulační ochyly, a proto při jeho minimalizaci ochází současně minimalizaci ja absolutní regulační plochy, ta i oby regulace t r. Je to velmi oblíbené integrální ritérium, i yž jeho honotu v přípaě mitavých průběhů lze určit pouze simulačně. ntegrální ritérium AE patří mezi nejůležitější ritéria, jeho minimalizací se zísávají honoty stavitelných parametrů zvoleného regulátoru. Minimalizace může být prováěna i simulačně. S výhoou jej lze použít při porovnání a vyhonocení vality různých regulačních pochoů [Vítečová, Víteče, 4]. Výpočet ritéria AE v prostřeí Matlab, pole vztahu.5. % Výpočet ritéria AE % Určení vetoru ochyly e(:4,) % Honoty vetoru ochyly převeeny o absolutní honoty ae=abs(e(:4,)) % Určení vetoru času t=e(:4,) % Součin času a absolutní honoty ochyly sum(t.ae) % Součin času a absolutní honoty ochyly vynásobený vzorovacím roem sum(t.ae)t(,) 3
Baalářsá práce Martin Sucháne 3 OUŽÉ MEODY SYNÉZY V této apitole buou popsány všechny použité metoy syntézy, buou ze uveeny všechny vztahy pro výpočet stavitelných parametrů regulátoru (viz tab.. řáe 3) v závislosti na parametrech regulovaných soustav. Z nihy [O Dwyer, 9] bylo vybráno něoli meto vhoných pro řízení regulovaných soustav (.) a (.3). Kritériem výběru byla jenouchost vztahů pro výpočet stavitelných parametrů regulátoru a osažení poobné vality regulačního pochou. yto vybrané metoy byly pa porovnány s univerzální experimentální metoou (UEM) a metoou SMC [Vítečová, Víteče,, 4; Víteče, Vítečová, 3]. 3. opis univerzální experimentální metoy Univerzální experimentální metoa je z mnoha existujících meto velmi jenouchá, ale přesto ve většině realizovaných přípaů účinná metoa, terá byla rozpracována v bývalém SSSR a slouží pro regulované soustavy a přenosy (.) a (.3), ále umožňuje seřizovat onvenční (stanarní) regulátory, ja po stránce žáané veličiny w, ta poruchové veličiny v, terá působí na vstup regulované soustavy. Kritérium vality regulace může být nejrychlejší oezva bez přemitu, nejrychlejší s relativním přemitem κ =, ( %) a minimální varaticá regulační plocha. Za nemitavý regulační pocho se považuje taový, u terého je maximální relativní přemit o, ( %) o,5 (5 %). Univerzální experimentální metoa je velmi poobná Chienově-Hronesově- Reswicově metoě. Univerzální experimentální metoa umožňuje seřizovat regulátory typu, a D. V tab. 3. a 3. jsou uveeny vztahy pro seřízení regulátoru, terý je v této práci využíván [Vítečová, Víteče,, 4; Víteče, Vítečová, 3]. s e ab. 3. Honoty stavitelných parametrů regulátoru pro přenos (.) s Regulátor typ Nejrychlejší oezva bez přemitu žáané veličiny w,35 Regulační pocho Nejrychlejší oezva s přemitem % Seřízení z hleisa poruchové žáané poruchové veličiny v veličiny w veličiny v,6,6,7,7,8,5 Minimální varaticá regulační plocha SE poruchové veličiny v,3,35 4
Baalářsá práce Martin Sucháne e s ab. 3. Honoty stavitelných parametrů regulátoru pro přenos (.3) s Regulátor typ Nejrychlejší oezva bez přemitu žáané veličiny w,37 poruchové veličiny v,46 Regulační pocho Nejrychlejší oezva s přemitem % Seřízení z hleisa žáané poruchové veličiny w veličiny v,7,7 5,75 Minimální varaticá regulační plocha SE poruchové veličiny v 3 4,3 V práci buou ále využívány vztahy ve. sloupci, tj. osažení nejrychlejší oezvy bez přemitu pro poruchovou veličinu v. 3. opis metoy SMC Metoa SMC, patří mezi jenouché, ale velmi účinné metoy seřizování analogových regulátorů. Vychází z regulace s interním (vnitřním) moelem MC (internal moel control), proto autor metoy Sogesta navrhl zratu SMC interpretovanou jao,,smple Control nebo,,sogesta MC. Metoa SMC pro návrh analogového regulátoru používá vztah pro přímou syntézu Gwy( s) GR ( s) (3.) G ( s) G ( s) S wy za přepolau, že přenos řízení regulačního obvou má tvar G s wy( s) e, (3.) ws e w je časová onstanta uzavřeného regulačního obvou. Např. pro regulovanou soustavu s přenosem (.) se obrží s GR ( s). (3.3) s s e w 5
Baalářsá práce Martin Sucháne ab. 3.3 Honoty stavitelných parametrů regulátoru pro metou SMC 3 Regulovaná soustava s e e s s s yp Regulátor D oznáma 8 8 8 8 oužitím aproximace s e - s se ostane přenos regulátoru GR ( s), s w,. (3.4) ři volbě časové onstanty w lze zísat různě rychlé oezvy. Nejčastěji je oporučováno volit w = a integrační časovou onstantu určit na zálaě vztahu min, 8. a honoty stavitelných parametrů regulátoru jsou ány (viz řáy a v tab. 3.3), (3.5) 8, pro 8 pro 8. Metoa SMC má relativní přemit κ,5 (5 %). Metoa SMC umožňuje seřizovat různé regulované soustavy a různé typy regulátorů. V této práci používám proporcionální a integrační regulovanou soustavu a regulátor [Vítečová, Víteče,, 4]. ato metoa zaručuje pro proporcionální regulovanou soustavu (.) přemit 5 % a pro integrační regulovanou soustavu (.3) nulovou regulační ochylu na poruchu v(t) působící pře regulovanou soustavou. V tomto přípaě je přemit na přechoové charateristice větší z ůvou stabilní nuly v přenosu řízení. 6
