3. Reálná čísla. většinou racionálních čísel. V analytických úvahách, které praktickým výpočtům



Podobné dokumenty
Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Reálná čísla

1.3. Číselné množiny. Cíle. Průvodce studiem. Výklad

p 2 q , tj. 2q 2 = p 2. Tedy p 2 je sudé číslo, což ale znamená, že

Matematika 2 Úvod ZS09. KMA, PřF UP Olomouc. Jiří Fišer (KMA, PřF UP Olomouc) KMA MA2AA ZS09 1 / 25

Text může být postupně upravován a doplňován. Datum poslední úpravy najdete u odkazu na stažení souboru. Veronika Sobotíková

Funkce a lineární funkce pro studijní obory

Matematika 1 Jiˇr ı Fiˇser 19. z aˇr ı 2016 Jiˇr ı Fiˇser (KMA, PˇrF UP Olomouc) KMA MAT1 19. z aˇr ı / 19

7. Funkce jedné reálné proměnné, základní pojmy

Zavedení a vlastnosti reálných čísel

IV. Základní pojmy matematické analýzy IV.1. Rozšíření množiny reálných čísel

Reálná čísla. Sjednocením množiny racionálních a iracionálních čísel vzniká množina

Podíl dvou čísel nazýváme číslo racionální, která vyjadřujeme ve tvaru zlomku.

Poznámka. Je-li f zobrazení, ve kterém potřebujeme zdůraznit proměnnou, píšeme f(x) (resp. f(y), resp. f(t)) je zobrazení místo f je zobrazení.

Bakalářská matematika I

1. Několik základních pojmů ze středoškolské matematiky. Na začátku si připomeneme následující pojmy:

Funkce pro studijní obory

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ. Tento projekt je spolufinancován Evropským sociálním fondem a státním rozpočtem České republiky

POSLOUPNOSTI A ŘADY INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

Posloupnosti a jejich limity

REÁLNÁ FUNKCE JEDNÉ PROMĚNNÉ

Kapitola 1. Úvod. 1.1 Značení. 1.2 Výroky - opakování. N... přirozená čísla (1, 2, 3,...). Q... racionální čísla ( p, kde p Z a q N) R...

PŘEDNÁŠKA 1 MNOŽINY ČÍSEL

Funkce - pro třídu 1EB

KOMPLEXNÍ ČÍSLA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

M - Příprava na 3. čtvrtletní písemnou práci

Lineární funkce, rovnice a nerovnice 4 lineární nerovnice

55. ročník matematické olympiády

1 Základní pojmy. 1.1 Množiny

ZŠ ÚnO, Bratří Čapků 1332

A[a 1 ; a 2 ; a 3 ] souřadnice bodu A v kartézské soustavě souřadnic O xyz

pro každé i. Proto je takových čísel m právě N ai 1 +. k k p

CVIČNÝ TEST 1. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 21 IV. Záznamový list 23

Praha & EU: investujeme do vaší budoucnosti. Daniel Turzík, Miroslava Dubcová,

Základy matematiky pro FEK

ANALYTICKÁ GEOMETRIE V ROVINĚ

Univerzita Karlova v Praze Pedagogická fakulta

Exponenciální funkce. Exponenciální funkcí o základu a se nazývá funkce, která je daná rovnicí. Číslo a je kladné číslo, různé od jedničky a xεr.

Příklad. Řešte v : takže rovnice v zadání má v tomto případě jedno řešení. Pro má rovnice tvar

Matematická analýza III.

Příklad 1 ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 6

Gymnázium Jiřího Ortena, Kutná Hora

Matematická analýza 1

1. 1 P Ř I R O Z E N Á Č Í S L A

2. Množiny, funkce. Poznámka: Prvky množiny mohou být opět množiny. Takovou množinu, pak nazýváme systém množin, značí se

CVIČNÝ TEST 5. OBSAH I. Cvičný test 2. Mgr. Václav Zemek. II. Autorské řešení 6 III. Klíč 17 IV. Záznamový list 19

