1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL



Podobné dokumenty
Deskriptivní statistika 1

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

12. N á h o d n ý v ý b ě r

Pravděpodobnost a aplikovaná statistika

Statistika je vědní obor zabývající se zkoumáním jevů, které mají hromadný charakter.

Statistika. Statistické funkce v tabulkových kalkulátorech MSO Excel a OO.o Calc

P2: Statistické zpracování dat

Pro statistické šetření si zvolte si statistický soubor např. všichni žáci třídy (několika tříd, školy apod.).

odhady parametrů. Jednostranné a oboustranné odhady. Intervalový odhad střední hodnoty, rozptylu, relativní četnosti.

Odhady parametrů polohy a rozptýlení pro často se vyskytující rozdělení dat v laboratoři se vyčíslují podle následujících vztahů:

STATISTIKA. Statistika se těší pochybnému vyznamenání tím, že je nejvíce nepochopeným vědním oborem. H. Levinson

Elementární zpracování statistického souboru

Pravděpodobnostní modely

Popisná statistika. Zdeněk Janák 9. prosince 2007

Náhodný výběr 1. Náhodný výběr

2 STEJNORODOST BETONU KONSTRUKCE

Odhady parametrů 1. Odhady parametrů

Závislost slovních znaků

České vysoké učení technické v Praze. Fakulta dopravní. Semestrální práce. Statistika

10.3 GEOMERTICKÝ PRŮMĚR

13 Popisná statistika

Parametr populace (populační charakteristika) je číselná charakteristika sledované vlastnosti

1 ROVNOMĚRNOST BETONU KONSTRUKCE

Při sledování a studiu vlastností náhodných výsledků poznáme charakter. podmínek různé výsledky. Ty odpovídají hodnotám jednotlivých realizací

Popisná statistika - zavedení pojmů. 1 Jednorozměrný statistický soubor s kvantitativním znakem

Komplexní čísla. Definice komplexních čísel

Základy statistiky. Zpracování pokusných dat Praktické příklady. Kristina Somerlíková

ZÁKLADNÍ STATISTICKÉ VÝPOČTY (S VYUŽITÍM EXCELU)

V. Normální rozdělení

6. P o p i s n á s t a t i s t i k a

Ilustrativní příklad ke zkoušce z B_PS_A léto 2013.

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

Intervalové odhady parametrů některých rozdělení.

Ilustrativní příklad ke zkoušce z B_PS_A léto 2014.

MATICOVÉ HRY MATICOVÝCH HER

PŘÍKLAD NA PRŮMĚRNÝ INDEX ŘETĚZOVÝ NEBOLI GEOMETRICKÝ PRŮMĚR

Iterační výpočty projekt č. 2

Mendelova univerzita v Brně Statistika projekt

STATISTIKA. Základní pojmy

Doc. Ing. Dagmar Blatná, CSc.

Sekvenční logické obvody(lso)

Cvičení 6.: Výpočet střední hodnoty a rozptylu, bodové a intervalové odhady střední hodnoty a rozptylu

Tento projekt je spolufinancován Evropským sociálním fondem a Státním rozpočtem ČR InoBio CZ.1.07/2.2.00/

Základní požadavky a pravidla měření

(Teorie statistiky a aplikace v programovacím jazyce Visual Basic for Applications)

Mezní stavy konstrukcí a jejich porušov. Hru IV. Milan RůžR. zbynek.hruby.

Vzorový příklad na rozhodování BPH_ZMAN

Úloha III.S... limitní

2. Náhodná veličina. je konečná nebo spočetná množina;

Úloha II.S... odhadnutelná

Pravděpodobnost a aplikovaná statistika

VYSOCE PŘESNÉ METODY OBRÁBĚNÍ

PRAVDĚPODOBNOST A STATISTIKA

Intervalové odhady parametrů

III/2 Inovace a zkvalitnění výuky prostřednictvím ICT

8. Základy statistiky. 8.1 Statistický soubor

8.2.1 Aritmetická posloupnost

Petr Šedivý Šedivá matematika

Matematika 1. Katedra matematiky, Fakulta stavební ČVUT v Praze. středa 10-11:40 posluchárna D / 13. Posloupnosti