Baalářsá práce Martin Sucháne 3.3 Vybrané metoy pro roporcionální regulovanou soustavu roporcionální regulované soustavy mají tu vlastnost, že po vychýlení z rovnovážného stavu jsou schopny vžy osáhnout nového rovnovážného stavu bez působení (připojení) alšího členu o obvou, tj. regulátoru, za přepolau stabilních pólů. Dynamicé vlastnosti proporcionální regulované soustavy se setrvačností n-tého řáu lze vyjářit iferenciální rovnicí [Navrátil, ; Šulc, Vítečová, 4; Vítečová, Víteče,, 4; Víteče, Vítečová, 3] ro proporcionální soustavu anou vztahem (.) byly z literatury [O Dwyer, 9] vybrány násleující metoy, teré jsou spolu se vztahy pro výpočet stavitelných parametrů regulátorů přehleně uveeny v tab. 3.4. ab. 3.4 Vztahy pro výpočet stavitelných parametrů regulátoru pro proporcionální soustavu s opravním zpožěním Název metoy UEM,6,8,5 SMC pro 8 8 pro 8 3 Liptáova,95 4 4 Chenova a Yangova,7 5 Huangova a Jengova,495,,9, 4 6 MM ( ) Vztahy pro metou násobného ominantního pólu (MND) na výpočet stavitelných parametrů regulátoru jsou umístěny zvlášť v tab. 3.5, vůli jejich graficému rozsahu. 7
Baalářsá práce Martin Sucháne ab. 3.5 Vztahy pro výpočet stavitelných parametrů regulátoru pro proporcionální soustavu s opravním zpožěním Regulátor Regulovaná soustava s e s s 3 4 s ( ) s 3 3 e s3 s ( ) s 3 3 ( s3 ) s3 ab. 3.6 Závislost oeficientů a na relativním přemitu κ pro metou MM,5,,5,,5,3,35,4,45,5,8,984,884,83,763,697,669,64,68,599,577,78,944,7,56,437,337,48,7,4,45,99 8
Baalářsá práce Martin Sucháne 3.4 Vybrané metoy pro ntegrační regulovanou soustavu ntegrační regulované soustavy nemají na rozíl o proporcionálních soustav samoregulační schopnost. o vyveení soustavy z rovnovážného stavu, se výstupní signál po oeznění přechoového ěje mění onstantní rychlostí, za přepolau stabilních pólů. ro integrační soustavu anou vztahem (.3) byly z literatury [O Dwyer, 9] vybrány násleující metoy, e na řáu 4. je metoa Chiambaranova a Sreeova a na řáu 5. metoa Chiambaranova Sriviyova a Chiambaranova. ab. 3.7 Vztahy pro výpočet stavitelných parametrů regulátoru pro integrační soustavu s opravním zpožěním Název metoy UEM,46 5,75 SMC 3 Hubova a Žáové 4 CH. a S. 5 CH. S. a CH., 8,,6775 8 3,555 4,5 3,6547 6 MND,46 5,88 9
Baalářsá práce Martin Sucháne 4 OVĚŘENÍ A OROVNÁNÍ S VYBRANÝM MEODAM V této apitole jsou ověřeny vybrané metoy pro proporcionální regulovanou soustavu (.) a integrační regulovanou soustavu (.3), teré jsou seřízeny pomocí regulátoru typu (tab.. řáe 3). yto vybrané metoy byly pomocí valitativních uazatelů, relativního přemitu [%], oby regulace t r [s] a integrálního ritéria AE porovnány s metoami UEM a SMC. 4. roporcionální regulovaná soustava U proporcionálních regulovaných soustav můžeme rozělit metoy seřizování na vě supiny. rvní supina jsou metoy ompenzační, tzv., že časová onstanta regulátoru se rovná časové onstantě soustavy, ruhá supina jsou metoy neompenzační. Metoy ompenzační jsou využívány proto, aby se zjenoušil výpočet alšího parametru regulátoru, tj. jeho zesílení. Ja bue ále uveeno, oba regulace u ompenzačních meto je elší, než u meto neompenzačních. V tab. 3.4 a 3.5 jsou uveeny vztahy pro výpočet stavitelných parametrů regulátoru pro vybrané metoy seřízení. Vztahy pro metou násobného ominantního pólu (MND) jsou složité, proto jsou uveeny ve zvláštní tab. 3.5, tato metoa není ompenzační a zaručuje v našem přípaě trojnásobný reálný ominantní pól. Vztahy pro výpočet stavitelných parametrů touto metoou byly ovozeny na ateře AŘ FS VŠB- UO pře roem, a jsou uveeny v publiacích [O Dwyer 9, Šulc, Vítečová, 4; Vítečová, Víteče,, 4; Víteče, Vítečová, 3]. Na násleujících obrázcích 4. 4.3 jsou uveeny závislosti optimálních parametrů regulátorů na parametrech regulované soustavy. yto závislosti byly vypočítány ze vztahů uveených v tab. 3.4 3.5. Např. pro metou Chenovu a Yangovu ompenzační metoa na zálaě 4. řáu tab. 3.4 můžeme psát,7. U MM byl volen parametr, 78, u terého je osaženo % přemitu na přechoové charateristice regulačního obvou. Z obr. 4. 4.3 pa můžeme určit valitu regulace, terá je pa oložena číslicovou simulací. Kompenzační metoy Z vybraných meto pro proporcionální regulovanou soustavu byly jao metoy ompenzační zařazeny metoy SMC pro 8, požaovaného moelu a Chenova a Yangova.