Funkce jedn e re aln e promˇ enn e Derivace Pˇredn aˇska ˇr ıjna 2015

ALGEBRA. Téma 4: Grupy, okruhy a pole

PŘEDNÁŠKA 2 POSLOUPNOSTI

ANALYTICKÁ GEOMETRIE LINEÁRNÍCH ÚTVARŮ V ROVINĚ

0.1 Funkce a její vlastnosti

0. ÚVOD - matematické symboly, značení,

Management rekreace a sportu. 10. Derivace

Úvod do informatiky. Miroslav Kolařík

NAIVNÍ TEORIE MNOŽIN, okruh č. 5

Číslo hodiny. Označení materiálu. 1. Mnohočleny. 25. Zlomky. 26. Opakování učiva 7. ročníku. 27. Druhá mocnina, odmocnina, Pythagorova věta

Matematika (KMI/PMATE)

V předchozí kapitole jsme podstatným způsobem rozšířili naši představu o tom, co je to číslo. Nadále jsou pro nás důležité především vlastnosti

Lineární funkce, rovnice a nerovnice

Matematika I (KMI/5MAT1)

goniometrickém tvaru z 1 = z 1 (cosα 1 +isinα 1 ), z 2 = z 2 (cosα 2 +isinα 2 ) Jejich součin = z 1 ( z 2 z 2 Jejich podíl: n-tá mocnina:

Moderní technologie ve studiu aplikované fyziky CZ.1.07/2.2.00/ Množiny, funkce

7.5.3 Hledání kružnic II

7. Funkce jedné reálné proměnné, základní pojmy

Čísla v plovoucířádovéčárce. INP 2008 FIT VUT v Brně

Úvod do řešení lineárních rovnic a jejich soustav

0.1 Úvod do matematické analýzy

Omezenost funkce. Definice. (shora, zdola) omezená na množině M D(f ) tuto vlastnost. nazývá se (shora, zdola) omezená tuto vlastnost má množina

Zdroje chyb. Absolutní a relativní chyba. Absolutní chyba. Absolutní chyba přibližného čísla a se nazývá absolutní hodnota rozdílu přesného

MATURITNÍ TÉMATA Z MATEMATIKY

POŽADAVKY pro přijímací zkoušky z MATEMATIKY

Přednáška 1: Reálná funkce jedné reálné proměnné

Základy matematiky pro FEK

CVIČNÝ TEST 24. OBSAH I. Cvičný test 2. Mgr. Kateřina Nováková. II. Autorské řešení 6 III. Klíč 13 IV. Záznamový list 15

Matematika I (KMI/PMATE)

maticeteorie 1. Matice A je typu 2 4, matice B je typu 4 3. Jakých rozměrů musí být matice X, aby se dala provést

Matematika I. Přednášky: Mgr. Radek Výrut, Zkouška:

CVIČNÝ TEST 36. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 6 III. Klíč 15 IV. Záznamový list 17

Funkce a základní pojmy popisující jejich chování

Racionální čísla. teorie řešené úlohy cvičení tipy k maturitě výsledky. Víš, že. Naučíš se

Vzdělávací oblast: Matematika a její aplikace Vyučovací předmět: Matematika. Ročník: Průřezová témata. Poznám ky. Výstup

Obecná rovnice kvadratické funkce : y = ax 2 + bx + c Pokud není uvedeno jinak, tak definičním oborem řešených funkcí je množina reálných čísel.

FUNKCE A JEJICH VLASTNOSTI

M - Příprava na 1. čtvrtletku pro třídy 2P a 2VK

Mgr. Tomáš Kotler. I. Cvičný test 2 II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

1. POJMY 1.1. FORMULE VÝROKOVÉHO POČTU

Úlohy krajského kola kategorie A

Úlohy krajského kola kategorie A

Číselné posloupnosti

Příklad 1. Řešení 1a Máme řešit rovnici ŘEŠENÉ PŘÍKLADY Z M1A ČÁST 1. Řešte v R rovnice: = = + c) = f) +6 +8=4 g) h)

2.8.6 Čísla iracionální, čísla reálná

M - Kvadratické rovnice a kvadratické nerovnice

Lineární algebra : Lineární prostor

CVIČNÝ TEST 41. OBSAH I. Cvičný test 2. Mgr. Tomáš Kotler. II. Autorské řešení 7 III. Klíč 15 IV. Záznamový list 17

MATA Př 3. Číselné soustavy. Desítková soustava (dekadická) základ 10, číslice 0, 1, 2, 3, 4, 5, 6, 7, 8, 9.