1.2. NORMA A SKALÁRNÍ SOUČIN

vají statistické metody v biomedicíně

4.2 Elementární statistické zpracování Rozdělení četností

Pravděpodobnostní model doby setrvání ministra školství ve funkci

8.2.1 Aritmetická posloupnost I

vají statistické metody v biomedicíně Literatura Statistika v biomedicínsk nském výzkumu a ve zdravotnictví

Cvičení 6.: Bodové a intervalové odhady střední hodnoty, rozptylu a koeficientu korelace, test hypotézy o střední hodnotě při známém rozptylu

i 1 n 1 výběrový rozptyl, pro libovolné, ale pevně dané x Roznačme n 1 Téma 6.: Základní pojmy matematické statistiky

2 EXPLORATORNÍ ANALÝZA

17. Statistické hypotézy parametrické testy

14. B o d o v é o d h a d y p a r a m e t r ů

Přednáška VI. Intervalové odhady. Motivace Směrodatná odchylka a směrodatná chyba Centrální limitní věta Intervaly spolehlivosti

UPLATNĚNÍ ZKOUŠEK PŘI PROHLÍDKÁCH MOSTŮ

Intervalový odhad. nazveme levostranným intervalem pro odhad parametru Θ. Statistiku. , kde číslo α je blízké nule, nazveme horním

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

1.3. POLYNOMY. V této kapitole se dozvíte:

1.1. Definice Reálným vektorovým prostorem nazýváme množinu V, pro jejíž prvky jsou definovány operace sčítání + :V V V a násobení skalárem : R V V

NEPARAMETRICKÉ METODY

Pravděpodobnost vs. statistika. Data. Teorie pravděpodobnosti pracuje s jednou nebo více teoretickými náhodnými

z možností, jak tuto veličinu charakterizovat, je určit součet

8. Analýza rozptylu.

Pravděpodobnost a aplikovaná statistika

ČESKÉ VYSOKÉ UČENÍ TECHNICKÉ V PRAZE

Mod(x) = 2, Med(x) = = 2

STATISTIKA PRO EKONOMY

Národní informační středisko pro podporu jakosti

14. Testování statistických hypotéz Úvod statistické hypotézy Definice 14.1 Statistickou hypotézou parametrickou neparametrickou. nulovou testovanou

Pravděpodobnost a statistika - absolutní minumum

Výukový modul III.2 Inovace a zkvalitnění výuky prostřednictvím ICT

7. P o p i s n á s t a t i s t i k a

Tržní ceny odrážejí a zahrnují veškeré informace předpokládá se efektivní trh, pro cenu c t tedy platí c t = c t + ε t.

DERIVACE FUNKCÍ JEDNÉ REÁLNÉ PROM

Odhady parametrů základního souboru. Ing. Michal Dorda, Ph.D.

Odhady parametrů základního. Ing. Michal Dorda, Ph.D.

7. Odhady populačních průměrů a ostatních parametrů populace

jako konstanta nula. Obsahem centrálních limitních vět je tvrzení, že distribuční funkce i=1 X i konvergují za určitých

6. Posloupnosti a jejich limity, řady

Zhodnocení přesnosti měření

3. Sekvenční obvody. b) Minimalizujte budící funkce pomocí Karnaughovy mapy

1. Základy počtu pravděpodobnosti:

1. Základy měření neelektrických veličin

Transkript:

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo, zda se jedá o medicíu, biologii, ebo ekoomii případě marketig. Jmeovitě ekoomické disciplíy patří mezi ty obory, pro které je zpracováí dat evyhutelé. Pro složitější testováí a sofistikovaé ekoometrické modely ekoomové určitě zvolí speciálí statistický software, ale pro základí charakteristiky dat, statistické testy a jedoduché regresí modely je možé použít také tabulkový procesor. To, jak pro základí statistické operace využít tabulkový procesor Excel je stručě popsaé v prvích čtyřech kapitolách studijího textu. Předpokládáme přitom, že čteář má k dispozici verzi Excel 2007, evetuálě vyšší. Pro zjedodušeí práce je vhodé mít aktivovaý doplěk Aalýza dat ve složce Data (viz Obr..) Obrázek. V případě, že teto doplěk eí ve složce Data, lehce ho aistalujete tímto postupem: Tlačítko Office Možosti aplikace Excel Doplňky Přejít a v dialogovém okě zaškrtout položku Aalytické ástroje (viz Obr..2). Obrázek.2 Kromě doplňku Aalýza dat tabulkový procesor MS Excel dispouje širokým spektrem statistických fukcí. Všechy fukce procesoru MS Excel použité v ásledujícím textu budou vyzačey ve tvaru: =FUNKCE(proměá; ; proměán) se zamékem = a začátku; použití aalytického ástroje bude vyzačeo podobým způsobem, apříklad Histogram. - 9 -

Popisá statistika v programu MS Excel Základí metodou zpracováí velkého rozsahu číselých dat je metoda rozděleí četosti, a jeho zobrazeí pomocí sloupcového grafu histogramu četosti. Dalším krokem je obvykle výpočet základích charakteristik souboru a případé zázorěí dat pomocí grafů, aby bylo možé odhadout případé závislosti v souboru. Kostrukcí histogramu četosti a výpočtem základích charakteristik dat se zabývá další část této kapitoly.. HISTOGRAM ČETNOSTI Histogram četosti je sloupcový graf, zázorňující rozděleí četostí číselých dat v třídách epřekrývajících se stejě širokých itervalech. Optimálí počet tříd k v histogramu lze staovit pomocí tzv. Sturgersova pravidla k Roud ( 3,3.log ( )), kde je počet údajů v souboru. Fukce Roud ( ) ozačuje 0 zaokrouhleí argumetu fukce a ejbližší celé číslo. Počet tříd v histogramu se může mírě lišit od optimálího hlavě z důvodů většího přehledu a logiky v datech. Například časy příchodů zákazíků do prodejy sledovaé po dobu jedoho týde je logické do histogramu seřadit v závislosti a velikosti souboru po dech, případě po hodiách, a esažit se uměle vytvořit třídy, které ekorespodují s obvyklým časovým čleěím týde (apříklad,8 de, ebo 3,48 hodiy) Je-li staove počet tříd, pak šířku třídy lze určit jako podíl rozpětí souboru a počtu tříd. Za rozpětí souboru považujeme rozdíl ejmeší a ejvětší hodoty souboru. Tabulkový procesor MS Excel umožňuje vytvořeí histogramu přímo z dat pomocí aalytického ástroje Histogram. Jako vstupí údaj stačí zadat pouze soubor číselých dat a horí hraice požadovaých tříd. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti a testu ze statistiky. 48 62 78 56 74 23 2 48 99 00 59 25 34 36 70 0 24 36 48 59 52 38 47 23 88 78 67 68 20 a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). c) Zobrazte histogram četosti pro pět tříd. Řešeí: a) Optimálí počet tříd závisí a celkovém počtu pozorováí (údajů) v zadáí je výsledek třiceti písemých prací, tedy 30. Optimálí počet tříd: k Roud ( 3,3.log 0(30)) Roud (3,3.,477) Roud (4,8745) 5 6 b) Rozpětí souboru R zjistíme jako rozdíl maximálí a miimálí hodoty v datech. Teto rozdíl je: R max( x i ) mi( xi ) 00 0 00 Šířka třídy bude tedy 00/6 = 6,7. Pro sestrojeí histogramu četosti je uté připravit data a horí hraice tříd (viz Obr..3). - 0 -

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.3 Po otevřeí ástroje Histogram (Data Aalýza dat Histogram) lze zadat vstupí oblast dat, horí hraice tříd a ozačit, že program má vytvořit graf (Obr..4). Obrázek.4 Program vygeeruje a ový list požadovaé četosti a také histogram (Obr..5). Obrázek.5 - -