Baalářsá práce Martin Sucháne 8 7 6 5 SMC 4 3 CHENOVA A YANGOVA MM 4 6 8 Obr. 4. Závislosti optimálního parametru regulátoru na parametrech soustavy pro ompenzační metoy z tab. 3.4 a 3.5 Z obr. 4. viíme, že pro ompenzační metoy ává nejvyšší zesílení metoa Chenova a Yangova, naopa nejnižší zesílení á metoa požaovaného moelu. Z toho můžeme uvažovat, že Chenova a Yangova metoa bue ávat nejvyšší přemit na přechoové charateristice uzavřeného regulačního obvou (viz tab. 4.) Neompenzační metoy Z vybraných meto pro proporcionální regulovanou soustavu byly mezi metoy neompenzační zařazeny metoy univerzální experimentální (UEM), SMC pro 8, Liptáova, násobného ominantního pólu (MND) a Huangova a Jengova. regulátoru U těchto neompenzačních meto máme vě závislosti. Jenou je závislost zesílení a ruhou je závislost integrační časové onstanty na parametrech regulované soustavy. Opět byly tyto závislosti vypočteny na zálaě vztahů v tab. 3.4 a 3.5.
Baalářsá práce Martin Sucháne 9 8 7 6 5 4 3 UEM SMC LÁKOVA HUANGOVA A JENGOVA MND 4 6 8 Obr. 4. Závislosti optimálního parametru regulátoru na parametrech soustavy pro neompenzační metoy z tab. 3.4 a 3.5 Z obr. 4. viíme, že pro neompenzační metoy ává nejvyšší zesílení metoa Liptáova, alší metoy jsou si poobné, ale nejnižší zesílení z nich ává metoa násobného ominantního pólu. 9 8 7 6 5 4 3 UEM SMC LÁKOVA HUANGOVA A JENGOVA MND 4 6 8 Obr. 4.3 Závislosti optimálního parametru regulátoru na parametrech soustavy pro neompenzační metoy z tab. 3.4 a 3.5
Baalářsá práce Martin Sucháne Z obr. 4.3 viíme, že pro neompenzační metoy ává nejvyšší časovou onstantu metoa SMC a Huangova a Jengova, naopa nejnižší časovou onstantu z nich ává metoa násobného ominantního pólu a Liptáova. rotože je o vzájemné působení různých honot zvětšování honoty a regulace, viz tab. 4.., je hůře posouit valita regulačního pochou. Víme, že způsobí větší přemit a zvětšování honoty pomalejší průběh Ověření číslicovou simulací ro porovnání meto byly zvoleny různé honoty parametrů regulované soustavy (.) a opočítány optimální stavitelné parametry regulátoru pro vybrané metoy syntézy. Simulace byla proveena v prostřeí MALAB/Simulin, v tabulách jsou uveeny valitativní uazatele regulačních procesů a na obrázcích pa průběhy regulovaných veličin y(t) a ačních veličin u(t). Vžy v čase t = s začne působit žáaná veličina w(t) = a po ustálení regulované veličiny y(t) začne působit poruchová veličina, terá je přiveena o regulačního obvou pře regulovanou soustavou. Jsou ze uveeny tři přílay, ja pro ompenzační, ta neompenzační metou. V prvním přílau jsou stejné honoty a uvažován vliv veliosti oeficientu přenosu soustavy na regulační proces. V ruhém přílau je větší než a ve třetím přílau naopa. V prvním přílau 4. je uázán výpočet stavitelných parametrů regulátoru pro jenotlivé vybrané metoy. Obr. 4.4 Regulační obvo v prostřeí MALAB/Simulin pro soustavu (.) říla 4.: ro parametry regulované soustavy, s, s a, s, s 3
Baalářsá práce Martin Sucháne 4 byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru.. Univerzální experimentální metoa (UEM),6,6,6,3,5,8,5,8. Metoa SMC,5 3. Liptáova metoa,95,95,95 4 4 4 4. Chenova a Yangova metoa,7,7,7 5. Huangova a Jengova metoa,75,,495,,495,3,4,9,4,9 6. Metoa požaovaného moelu (MM),368,78 7. Metoa násobného ominantního pólu (MND) 4 3 s 367, e ) ( 3 3 3 s s s ) ( ) ( 3 3 3 3 s s s s
y(t) Baalářsá práce Martin Sucháne ab. 4. Stavitelné parametry regulátoru a parametry vality pro příla 4. roporcionální soustava (, s, s) Název metoy [%] t r [s] AE UEM,6,3, 8, 3,78 SMC,5, 4,6 7,8,878 3 Liptáova,95 4,, 8,5 5,585 4 Chenova a Yangova,7,,63 8,7 3,59 5 Huangova a Jengova,75,3 5, 7,9,398 6 MM,368,, 7,33 4,669 7 MND,367,, 7,34 4,67.5.5 žáaná veličina poruchová veličina UEM LÁKOVA HUANGOVA A JENGOVA MND -.5 - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.5 růběhy regulovaných veličin pro neompenzační metoy příla 4. 5
y(t) u(t) Baalářsá práce Martin Sucháne.5.5.5 -.5 žáaná veličina poruchová veličina UEM LÁKOVA HUANGOVA A JENGOVA MND - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.6 růběhy ačních veličin pro neompenzační metoy příla 4. Z tab. 4. a obr. 4.5 a 4.6 viíme, že neompenzační metoy univerzální experimentální metoa a metoa násobného ominantního pólu pro parametry regulované soustavy, s, s, nemají žáný přemit a mají nejnižší obu regulace až.5 na menší ochyly, proto jsou nejvhonější. Metoa Liptáova nemá sice žáný přemit, ale její oba regulace je velá. Naopa metoa Huangova a Jengova má stejnou obu regulace, jao univerzální experimentální a metoa násobného ominantního pólu, ale má 5% přemit a taé větší výyvy honot ačního zásahu u(t) (obr. 4.6)..5 žáaná veličina poruchová veličina SMC CHENOVA A YANGOVA MM -.5 - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.7 růběhy regulovaných veličin pro ompenzační metoy příla 4. 6