Matematika I, část I. Rovnici (1) nazýváme vektorovou rovnicí roviny ABC. Rovina ABC prochází bodem A a říkáme, že má zaměření u, v. X=A+r.u+s.

Úlohy klauzurní části školního kola kategorie A

CVIČNÝ TEST 9 OBSAH. Mgr. Václav Zemek. I. Cvičný test 2 II. Autorské řešení 5 III. Klíč 17 IV. Záznamový list 19

(4x) 5 + 7y = 14, (2y) 5 (3x) 7 = 74,

Euklidovský prostor. Funkce dvou proměnných: základní pojmy, limita a spojitost.

Cvičení z Lineární algebry 1

Transkript:

RACIONÁLNÍ A IRACIONÁLNÍ ČÍSLA Význačnými množinami jsou číselné množiny K nejvýznamnějším patří množina reálných čísel, obsahující jako podmnožiny množiny přirozených, celých, racionálních a iracionálních čísel Tyto množiny se zavádějí a značí takto: Množina čísel přirozených N = {,,, } Množina čísel celých Z = {0,, -,, -, } Množina čísel racionálních Q je množina čísel, která lze vyjádřit ve tvaru zlomku kde q N, p Z p, q Množinu čísel racionálních chápeme včetně obvyklých operací sčítání, odčítání, násobení a dělení; ty jsou známy jako pravidla pro počítání s racionálními čísly Jinými slovy lze říci, že "množina Q je uzavřena vzhledem k operacím sčítání, odčítání, násobení a dělení (s výjimkou dělení nulou)" To znamená, že například součin dvou racionálních čísel je opět číslo racionální V praktických úlohách, ručních i pomocí kalkulátorů, se používá většinou racionálních čísel V analytických úvahách, které praktickým výpočtům předcházejí, však s racionálními čísly nevystačíme Například již jednoduchá rovnice x = nemá řešení, které je racionální číslo Proto se zavádějí čísla iracionální Q, např, π aj Množina čísel reálných, značí se R, je sjednocením množin racionálních a iracionálních čísel; R = Q Q K názorné ilustraci slouží zobrazení reálných čísel jako bodů na číselné ose (obr ) Říká se pak, že množina reálných čísel obsahuje čísla, která vyplňují číselnou (případně reálnou) osu Tím se míní fakt, že každému reálnému číslu odpovídá jediný bod číselné osy a naopak každému bodu číselné osy odpovídá jediné reálné číslo Jinak řečeno, na číselné ose nejsou žádná "prázdná místa", k jejichž "zaplnění" by bylo zapotřebí jiných čísel než reálných Není obtížné si nyní uvědomit, že kdybychom na číselné ose zobrazili pouze všechna racionální čísla, nebyla by číselná osa vyplněna; zůstala by na ní prázdná místa, k jejichž zaplnění by byla zapotřebí právě všechna iracionální čísla