Popisá statistika v programu MS Excel c) V případě, že histogram bude mít pět tříd je šířka třídy 20. Připraveé zadáí (Obr..6) Obrázek.6 Výsledý histogram (obr.7): Obrázek.7.2 ZÁKLADNÍ CHARAKTERISTIKY DAT Číselé charakteristiky jsou umerickým vyjádřeím ejzákladějších vlastostí statistického souboru. Podle toho, které vlastosti popisují, je lze rozdělit a charakteristiky polohy a charakteristiky variability. Mezi základí charakteristiky polohy patří modus, mediá a průměr. Mezi základí charakteristiky variability patří rozptyl, směrodatá odchylka, šikmost a špičatost. Modus xˆ představuje ejčetější hodotu, tedy takovou hodotu, která se v souboru vyskytuje ejčastěji. Je zcela ezávislý a ostatích hodotách, které se mohou libovolě měit, aiž se modus změí. Modus v programu MS Excel vypočítáme pomocí statistické fukce = MODE(číslo;číslo2;...). V případě že je v souboru více modů (multimodálí soubor), fukce zobrazí prví (ejmeší) modus v pořadí. - 2 -

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Mediá x ~ představuje prostředí hodotu v souboru hodot, tedy takovou hodotu, kdy existuje stejý počet meších (ebo stejých) a stejý počet větších (ebo stejých) hodot. Při sudém počtu hodot se mediá defiuje jako aritmetický průměr z ejvyšší hodoty dolí poloviy a ejižší hodoty horí poloviy hodot uspořádaých podle velikosti. Takto fuguje apř. statistická fukce =MEDIAN(číslo;číslo2;...) v Excelu. Lze se setkat též s defiicí mediáu coby 50% kvatilu. V tom případě je mediá ejvětší hodotou v dolí poloviě uspořádaých hodot. Aritmetický průměr (zkráceě: průměr) obdržíme jako součet jedotlivých výsledků měřeí ebo zjišťováí vyděleý celkovým počtem výsledků. Rozlišujeme přitom aritmetický průměr z celého souboru údajů, ebo je z určitého vzorku - výběru. Te prví azýváme populačím průměrem a ozačujeme jej řeckým písmeem, pro te druhý používáme ozačeí x a azýváme jej výběrovým průměrem. Zda se jedá o výběrový ebo populačí průměr, závisí a kokrétí situaci. Matematické vyjádřeí je ásledující: N populačí průměr, výběrový průměr x x i N i x i i. Přitom N představuje počet údajů celého souboru, představuje počet údajů z příslušého výběru. K výpočtu aritmetického průměru se používá fukce =PRŮMĚR(číslo;číslo2; ), která počítá pouze s číselými údaji, ostatí údaje včetě prázdých buěk igoruje. Aritmetický průměr dává stejou důležitost (váhu) každému z údajů, avšak údaje ěkdy stejou důležitost emají. Proto je v těchto případech vhodé použít vážeý aritmetický průměr pomocí vah w. V Excelu eí k dispozici speciálí fukce pro výpočet vážeého i aritmetického průměru, k výpočtu je třeba apsat vhodý vzorec. vážeý aritmetický průměr x w x. w i w i i V ekoomické oblasti se často počítá s růzými idexy, apř. ceovými. Pro výpočet průměrého idexu za určité období se používá geometrický průměr, který se vypočítá jako -tá odmocia ze součiu kladých hodot x. x 2 x : geometrický průměr x x x x g. 2. K výpočtu geometrického průměru se používá fukce =GEOMEAN(číslo;číslo2; ). Rozptyl je aritmetickým průměrem kvadrátů odchylek od aritmetického průměru. Podle toho, zda se jedá o rozptyl z celého souboru celé populace, ebo je rozptyl z jistého vzorku výběru z této populace, rozlišujeme populačí rozptyl, kterému říkáme jedoduše 2 2 rozptyl, začíme, a výběrový rozptyl, ozačujeme jej s : Vzorce vypadají ásledově: N 2 2 (populačí) rozptyl ( ), v Excelu fukce = VAR(číslo;číslo2;...), N i x i 2 2 výběrový rozptyl s ( x i x), v Excelu = VAR.VÝBĚR( (číslo;číslo2;...). i Číslo - se azývá počet stupňů volosti. Směrodatá odchylka je druhou odmociou z rozptylu. Ve shodě s předchozí termiologií rozlišujeme populačí směrodatou odchylku, ozačujeme ji, které říkáme prostě směrodatá odchylka, a výběrovou směrodatou odchylku, která je odmociou z výběrového rozptylu, ozačujeme ji s. V Excelu lze vypočítat populačí směrodatou i i - 3 -