u(t) Baalářsá práce Martin Sucháne.5.5.5 -.5 žáaná veličina poruchová veličina SMC CHENOVA A YANGOVA MM - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.8 růběhy ačních veličin pro ompenzační metoy příla 4. Z tab. 4. a obr. 4.7 a 4.8 viíme, že ompenzační metoy SMC, Chenova a Yangova a požaovaného moelu pro parametry regulované soustavy, s, s, mají stejnou obu regulace až na menší ochyly, ale liší se v relativním přemitu. Nejvhonější metoou je tey metoa požaovaného moelu, protože má nulový přemit. Naopa nejvyšší přemit má metoa Chenova a Yangova, a to přemit až %. yto simulace potvrzují závěry, teré byly zísány na zálaě obr. 4.. ab. 4. Stavitelné parametry regulátoru a parametry vality pro příla 4. roporcionální soustava (, s, s) Název metoy 7 [%] t r [s] AE UEM,3,3, 8, 3,78 SMC,5, 4,6 7,8,878 3 Liptáova,475 4,, 8,5 5,585 4 Chenova a Yangova,35,,84 8,7 3,59 5 Huangova a Jengova,3575,3 5, 7,9,398 6 MM,84,, 7,33 4,669 7 MND,839,, 7,34 4,67 Z tab. 4. viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv.
y(t) Baalářsá práce Martin Sucháne říla 4. ro parametry regulované soustavy, s, s a, s, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. ab. 4.3 Stavitelné parametry regulátoru a parametry vality pro příla 4. roporcionální soustava (, s, s) Název metoy [%] t r [s] AE UEM 6, 5,8,83 5,45 7,6 SMC 5, 8, 8, 5,68 6,748 3 Liptáova 9,5 4, 68,74 7,47,7 4 Chenova a Yangova 7,,,67,3 3,59 5 Huangova a Jengova 5,7 9,4 6,3 8,53 4,37 6 MM 3,679 7,33 4,669 7 MND 4,399 4,48,34 5,77,49.5.5 -.5 žáaná veličina poruchová veličina UEM SMC LÁKOVA HUANGOVA A JENGOVA MND - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.9 růběhy regulovaných veličin pro neompenzační metoy příla 4. 8
y(t) u(t) Baalářsá práce Martin Sucháne 8 6 4 žáaná veličina poruchová veličina UEM SMC LÁKOVA HUANGOVA A JENGOVA MND - -4-6 3 4 5 6 7 8 9 t[s] Obr. 4. růběhy ačních veličin pro neompenzační metoy příla 4. Z tab. 4.3 a obr. 4.9 a 4. viíme, že neompenzační metoa Huangova a Jengova pro parametry regulované soustavy, s, s, má nejnižší obu regulace.5 a nejmenší relativní přemit, proto je nejvhonější. Další vhonou metoou je metoa SMC, terá má o něco vyšší přemit než metoa Huangova a Jengova, ale má stejnou obu regulace jao metoy univerzální experimentální a násobného ominantního pólu. Dále univerzální experimentální metoa a metoa násobného ominantního pólu, mají stejné oby regulace i přemit až na menší ochyly. Nejméně vhonou metoou pro zaané parametry soustavy je metoa Liptáova, terá ává soro až 7 % přemit a má nejvyšší obu regulace ze všech neompenzačních meto. Rovněž se projeví i vysoá ativita u ační veličiny u této metoy viz obr. 4...5 žáaná veličina poruchová veličina CHENOVA A YANGOVA MM -.5 - -.5 3 4 5 6 7 8 9 t[s] Obr. 4. růběhy regulovaných veličin pro ompenzační metoy příla 4. 9
u(t) Baalářsá práce Martin Sucháne 8 7 6 5 4 žáaná veličina poruchová veličina CHENOVA A YANGOVA MM 3-3 4 5 6 7 8 9 t[s] Obr. 4. růběhy ačních veličin pro ompenzační metoy příla 4. Z tab. 4.3 a obr. 4. a 4. viíme, že ompenzační metoa požaovaného moelu pro parametry regulované soustavy, s, s, má nulový přemit a malou obu regulace, proto je tato metoa pro zaané parametry soustavy nejvhonější. Naopa metoa Chenova a Yangova, terá má přemit až %, se pro zaané parametry nehoí. ab. 4.4 Stavitelné parametry regulátoru a parametry vality pro příla 4. roporcionální soustava (, s, s) Název metoy [%] t r [s] AE UEM 3, 5,8,94 5,45 7,6 SMC,5 8, 8, 5,68 6,748 3 Liptáova 4,75 4, 68,74 7,47,7 4 Chenova a Yangova 3,5,,67,3 3,59 5 Huangova a Jengova,385 9, 6,64 8,53 4,37 6 MM,84 7,33 4,669 7 MND,99 4,48, 5,77,49 Z tab. 4.4 viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. 3
y(t) Baalářsá práce Martin Sucháne říla 4.3 ro parametry regulované soustavy, s, s a, s, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. ab. 4.5 Stavitelné parametry regulátoru a parametry vality pro příla 4.3 roporcionální soustava (, s, s) Název metoy [%] t r [s] AE UEM,6 8,5, 643,3 9599, SMC,5, 4,5 66,55 84,7 3 Liptáova,95 4,, 4,5 8474, 4 Chenova a Yangova,7,,6 78, 348,485 5 Huangova a Jengova,695 4,9, 59,47 9,47 6 MM,368, 73,8 466,449 7 MND,38,8, 49,5 45,559..8.6 žáaná veličina poruchová veličina HUANGOVA A JENGOVA MND.4. -. 4 6 8 4 6 8 t[s] Obr. 4.3 růběhy regulovaných veličin pro neompenzační metoy příla 4.3 3