Poznámka: ) Jestliže přiřadíme do množiny přirozených čísel 0, pak tuto množinu označíme N 0 ) Pro uvedené číselné množiny platí tyto inkluze: N Z Q R ) O přesnějším zavedení reálného čísla se dozvíme v souvislosti s vyjádřením reálného čísla ve tvaru nekonečného desetinného zlomku a b 0 R Obrázek Zobrazení čísel na číselné ose AXIOMY OPERACÍ Vlastnosti operací sčítání a násobení reálných čísel jsou dány těmito axiomy: A a + b = b + a; ab = ba (komutativita) A a + (b + c) = (a + b) + c; a(bc) = (ab)c (asociativita) A Existuje jediné řešení rovnice a + x = b; pro a 0 existuje jediné řešení rovnice ax = b A4 a(b + c) = ab + ac (distributivita) Úmluva: Pro stručnost se v dalším textu slovem "číslo" rozumí číslo reálné (pokud nebude uvedeno jinak) AXIOMY USPOŘÁDÁNÍ Vedle operací s čísly lze čísla porovnávat co do velikosti Přesněji řečeno, čísla lze uspořádat Uspořádání je dáno těmito axiomy: U Pro každou dvojici čísel a, b platí právě jeden ze vztahů a > b, a = b, a < b U Je-li a < b a b < c, pak a < c U Je-li a < b, pak a + c < b + c pro libovolné číslo c U4 Je-li a < b a c > 0, pak ac < bc Z axiomů U - U4 se odvodí další vlastnosti uspořádání, které jsou známy jako pravidla pro počítání s nerovnostmi V obvyklém smyslu se užívá zápisu a b (tj a je menší nebo se rovná b) a zápisu pro složenou nerovnost a < b < c (tj a < b a současně b < c),

případně s použitím symbolu Užitím nerovností se definují různé typy intervalů otevřený (a, b), uzavřený a, b, polouzavřený (a, b, případně a, b), neomezený s krajním bodem a (, a), případně (a, ), neomezený oboustranně (, ), jak jsou běžně používány S uspořádáním souvisí zobrazení čísel jako bodů na číselné ose Nerovnost a < b má pak názorný význam bod a leží nalevo od bodu b (obr ) ABSOLUTNÍ HODNOTA Absolutní hodnota čísla a je číslo a = a Častěji se definice uvádí ve tvaru (e) dále uvedených vlastností absolutní hodnoty, je nicméně ve shodě s geometrickou interpretací, totiž že absolutní hodnota čísla je rovna jeho vzdálenosti od počátku 0 číselné osy Ztotožníme-li číselnou osu s osou x souřadnicového systému v rovině a použijeme-li vzorec pro vzdálenost bodů A = [a, 0], B = [0, 0] v rovině dostáváme ( a ) + ( 0 0) = a = a 0 Vlastnosti absolutní hodnoty : (a) a 0 (b) a = a (c) a a (d) a a (e) Je-li a 0, pak a = a ; je-li a < 0, pak a = a (f) a + b a + b (tzv trojúhelníková nerovnost) (g) ab = a b, z z z = z HORNÍ A DOLNÍ MEZ, OMEZENÁ MNOŽINA Buď M R M je shora omezená, existuje-li takové číslo h, že pro každé x M platí x h; h je horní mez M je zdola omezená, existuje-li takové číslo d, že pro každé x M platí

d x; d je dolní mez M je omezená, je-li omezená shora i zdola Geometrický smysl je patrný z obr (tučně jsou vyznačeny body odpovídající číslům z M) Nerovnost x h vyjadřuje, že číslo h je "horní mez", za niž se prvky z M "nedostanou", nerovnost d x vyjadřuje, že číslo d je dolní mez, před niž se prvky z M "nedostanou" d h 0 R Obrázek Omezená množina Příklad: (a) Množina sudých čísel {, 4, 6, } není shora omezená, neboť ať zvolíme jakkoliv velké číslo h, existuje vždy takové sudé číslo n, pro něž platí n > h Tato množina je však zdola omezená, dolní mez může být například d = 0; je patrno, že dolních mezí existuje nekonečně mnoho, největší z nich (tzv infimum) je (b) Buď M množina čísel, která lze vyjádřit ve tvaru, kde n je přirozené číslo M je shora omezená, neboť < + = 8 Číslo 8 lze volit za horní mez Vzniká otázka, zda horní n mez 8 není zbytečně velká Ukážeme, že ji lze zmenšit Platí = < Odtud vyplývá, že za horní mez lze volit číslo Menší číslo za horní mez volit nelze, neboť zvolíme-li libovolné číslo Z <, pak lze vždy najít n o tak, že platí Z < < Číslo lze prohlásit za nejmenší horní mez + n o (tzv supremum) M je zdola omezená, neboť platí > = Vzniká podobná otázka, zda dolní mez nelze zvětšit Platí = 4 Číslo 4 lze tedy volit za dolní mez Větší číslo za dolní mez volit nelze, neboť pro n = je = 4 Číslo 4 lze prohlásit za největší dolní mez (tzvinfimum) M je omezená Analogické úvahy jako v příkladu (b) jsou běžné v aplikacích například hledání co nepřesnějšího odhadu intervalu, ve kterém se nacházejí hodnoty sledované veličiny, odhad chyby při numerických výpočtech apod Je přirozené hledat za horní mez číslo pokud možno nejmenší, za dolní mez číslo pokud možno největší Největší dolní mez ze všech dolních mezí 4

