křivka množina bodů v rovině nebo v prostoru lze chápat jako trajektorii pohybu v rovině či v prostoru nalezneme je také jako množiny bodů na ploše křivky jako řezy plochy rovinou, křivky jako průniky ploch lze popisovat různým způsobem rozlišujeme hlavně neparametrický a parametrický způsob vyjádření křivek požadavky důležitá nezávislost křivky na soustavě souřadnic důležité snadné vyjádření omezení oblouku křivky z těchto důvodů nejčastěji parametrické vyjádření
modelování křivek použití v počítačové grafice a v souvisejících aplikacích modelování ve 2D i ve 3D různé aplikace různé požadavky dělení křivek rovinné prostorové dělení křivek podle typu rovnice explicitní implicitní parametrické
dělení křivek podle vlastností průchodu řídícími body interpolační aproximační interpolační křivka prochází danými body aproximační křivka neprochází danými body, řídící body určují tvar křivky
Rovinné křivky Explicitní rovnice y = f( x), kde x a, b f( x) je funkce definovaná na intervalu ab, = I, která každému I jednoznačně přiřazuje f( x) x a, b omezíme-li nezávisle proměnnou na interval, je tím na křivce určen oblouk nad tímto intervalem s krajními body A a B křivku někdy orientujeme, většinou souhlasně s rostoucí souřadnicí x, pak je bod A počátečním a bod B koncovým bodem oblouku I =
Rovinné křivky Explicitní rovnice y = f( x), kde x a, b A B explicitně zadanou křivku zobrazujeme tak, že pro dostatečný počet x k hodnot vyjádříme y = f ( x ), k = 1,2... [ x, y ] dvojice jsou souřadnice bodů křivky y = [ a, f( a)] = [, b f()] b A B k k k k křivka je funkce a b x
Rovinné křivky Explicitní rovnice y = f( x), kde x a, b příklady lineární funkce, kvadratické funkce, mocninné funkce, exponenciální funkce, logaritmické funkce, goniometrické funkce příklady křivek y x x a a a = e + e = acosh 2 řetězovka x a
Rovinné křivky 2n+ y x 1, n = y x 2 n, n =
Rovinné křivky (2n+ 1) y x n 0 x =,, 0 2 n y = x, n, x 0
Rovinné křivky y = a x + a x + a x+ a 3 2 3 2 1 0 parabola třetího stupně (kubická parabola)
Rovinné křivky Implicitní rovnice F( x, y ) = 0 pokud tento tvar neumíme nebo nechceme převádět na explicitní, zobrazíme křivku tak, že volíme postupně konstantní hodnoty jedné proměnné a počítáme hodnoty druhé proměnné řešením rovnic F( α, y) = 0 F( x, α) = 0 α
Rovinné křivky Implicitní rovnice příklady F( x, y ) = 0 kuželosečky vlastnosti, rovnice, tečny příklady algebraických křivek 2 ( 2 2) 2( 2 2 x + y = 2a x y ) Bernoulliova lemniskáta
Rovinné křivky 3 3 x y axy a + 3 = 0, > 0 Descartesův list x= a y = x a Dioklova kisoida 2 3 y a x x a ( ) =, > 0
Rovinné křivky Parametrické rovnice x = x() t y = y(), t t a, b parametrické rovnice vyjadřují vznik křivky jako dráhy pohybujícího se bodu tento bod má v čase t souřadnice x(t) a y(t) počáteční bod křivky koncový bod křivky A[ xa ( ), y( a)] B[ xb ( ), y( b)]
Rovinné křivky Parametrické rovnice funkcemi (tzv. souřadnicové funkce) je určena bodová rovnice xt (), y() t nebo vektorová rovnice [ ] Qt () = xt (), yt () ( ) qt () = xt (), yt () qt () = Qt () [0,0] Qt () vektor se nazývá polohový vektor, jeho velikost je rovna vzdálenosti bodu od počátku výhoda parametrického zápisu je závislost na jediném parametru oproti explicitnímu vyjádření výhoda - lze vyjádřit i takové křivky, které nejsou funkcemi, např. kružnice