y(t) u(t) Baalářsá práce Martin Sucháne..8.6 žáaná veličina poruchová veličina HUANGOVA A JENGOVA MND.4. -. 4 6 8 4 6 8 t[s] Obr. 4.4 růběhy ačních veličin pro neompenzační metoy příla 4.3 Z tab. 4.5 a obr. 4.3 a 4.4 viíme, že neompenzační metoy Huangova a Jengova a násobného ominantního pólu pro parametry regulované soustavy, s, s, mají nulový relativní přemit, ale liší se v obě regulace, proto je nejvhonější metoa násobného ominantního pólu. Dále metoa univerzální experimentální a metoa Liptáova, mají sice nulový relativní přemit, ale jejich oba regulace je ta velá, že jsou pro zaané parametry regulované soustavy nevhoné a proto nejsou jejich průběhy vyresleny v grafech..4..8.6.4 žáaná veličina poruchová veličina SMC CHENOVA A YANGOVA MM. -. 4 6 8 4 6 8 t[s] Obr. 4.5 růběhy regulovaných veličin pro ompenzační metoy příla 4.3 3
u(t) Baalářsá práce Martin Sucháne.4..8.6.4 žáaná veličina poruchová veličina SMC CHENOVA A YANGOVA MM. -. 4 6 8 4 6 8 t[s] Obr. 4.6 růběhy ačních veličin pro ompenzační metoy příla 4.3 Z tab. 4.5 a obr. 4.5 a 4.6 viíme, že ompenzační metoa požaovaného moelu pro parametry regulované soustavy, s, s, má nulový přemit a malou obu regulace, proto je tato metoa pro zaané parametry soustavy nejvhonější. Metoa SMC má sice menší obu regulace, než metoa požaovaného moelu, ale ává relativní přemit 4 %. Naopa metoa Chenova a Yangova, terá má přemit až %, se pro zaané parametry nehoí. U tohoto přílau byla honota sou poruchové veličiny snížena o 9 %, protože z ůvou velého opravního zpožění nebyl regulační ovo schopen velou poruchu ostranit příznivě. ab. 4.6 Stavitelné parametry regulátoru a parametry vality pro příla 4.3 roporcionální soustava (, s, s) Název metoy [%] t r [s] AE UEM,3 8,5, 643,3 9599, SMC,5, 4,5 66,55 84,7 3 Liptáova,475 4,, 4,5 8474, 4 Chenova a Yangova,35,,6 78, 348,485 5 Huangova a Jengova,3475 4,9, 59,47 9,47 6 MM,84, 73,8 466,449 7 MND,69,8, 49,5 45,559 33
Baalářsá práce Martin Sucháne Z tab. 4.6 viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. Závěr: o ověření a porovnání všech přílaů pro proporcionální regulovanou soustavu se setrvačností. řáu a opravním zpožěním (.), můžeme vyhonotit z přílaů 4. 4.3, že nejvhonější metoou pro neompenzační metoy je Huangova a Jengova metoa, protože změna veliostí parametrů regulované soustavy nemá postatný vliv na průběh regulované veličiny (obr. 4.5, 4.6, 4.9, 4., 4.3, 4.4). Sleované valitativní uazatele u této metoy mají ve srovnání s ostatními metoami stabilně nejlepší honoty (viz tab. 4. 4.6). Rovněž i porucha působící pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. Nejvhonější metoou pro ompenzační metoy je metoa požaovaného moelu, protože změna veliostí parametrů regulované soustavy nemá postatný vliv na průběh regulované veličiny (obr. 4.7, 4.8, 4., 4., 4.5, 4.6). U všech přílaů měla metoa požaovaného moelu nulový relativní přemit. Sleované valitativní uazatele u této metoy mají ve srovnání s ostatními metoami stabilně nejlepší honoty (viz tab. 4. 4.6). Rovněž i porucha působící pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. 34
Baalářsá práce Martin Sucháne 4. ntegrační regulovaná soustava V této apitole jsou pro různé honoty parametrů regulované soustavy (.3) opočítány optimální stavitelné parametry regulátoru pro různé zvolené metoy syntézy. Simulace byla proveena v prostřeí MALAB/Simulin, v tabulách jsou uveeny valitativní uazatele regulačních procesů a na obrázcích pa regulované veličiny y(t) a ační veličiny u(t). Vžy v čase t = s začne působit žáaná veličina w(t) = a po ustálení regulované veličiny y(t) začne působit poruchová veličina, terá je přiveena o regulačního obvou pře regulovanou soustavou. Jsou ze uveeny va přílay, teré jsou nejříve nasimulovány pro regulátor s jením stupněm volnosti a násleně pro regulátor se věma stupni volnosti, e o obvou připojíme filtr (.) pře sumační blo. V prvním přílau je a uvažován vliv veliosti oeficientu přenosu soustavy na regulační proces. V ruhém přílau je větší, než v prvním přílau. V prvním přílau (4.4) je uázán výpočet stavitelných parametrů regulátoru pro jenotlivé vybrané metoy. Ověření číslicovou simulací za použití regulátoru s jením stupněm volnosti Obr. 4.7 Regulační obvo v prostřeí MALAB/Simulin pro soustavu (.3) říla 4.4: ro parametry regulované soustavy, s a, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. 35
Baalářsá práce Martin Sucháne. Univerzální experimentální metoa (UEM),46,46,46 5,75 5,75 5,75. Metoa SMC,5 8 8 8 3. Hubova a Žáové metoa:,8,8,8 3,555 3,555 3,555 4. Chiambaranova a Sreeova (Ch. a S.),,, 4,5 4,5 4,5 5. Chiambaranova Sriviyaova a Chiambaranova (Ch. S. a Ch.),6775,6775,6775 3,6547 3,6547 3,6547 6. Metoa násobného ominantního pólu (MND),46,46,46 5,88 5,88 5,88 36