množiny M se nazývá infimum množiny M (značí se inf M), nejmenší horní mez ze všech horních mezí množiny M se nazývá supremum množiny M (značí se sup M) NEKONEČNÉ DESETINNÉ ZLOMKY Pojem nekonečného desetinného zlomku (NDZ) souvisí s vyjádřením čísla v tzv desetinném tvaru, jak se běžně užívá na střední škole Například =,000, = 4,, =,7008 Výrazy na pravé straně mají tvar a, (), a a a 0 kde a o je číslo celé a a, a, a, jsou čísla nabývající hodnot 0,,, 9 hrající roli číslic za desetinnou čárkou () je zkráceným zápisem "nekonečného" součtu a a a a 0 + + + +, () 0 00 000 který obsahuje zlomky mající ve jmenovateli rostoucí mocniny čísla 0 Proto se (), případně () nazývá nekonečný desetinný zlomek a hovoří se o vyjádření čísla ve tvaru nekonečného desetinného zlomku Platí důležité tvrzení: Každé reálné číslo lze vyjádřit nekonečným desetinným zlomkem a naopak, každý nekonečný desetinný zlomek vyjadřuje reálné číslo Ze střední školy víme, že v případě, že reálné číslo je racionální, je příslušný nekonečný desetinný zlomek periodický, tj od určitého indexu se skupina číslic perioda stále opakuje (vyznačuje se pruhem), například 09 990 = 0, = 0, V případě, že reálné číslo je iracionální, je neperiodický, tj neexistuje žádná skupina číslic, která by se opakovala, například 00 = 4,46 Jak najdeme vyjádření reálného čísla ve tvaru nekonečného desetinného zlomku? Pro racionální čísla jej dostaneme jako výsledek prostého dělení ( 0 se vynechává):

Příklad: = 0,666 = 0,6 ; = 0,000 = 0,0= 0, ; = 0,487487 = 0, 487 6 00 7 Často je zapotřebí naopak racionální číslo ve tvaru nekonečného desetinného zlomku vyjádřit jako podíl (zlomek) Pak lze užít postupu, jak je uvedeno v následujícím příkladu Příklad: (a) Vyjádříme 0, 4 jako zlomek Platí a = 0, 4, po vynásobení 00 je 00 a = 4, 4, což lze přepsat jako 00 a = 4+ 0, 4 tedy 00 a = 4+ a, odtud 00 a a= 4, 99a= 4 a nakonec 4 a = = 99 (b) Vyjádříme, jako zlomek Platí a =,, po vynásobení 0 je 0 a =,, což lze přepsat jako 0 a = +,, tedy 0 a = + a, odtud 0 a a=, 9a = a nakonec 4 a = = 9 (c) Vyjádříme, jako zlomek Platí a =,, po vynásobení 0 je 0 a =,, po opětovném vynásobení 0 máme 00 a =, což lze přepsat jako 00 a = +,, tedy 00 a= + 0a, odtud 00 a 0a=, 90a= a nakonec 6 a = = 90 4 (d) Vyjádříme, jako zlomek Platí a =,, po vynásobení 00 je 00 a =,, po opětovném vynásobení 00 máme 0000 a =, což lze přepsat jako 0000 a = 94+,, tedy 0000 a= 94+ 00a, odtud 0000 a 00a= 94 a nakonec 94 097 a = = 9900 490 Pro iracionální čísla je třeba použít numerických metod Tyto hodnoty jsou uvedeny v tabulkách, případně je lze získat použitím kalkulátoru V některých případech (například u odmocnin) lze "ručním" způsobem najít výsledek na předem zadaný počet platných desetinných míst Příklad: Určíme přibližně na 4 platná desetinná místa Zřejmě pro platí < <, neboť =, = 4 Dále uvažujeme čísla,;,; ;,9 Dostáváme,4 =,96,, =,, tedy,4 < <, Analogicky uvažujeme,4;,4; ;,49 Platí,4 =,988,,4 =,064, tedy,4 < <,4 (v této chvíli je určena na jedno platné desetinné místo) Pokračujeme-li tímto způsobem dále, určíme na libovolný počet platných desetinných míst Dostáváme: < <,4 < <, 6