Popisá statistika v programu MS Excel odchylku pomocí fukce =SMODCH(číslo;číslo2;...) a výběrovou směrodatou odchylku pomocí fukce =SMODCH.VÝBĚR(číslo;číslo2;...). Šikmost je charakteristikou, popisující symetrii pravděpodobostího rozděleí vzhledem k aritmetickému průměru, v Excelu se používá fukce = SKEW(číslo;číslo2;...). Nulová šikmost začí, že hodoty souboru jsou rovoměrě rozděley vlevo a vpravo od průměru. Kladá šikmost začí, že vpravo od průměru se vyskytují odlehlejší hodoty ežli vlevo a většia hodot se achází vlevo od průměru. U záporé šikmosti je tomu aopak. Špičatost je charakteristika rozděleí hodot souboru, která porovává daé rozděleí s tzv. ormálím rozděleím. V Excelu se pro výpočet špičatosti používá fukce =KURT(číslo;číslo2;...). Hodoty s tzv. ormovaým ormálím rozděleím (které má průměr rove ule a směrodatou odchylku rovu jedé) mají koeficiet špičatosti rove ule. Rozděleí s kladým koeficietem jsou špičatější ež ormovaé ormálí rozděleí, tedy hodoty jsou více kocetrováy v blízkosti průměru. Naopak rozděleí se záporým koeficietem šikmosti jsou plošší ež ormovaé ormálí rozděleí. ŘEŠENÝ PŘÍKLAD.2 Následující tabulka obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: 48 62 78 56 74 23 2 48 99 00 59 25 23 36 70 0 24 36 48 23 52 38 47 23 88 78 67 68 20 57 37 23 59 3 23 7 78 67 a) Vypočítejte průměrý počet bodů. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost souboru. i) Špičatost souboru. j) Načrtěte histogram četosti pro 5 tříd. Řešeí: Pomocí fukcí Excelu postupě dostaeme výsledky (Obr..8): - 4 -

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy Obrázek.8 Statistické fukce ejsou jediou možostí, kterou Excel v souvislosti s popisou statistikou abízí. Tabulkový procesor MS Excel umožňuje výpočet celého souboru výběrových základích charakteristik přímo z dat pomocí položky hlavího meu záložky Data: Aalýza dat (pozor, musí být aistalováa, viz text pod obrázkem.), aalytický ástroj Popisá statistika. Použití tohoto aalytického ástroje demostruje ásledující příklad: ŘEŠENÝ PŘÍKLAD.3 Následující tabulka (stejá jako v Příkladu.2) obsahuje počty bodů, které získali jedotliví studeti z testu z mikroekoomie: 48 62 78 56 74 23 2 48 99 00 59 25 23 36 70 0 24 36 48 23 52 38 47 23 88 78 67 68 20 57 37 23 59 3 23 7 78 67 Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru. - 5 -

Popisá statistika v programu MS Excel Řešeí: Pro výpočet pomocí aalytického ástroje Popisá statistika je uté připravit data do jedoho sloupce (ebo řádku), protože pro každý sloupec (případě řádek) se všechy hodoty počítají zvlášť. Tato vlastost je výhodá pro výpočet základích charakteristik dat pro ěkolik souborů (sloupců ebo řádků dat) ajedou. Po otevřeí ástroje Popisá statistika (Data Aalýza dat Popisá statistika) lze zadat vstupí oblast dat, ozačit, zda jsou data ve sloupci ebo v řádku, zadat případé popisky a určit, že vyžadujeme celkový přehled (Obr..9). Obrázek.9 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..0). Výsledky si můžete porovat s řešeím předchozího příkladu.2: Obrázek.0-6 -