y(t) Baalářsá práce Martin Sucháne ab. 4.7 Stavitelné parametry regulátoru a parametry vality pro příla 4.4 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,46 5,75 35, 5,93 6,898 SMC,5 8, 7,75 3,49,47 3 Hubova a Žáové,8 3,555 5,53 33,47 55, 4 Ch. a S., 4,5,74 8,53 38,548 5 Ch. S. a Ch.,6775 3,6547 64,96 3,5,3 6 MND,46 5,88 35,4 6,5 7,36.5.5.5 -.5 - žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND -.5-3 4 5 6 7 8 9 t[s] Obr. 4.8 růběhy regulovaných veličin příla 4.4 37
u(t) Baalářsá práce Martin Sucháne.5.5.5 -.5 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND - Obr. 4.9 růběhy ačních veličin příla 4.4 Z tab. 4.7 a obr. 4.8 a 4.9 viíme, že univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu pro parametry regulované soustavy, -.5 3 4 5 6 7 8 9 t[s] s jsou nejvhonější, protože mají nejmenší relativní přemit a obu regulace. Naopa metoa Chiambaranova a Sreeova, terá má přemit až %, se pro zaané parametry soustavy nehoí. Metoa Chiambaranova Sriviyaova a Chiambaranova má ze všech vybraných meto nejmenší obu regulace, ale má relativní přemit 65 %, proto se pro parametry regulované soustavy nehoí. ab. 4.8 Stavitelné parametry regulátoru a parametry vality pro příla 4.4 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,3 5,75 35, 5,93 6,898 SMC,5 8, 7,75 3,49,47 3 Hubova a Žáové,45 3,555 5,53 33,47 55, 4 Ch. a S.,55555 4,5,74 8,53 38,548 5 Ch. S. a Ch.,335375 3,6547 64,96 3,5,3 6 MND,35 5,88 35,4 6,5 7,36 Z tab. 4.8 viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. 38
y(t) Baalářsá práce Martin Sucháne říla 4.5: ro parametry regulované soustavy, s a, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. ab. 4.9 Stavitelné parametry regulátoru a parametry vality pro příla 4.5 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,46 57,5 35, 59, 3379,7 SMC,5 8, 7,74 34,89 49,3 3 Hubova a Žáové,8 35,55 5,5 334,54 675, 4 Ch. a S., 45,,7 37,3 77, 5 Ch. S. a Ch.,6775 36,547 64,94 35,7 6, 6 MND,46 58,8 35, 6,47 347,3.5.5.5 -.5 - -.5 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND - 3 4 5 6 7 8 9 t[s] Obr. 4. růběhy regulovaných veličin příla 4.5 39
u(t) u(t) Baalářsá práce Martin Sucháne..8.6.4 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND. -. 3 4 5 6 7 8 9 t[s] Obr. 4. růběhy ačních veličin příla 4.5.5..5..5 -.5 poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND -. -.5 -. 3 4 5 6 7 8 9 t[s] Obr. 4. růběhy ačních veličin bez žáané veličiny příla 4.5 Z tab. 4.9 a (obr. 4. 4.) viíme, že univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu pro parametry regulované soustavy, s jsou nejvhonější, protože mají nejmenší relativní přemit a obu regulace. Dále metoa Hubova a Žáové a metoa Chiambaranova a Sreeova jsou pro 4
Baalářsá práce Martin Sucháne zaané parametry regulované soustavy nevhoné, protože mají velý relativní přemit a velou obu regulace. Metoa Chiambaranova Sriviyaova a Chiambaranova má ze všech vybraných meto nejmenší obu regulace, ale má relativní přemit 65 %, proto se pro parametry regulované soustavy nehoí. U průběhu ačních veličin zvolených meto, byla pro přehlenost ostraněna z obr. 4. žáaná veličina a průběhy ačních veličin byly vyresleny na obr. 4.. U tohoto přílau byla honota sou poruchové veličiny snížena o 9 %, protože z ůvou velého opravního zpožění nebyl regulační ovo schopen velou poruchu ostranit příznivě. ab. 4. Stavitelné parametry regulátoru a parametry vality pro příla 4.5 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,3 57,5 35, 59, 3379,7 SMC,5 8, 7,74 34,89 49,3 3 Hubova a Žáové,45 35,55 5,5 334,54 675 4 Ch. a S.,55555 45,,7 37,3 77, 5 Ch. S. a Ch.,335375 36,547 64,94 35,7 6, 6 MND,35 58,8 35, 6,47 347,3 Z tab. 4. viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. Závěr: o ověření a porovnání všech přílaů pro integrační regulovanou soustavu bez setrvačnosti s opravním zpožěním (.3), můžeme vyhonotit z přílaů 4.4 a 4.5, že nejvhonější metoou je univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu. ři změně veliostí parametrů regulované soustavy nemá postatný vliv na průběh regulované veličiny (obr. 4.8 a 4.). Sleováním valitativních uazatelů u těchto meto můžeme ve srovnání s ostatními metoami říct, že mají stabilně nejlepší honoty (viz tab. 4.7 a 4.9). orucha působící pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. Kvůli velým relativním přemitům a velé obě regulace, ověříme v násleující apitole přílay 4.4 a 4.5 pro integrační regulovanou soustavu pomocí použití regulátoru se věma stupni volnosti. Jeho princip spočívá v tom, že mezi žáanou veličinu a sumační blo přiveeme filtr (.), terý nám ofiltruje relativní přemit a tím sníží i obu regulace. 4