Z posledního vztahu vyplývá,4 < <,4,44 < <,4,44 < <,44,44 < <,44 =,44 při výpočtu jsme použili umocňování, které lze provádět "ručně", případně užitím jednoduchého kalkulátoru se základními operacemi V popsané konstrukci nekonečného desetinného zlomku lze použít místo čísla 0 i jiného přirozeného čísla Fakticky jde o vyjádření čísla v jiné číselné soustavě V době, kdy začínala éra počítačů a programy musely být psány v tzv strojovém kódu, bylo zapotřebí čísla v obvyklé desítkové soustavě převádět pro účely zpracování počítačem do soustav jiných (zejména dvojkové, osmičkové, šestnáctkové), které bezprostředně odpovídaly způsobu zobrazení čísla v počítači Tyto starosti nám dnes naštěstí odstranily programovací jazyky spolu s překladači Cílové znalosti Základní charakterizace množin přirozených, celých, racionálních, iracionálních a reálných čísel Řešení rovnic a nerovnic s absolutními hodnotami Rozhodnout o omezenosti množiny 4 Vyjádření čísla ve tvaru nekonečného desetinného zlomku 7

III Reálná čísla_cvičení Pro která x má smysl výraz: a) 4x b) x 6 log c) x Řešte nerovnici: x x+ a) + 8> x b) x x+ 7x+ x + < 4 6 c) ( ) < x( x+ ) + x Která přirozená čísla vyhovují nerovnici: a) x x x < b) 4 4x x 4 x < 4 Která záporná čísla vyhovují nerovnici: a) x+ x x < b) 4x x 4 x < Dokažte, že pro x 0, y 0 platí x+ y xy 6 Pro která x nabývají zlomky kladných hodnot: a) x x b) 7 x + x 6 7 Která celá čísla vyhovují soustavě nerovnic x 0> 0, x < 6 8 Řešte nerovnici: a) x + x 6 0 b) x + x 0 8

9 Řešte rovnici: a) x + + x = b) x+ x + = x 0 Určete dolní a horní mez zadané množiny M a rozhodněte zda je zdola, příp shora, omezená, příp omezená: a) M =, b) = ( 0, 0 M c) M = (,) d) = {,,, } M e) M = { ; N} n n f) M = + ; n N g) n M = ; n N Vyjádřete nekonečný desetinný zlomek jako podíl: a) 0, b) 0, c), 4 d),6 Určete na platná desetinná místa bez použití tabulek nebo kalkulátoru s odmocninami: a) b) 0 c) 00 9

VÝSLEDKY CVIČENÍ a) x ; b) x > ; c) a) x < 4 ; b) a) {,, } x > ; c) x ; b) x N 8 4 a), 0 x < x > 4 x ; b) ( 8, 0) x 7 6 a) x, ; b) x,, 7 { 4,, 6, 7, 8, 9, 0} x 8 a) x (,, ) ; b) x, 9 a) x =± ; b) x = 4 0 a) inf M =, sup M =, M je omezená; b) inf M = 0, sup M = 0, M je omezená; c) inf M =, sup M =, M je omezená; d) sup M =, M je shora omezená; e) inf M = 0, sup M =, M je omezená; f) inf M =, sup M =, M je omezená; g) inf M = 4, sup M =, M je omezená a) a = ; b) 9 a = ; c) 99 9 a = ; d) 999 60 a = 49 a) =, 6 ; b) 0 =, 477 ; c) 0 = 4, 4 0