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.3 PŘÍKLADY K PROCVIČENÍ PŘÍKLAD. Následující tabulka obsahuje počty bodů, které získali studeti z testu z makroekoomie. 2 3 8 4 4 9 20 2 2 4 2 20 0 4 6 8 9 a) Vypočítejte optimálí počet tříd pomocí Sturgersova pravidla. b) Zobrazte histogram četosti pro počet tříd z příkladu a). PŘÍKLAD.2 Zjistěte základí charakteristiky pro soubor dat z ásledující tabulky: 8 47 8 4 4 9 20 2 2 4 2 20 0 4 6 8 9 20 47 23 28 8 47 38 20 Vypočítejte průměrý počet bodů, alezěte modus souboru, vypočítejte mediá souboru, vypočítejte výběrový rozptyl a směrodatou odchylku souboru. Vypočítejte šikmost a špičatost souboru. Nalezěte maximálí a miimálí hodotu v souboru. Použijte aalytický ástroj Popisá statistika. PŘÍKLAD.3 Pro data z ásledující tabulky určete výběrovou směrodatou odchylku a populačí směrodatou odchylku a výsledky porovejte. Která směrodatá odchylka je větší? 4 2 20 0 4 24 49 50 39 25 34 36 50 0 24 36 48 39 20 0 4 6 8 8 47 28 20.4 ŘEŠENÍ PŘÍKLADŮ ŘEŠENÍ PŘÍKLADU. Optimálí počet tříd: k Roud ( 3,3.log (20)) Roud (3,3.,30) Roud (4,293) 4 5 0 Histogram četosti (Obr..): - 7 -

Popisá statistika v programu MS Excel Obrázek. ŘEŠENÍ PŘÍKLADU.2 Výsledá tabulka obsahuje všechy požadovaé iformace s popisem (Obr..2). Obrázek.2 ŘEŠENÍ PŘÍKLADU.3 Výběrová směrodatá odchylka je 6,034 a populačí směrodatá odchylka je 5,764. Větší je výběrová směrodatá odchylka. - 8 -

Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy.5 PŘÍPADOVÉ STUDIE PŘÍPADOVÁ STUDIE. Při marketigové studii pro výrobce praček byli respodeti dotázái, kolik let vlastí pračku, kterou mají doma. Odpovědi 00 respodetů jsou v ásledující tabulce: 2 3 2 5 5 6 7 2 2 2 3 4 3 5 6 8 8 8 5 7 2 3 2 2 2 3 5 6 7 7 8 9 6 7 0 2 2 4 6 7 2 2 3 0 9 20 2 9 9 8 6 5 2 2 3 4 2 2 5 6 7 9 8 9 2 3 4 2 2 3 4 4 5 2 2 3 9 9 9 3 2 2 5 0 0 2 0 7 6 5 4 3 2 a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 0 tříd. - 9 -

Popisá statistika v programu MS Excel PŘÍPADOVÁ STUDIE.2 Při marketigové studii pro výrobce praček byli respodeti dále dotázái, kolik let vlastili pračku, kterou měli před yější pračkou. Odpovědi 00 respodetů jsou v ásledující tabulce: 2 3 2 5 5 6 7 2 2 20 3 4 3 5 6 8 8 8 5 7 20 6 2 2 3 7 2 3 5 6 7 7 8 9 6 7 0 0 20 20 4 6 7 2 2 3 0 9 20 2 9 9 8 6 5 2 2 3 4 2 2 5 6 7 9 8 9 0 23 3 4 2 2 3 3 4 5 2 2 9 9 9 3 2 2 5 0 0 2 0 7 6 5 4 3 2 a) Vypočítejte průměrý počet let vlastictví pračky. b) Nalezěte modus souboru. c) Vypočítejte mediá souboru. d) Vypočítejte výběrový rozptyl souboru. e) Vypočítejte výběrovou směrodatou odchylku souboru. f) Vypočítejte populačí rozptyl. g) Vypočítejte populačí směrodatou odchylku souboru. h) Vypočítejte šikmost a špičatost souboru. i) Pomocí Sturgersova pravidla určete optimálí počet tříd a ačrtěte histogram četosti. j) Načrtěte histogram četosti pro 5 tříd. k) Porovejte výsledky případové studie. a.2 a iterpretujte rozdíly. - 20 -