Baalářsá práce Martin Sucháne Ověření číslicovou simulací za použití regulátoru se věma stupni volnosti Obr. 4.3 Regulační obvo v prostřeí MALAB/Simulin pro soustavu (.3) říla 4.6: ro parametry regulované soustavy, s a, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. ab. 4. Stavitelné parametry regulátoru a parametry vality pro příla 4.6 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,46 5,75,,37 6,74 SMC,5 8,, 5, 7,588 3 Hubova a Žáové,8 3,555 8,3 34,8 4,66 4 Ch. a S., 4,5 5,7 3,53,79 5 Ch. S. a Ch.,6775 3,6547 5,5,79 7,8 6 MND,46 5,88,, 6,77 4
y(t) y(t) Baalářsá práce Martin Sucháne.5.5 -.5 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND - -.5-3 4 5 6 7 8 9 t[s] Obr. 4.4 růběhy regulovaných veličin pro b =,93 příla 4.6.5.5 -.5 žáaná veličina poruchová veličina HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. - -.5-3 4 5 6 7 8 9 t[s] Obr. 4.5 růběhy regulovaných veličin pro b = příla 4.6 43
u(t) Baalářsá práce Martin Sucháne.5.5.5 -.5 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND - -.5 3 4 5 6 7 8 9 t[s] Obr. 4.6 růběhy ačních veličin příla 4.4 Z tab. 4. a (obr. 4.4 4.6) viíme, že při použití regulátoru se věma stupni volnosti obr.., y o regulačního obvou přiveeme filtr (.), e onstanta b byla zvolena z intervalu <,>, onrétně na honotu,93. Všechny vybrané metoy se nasimulovaly pomocí DOF regulátoru, ze terého je viět, že univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu pro parametry regulované soustavy, s, mají nulový přemit a oba regulace se zrátila. U meto Hubova a Žáové, Chiambaranova a Sreeova a Chiambaranova Sriviyaova a Chiambaranova zůstal relativní přemit, ale jeho honota se postatně zmenšila a jejich oba regulace tatéž. ro tyto metoy zvolíme onstantu b na honotu. Z obr. 4.5 viíme, že Chiambaranova a Sreeova a Chiambaranova Sriviyaova a Chiambaranova metoa, má nulový relativní přemit a oba regulace se zrátila. U metoy Hubova a Žáové se relativní přemit zmenšil, ale jen na honotu 6 % a oba regulace zůstala stejná, proto se tato metoa pro zaané honoty regulované soustavy nehoí. 44
Baalářsá práce Martin Sucháne ab. 4. Stavitelné parametry regulátoru a parametry vality pro příla 4.6 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,3 5,75,,37 6,74 SMC,5 8,, 5, 7,588 3 Hubova a Žáové,45 3,555 8,3 34,8 4,66 4 Ch. a S.,55555 4,5 5,7 3,53,79 5 Ch. S. a Ch.,335375 3,6547 5,5,79 7,8 6 MND,35 5,88,, 6,77 Z tab. 4. viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. říla 4.7: ro parametry regulované soustavy, s a, s byly pro jenotlivé zvolené metoy vypočteny násleující parametry regulátoru. ab. 4.3 Stavitelné parametry regulátoru a parametry vality pro příla 4.7 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,46 57,5, 3,67 334,8 SMC,5 8,, 5, 357,7 3 Hubova a Žáové,8 35,55 8,3 348,5 834, 4 Ch. a S., 45, 5,7 5,3 558,6 5 Ch. S. a Ch.,6775 36,547 5,5 7,86 56,3 6 MND,46 58,8,, 355,4 45
y(t) y(t) Baalářsá práce Martin Sucháne.5.5 -.5 - -.5 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND - 3 4 5 6 7 8 9 t[s] Obr. 4.7 růběhy regulovaných veličin pro b =,93 příla 4.7.5.5 -.5 - žáaná veličina poruchová veličina HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. -.5-3 4 5 6 7 8 9 t[s] Obr. 4.8 růběhy regulovaných veličin pro b = příla 4.7 46
u(t) u(t) Baalářsá práce Martin Sucháne..8.6.4 žáaná veličina poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND. -. 3 4 5 6 7 8 9 t[s] Obr. 4.9 růběhy ačních veličin příla 4.7.5..5..5 -.5 poruchová veličina UEM SMC HUBA A ŽÁKOVÁ CH. a S. CH. S. a CH. MND -. -.5 -. 3 4 5 6 7 8 9 t[s] Obr. 4.3 růběhy ačních veličin příla 4.7 47
Baalářsá práce Martin Sucháne Z tab. 4.3 a (obr. 4.7 4.3) viíme, použití regulátoru se věma stupni volnosti obr. 3., y o regulačního obvou přiveeme filtr (.), e onstanta b byla zvolena z intervalu <,> onrétně na honotu,93. Všechny vybrané metoy se nasimulovaly pomocí DOF regulátoru, ze terého je viět, že univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu pro parametry regulované soustavy, s, mají nulový přemit a oba regulace se zrátila. U meto Hubova a Žáové, Chiambaranova a Sreeova a Chiambaranova Sriviyaova a Chiambaranova zůstal relativní přemit, ale jeho honota se postatně zmenšila a jejich oba regulace tatéž. ro tyto metoy zvolíme onstantu b na honotu. Z obr. 4.8 viíme, že Chiambaranova a Sreeova a Chiambaranova Sriviyaova a Chiambaranova metoa, má nulový relativní přemit a oba regulace se zrátila. U metoy Hubova