-základní pojmy Kulová plocha je množina bodů v prostoru, které mají od pevného bodu S stejnou vzdálenost r. Hranolová plocha je určena lomenou čarou k (k σ) a směrem s, který nenáleží dané rovině (s σ), a je tvořena přímkami površkami, které protínají lomenou čáru k a jsou směru s. Jehlanová plocha je určena lomenou čarou k (k σ) a bodem V, který neleží v rovině dané křivky (V σ), a je tvořena přímkami površkami, které protínají lomenou čáru k a procházejí bodem V. 1
Válcová plocha je určena rovinnou křivkou k (k σ) a směrem s, který nenáleží dané rovině (s σ), a je tvořena přímkami površkami, které protínají křivku k a jsou směru s. Kuželová plocha je určena rovinnou křivkou k (k σ) a bodem V, který neleží v rovině dané křivky (V σ), a je tvořena přímkami površkami, které protínají křivku k a procházejí bodem V. 2
Afinita a kolineace Osová afinita v rovině Středová kolineace v rovině 3
Řezy na elementárních plochách Řez na elementární ploše najdeme pomocí následujícího algoritmu: Je-li dána hranolová nebo jehlanová plocha s podstavou v rovině σ a rovina řezu ρ: 1. Sestrojíme průsečnici roviny podstavy a roviny řezu. (o = ρ σ) 2. Sestrojíme jeden bod řezu tj. průnik jedné hrany s rovinou ρ. (metoda krycí přímky) 3. Další body můžeme sestrojit také jako průniky jednotlivých hran s rovinou řezu, ale jednodušší a rychlejší metodou je použití afinity pro hranolovou a kolineace pro jehlanovou plochu. a) V případě hranolové plochy sestrojíme další body řezu pomocí osové afinity. Tato afinita je určena osou o = ρ σ směrem, který je rovnoběžný s hranami (neležícími v rovině podstavy) dvojicí bodů, kterou tvoří bod podstavy a bod řezu, ležící na jedné hraně. Body řezu jsou obrazy vrcholů podstavy. b) V případě jehlanové plochy sestrojíme další body řezu pomocí středové kolineace. Kolineace je určena osou o = ρ σ středem, kterým je vrchol jehlanu a dvojicí bodů, kterou tvoří bod podstavy a bod řezu, ležící na jedné hraně. Body řezu jsou obrazy vrcholů podstavy. 4
Je-li dána válcová nebo kuželová plocha s podstavou v rovině σ a rovina řezu ρ, zvolíme dostatečný počet površek a najdeme body řezu jako v případě hranolové a jehlanové plochy. Aproximujeme plochu válcovou plochou hranolovou a plochu kuželovou plochou jehlanovou. Získanými body proložíme křivku řezu. 5
Řez kulové plochy rovinou ρ řezem je kružnice ( potřebujeme znát rovinu, střed, poloměr) 1. kolmice k: k ρ, S k 2. průsečík O: O = k ρ střed 3. poloměr R: Zjistíme OS a R = p r 2 OS 2 4. kružnice řezu: l (O, R) 6
Průsečíky přímky s plochou 1. Proložíme přímkou p libovolnou rovinu ρ 2. Najdeme řez plochy (tělesa) rovinou ρ 3. Najdeme průsečíky přímky p a řezu Jako rovinu ρ volíme tzv. vrcholovou rovinu, která pro kužel a jehlan prochází vrcholem (a přímkou p) pro válec a kužel je rovnoběžná s površkami (a prochází přímkou p) 7
Průniky ploch Hledáme množinu všech bodů společných stěnám obou ploch. Výsledkem je jeden nebo více polygonů (nemusí být rovinné). Vrcholy polygonu jsou průsečíky hran jedné plochy se stěnami druhé plochy. Strany polygonu jsou průsečnicemi stěn polygonů. Tyto strany můžeme sestrojit jako spojnice vrcholů, ale jen těch, které leží ve stejné stěně obou ploch. 8
Tečná rovina Tečná rovina kuželové nebo válcové plochy je určena površkou p a tečnou t řídící kružnice k v bodě T = p t. 9
10