Prostorové křivky Parametrické rovnice výhoda parametricky lze zapisovat rovinné tak prostorové křivky analogie pojmů bodová rovnice vektorová rovnice x= x() t y = y() t z = zt (), t ab, [ ] Qt () = xt (), yt (), zt () ( ) qt () = xt (), yt (), zt ()
Základní vlastnosti křivek derivace parametricky vyjádřené křivky po složkách tečný vektor v bodě rovnice tečny v bodě Qt ( 0) je určen dx( t0) dy( t0) dz( t0) q ( t0) = ( x ( t0), y ( t0), z ( t0) ) =,, dt dt dt Qt ( 0) Qt ( ) + sq ( t), s 0 0 výhoda parametrické reprezentace snadné vyjádření tečny ke křivce, lze využít zejména při navazování křivek a skládání složitých tvarů z jednodušších částí
Základní vlastnosti křivek bod Qt ( ) je inflexním bodem křivky 0 křivka, jejíž všechny body jsou inflexní přímka nebo část přímky změna parametrizace nahrazení parametru t jiným parametrem, který je zadán jako funkce s = st () nové vyjádření q ( t ) = kq ( t ); k 0 0 0 [ ] Rs () = xs (), ys (), zs () popisuje tutéž křivku s tím rozdílem, že tečný vektor v nějakém bodě křivky má stejný směr, ale jinou velikost, případně orientaci říkáme, že tečný vektor je závislý na parametrizaci (tečna na parametrizaci závislá není)
Základní vlastnosti křivek µ q ( t ) 0 b Qt ( 0) q ( t ) 0 ν n Qt () τ p n b τ ν µ -tečna - hlavní normála - binormála - oskulační rovina - normálová rovina - rektifikační rovina p v bodě Qt ( 0) - není inflexní (normála každá přímka v normálové rovině)
Základní vlastnosti křivek oskulační rovina v bodě Qt ( 0) µ q ( t ) 0 b Qt ( 0) q ( t ) 0 ν n Qt () τ určena tečnou p a vektorem q ( t ) hlavní normála v bodě je přímka kolmá na tečnu p leží v oskulační rovině binormála v bodě je přímka kolmá na 0 Qt ( 0) Qt ( 0) p oskulační rovinu
Základní vlastnosti křivek normálová rovina v bodě Qt ( 0) µ q ( t ) 0 b Qt ( 0) q ( t ) 0 ν n Qt () τ určena přímkami b, n rektifikační rovina v bodě určena přímkami b, p Qt ( 0) p
Základní vlastnosti křivek Q t Q t -dvěčásti (segmenty) jediné křivky Qt () 1(), 2() Q (1) = Q (0) - spojené v bodě - tzv. uzel 1 2 Q () t 2 Q () t 1 Q (1) = Q (0) 1 2
Základní vlastnosti křivek Q1(), t Q2() t - důležité - způsob napojení, spojitost v uzlu řekneme, že křivka je třídy, má-li ve všech bodech spojité derivace do řádu n C n Qt () označení se nazývá parametrická spojitost C n Q () t 2 Q () t 1 Q (1) = Q (0) 1 2
Základní vlastnosti křivek dva segmenty jsou spojitě navázány, mají spojení třídy, pokud je koncový bod prvního segmentu = počátečnímu bodu druhého segmentu dva segmenty mají spojení, pokud je tečný vektor v koncovém bodě prvního segmentu = tečnému vektoru druhého segmentu v jeho počátečním bodě dva segmenty mají spojen - rovnost vektoru první a druhé derivace zkráceně C C q (1) = q (0); i = 0,1... n () i () i 1 2 2 1 C 0
Základní vlastnosti křivek platí C n + 1 C n 2 C 0 C 1 C q (1) = q (0); i = 0,1... n () i () i 1 2
Základní vlastnosti křivek geometrická spojitost dva segmenty jsou spojité, pokud je koncový bod prvního segmentu = počátečnímu bodu druhého segmentu dva segmenty jsou spojité, pokud je tečný vektor v koncovém bodě prvního segmentu lineárně závislý s tečným vektorem druhého segmentu v jeho počátečním bodě, tj. tj. totožnost tečen, nikoli tečných vektorů platí C n G n G G 0 1 n G q (1) = kq (0); k > 0 1 2 1 G 1 C