a Žáové se relativní přemit zmenšil, ale jen na honotu 6 % a oba regulace zůstala stejná, proto se tato metoa pro zaané honoty regulované soustavy nehoí. U průběhu ačních veličin zvolených meto, byla pro přehlenost ostraněna z obr. 4.9 žáaná veličina a průběhy ačních veličin byly vyresleny na obr. 4.3. U tohoto přílau byla honota sou poruchové veličiny snížena o 9 %, protože z ůvou velého opravního zpožění nebyl regulační ovo schopen velou poruchu ostranit příznivě. ab. 4.4 Stavitelné parametry regulátoru a parametry vality pro příla 4.7 Název metoy ntegrační soustava (, s) [%] t r [s] AE UEM,3 57,5, 3,67 334,8 SMC,5 8,, 5, 357,7 3 Hubova a Žáové,45 35,55 8,3 348,5 834, 4 Ch. a S.,55555 45, 5,7 5,3 558,6 5 Ch. S. a Ch.,335375 36,547 5,5 7,86 56,3 6 MND,35 58,8,, 355,4 Z tab. 4.4 viíme, že při zvýšení zesílení se mění stavitelný parametr, ostatní parametry zůstávají stejné až na menší ochyly. Na výslené regulaci a valitě regulace zvýšení zesílení nemá žáný vliv. Závěr: o ověření a porovnání všech přílaů pro integrační regulovanou soustavu bez setrvačnosti s opravním zpožěním (.3) s použitím regulátoru se věma stupni volnosti, můžeme vyhonotit z přílaů 4.6 a 4.7, že nejvhonější metoou je univerzální experimentální metoa, metoa SMC a metoa násobného ominantního pólu. U těchto meto při vyšší zvolené onstantě b filtru, byl relativní přemit nulový a oba regulace se zrátila. U zbylých vybraných meto se musela onstanta b filtru snížit na, aby se jejich 48
Baalářsá práce Martin Sucháne honota relativního přemitu a oby regulace snížila. U metoy Hubovy a Žáové ani snížení honoty onstanty b filtru nepomohlo, stále má přemit přes 5 %. 49
Baalářsá práce Martin Sucháne 5 ZHODNOCENÍ A ZÁVĚR Srovnání meto syntézy pro řízení soustav s opravním zpožěním je stále žhavé téma v oblasti automatizace. V nešní obě existuje spousta meto syntézy regulačních obvoů s opravním zpožěním, ale u žáné nemůžeme neompromisně říct, že by byla nejvhonější pro tu terou regulovanou soustavu. Kažá metoa syntézy je něčím specificá a má své výhoy a nevýhoy. Metoy nejsou na výpočet časově náročné, protože stavitelné parametry regulátoru vypočítáme pomocí vztahů, přehleně vypracovaných o tabule. V této práci jsou popsány vybrané metoy pro proporcionální regulovanou soustavu a integrační regulovanou soustavu. Dále je popsána i metoa SMC a,,univerzální experimentální metoa syntézy pro řízení soustav s opravním zpožěním. Vybrané metoy syntézy pro proporcionální regulovanou soustavu a integrační regulovanou soustavu s opravním zpožěním ověřuji na přílaech, teré jsou uveeny v práci a násleně je porovnávám s metoou SMC a,,univerzální experimentální metoou. Výsley jenotlivých přílaů jsou uveeny v tabulách a vyreslených grafech. ro proporcionální regulovanou soustavu se setrvačností. řáu a opravním zpožěním (.), můžeme pro neompenzační metoy z přílaů 4. 4.3 vyhonotit za nejvhonější metou Huangovu a Jengovu. ato metoa při změně veliosti parametrů regulované soustavy nemá postatný vliv na průběh regulované veličiny (obr. 4.5, 4.6, 4.9, 4., 4.3, 4.4). ři sleování valitativních uazatelů u této metoy, má ve srovnání s ostatními metoami stabilně nejlepší honoty (viz tab. 4. 4.6). orucha, terá působí pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. ro ompenzační metoy, můžeme za nejvhonější metou považovat metou požaovaného moelu, protože u této metoy nemá změna veliosti parametrů regulované soustavy postatný vliv na průběh regulované veličiny (obr. 4.7, 4.8, 4., 4., 4.5, 4.6). U přílaů 4. 4.3 měla metoa požaovaného moelu nulový relativní přemit. Sleované valitativní uazatele u této metoy mají ve srovnání s ostatními metoami stabilně nejlepší honoty (viz tab. 4. 4.6). Rovněž i porucha působící pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. ro integrační regulovanou soustavu bez setrvačnosti s opravním zpožěním (.3) a použitím regulátoru s jením stupněm volnosti, můžeme z přílaů 4.4 a 4.5 vyhonotit za nejvhonější univerzální experimentální metou, metou SMC a metou násobného ominantního pólu. U těchto meto při změně veliosti parametrů regulované soustavy nemá postatný vliv na průběh regulované veličiny (obr. 4.8 a 4.). Sleováním valitativních uazatelů u těchto meto můžeme ve srovnání s ostatními metoami říct, že mají stabilně nejlepší honoty (viz tab. 4.7 a 4.9). orucha působící pře regulovanou soustavou je ve všech přípaech touto metoou obře ostraněna. ři použití regulátoru s jením stupněm volnosti u integrační regulované soustavy, máme velý relativní přemit a velou obu regulace, proto byl v násleující apitole použit regulátor se věma stupni 5