( )! ( ) ( ) ( ) = ( ) ( ) ( ) ( ) ( )

Rozměr: px
Začít zobrazení ze stránky:

Download "( )! ( ) ( ) ( ) = ( ) ( ) ( ) ( ) ( )"

Transkript

1 Variace, permutace, kombiace, kombiačí čísla, vlastosti, užití faktoriál, počítáí s faktoriály, variace s opakováím.. Upravte a urči podmíky: a)!! 6! b)!! 6! 9! c)!!!!. Řešte rovici: a) 4 b) 0 c) emá řešeí d) 0! 6! e) 0 7. f) emá řešeí KOMBINATORICKÁ PRAVIDLA. Zákazík si vybírá materiál pro šatí skříě jede druh dřeva a jede typ doplňků. V abídce je 7 druhů světlého dřeva, 6 druhů tmavého dřeva a dále 4 typy doplňků vhodých je pro světlé dřevo, typů vhodých je pro tmavé dřevo a uiverzálí typy pro jakýkoliv druh dřeva. Kolik vhodých dvojic (dřevo a doplňky) je možé abídout? a) 4 b) c) d) jiá možost d. Kolika růzými cestami mohou dojít turisté z Jedlové do Smrkové, když chtějí posvačit a rozcestí U mali? Cesty se považují za růzé, pokud se liší aspoň v jedom úseku. Předpokládáme, že se turisté ebudou vracet tz. každým místem projdou ejvýše jedou. a) 0 cestami b) cestami c) 0 cestami d) jié řešeí c

2 KOMBINACE. Zvětší-li se počet prvků o jede, zvětší se počet kombiací třetí třídy o 6. Urči počet zadaých prvků. 4. Urči počet prvků tak, aby počet čtyřčleých kombiací z ich vytvořeých byl dvacetkrát větší ež počet dvoučleých kombiací.. Zvětší-li se počet prvků o 4, zvětší se počet kombiací druhé třídy o 0. Urči původí počet prvků V krabici je 0 výrobků, z ichž jsou tři vadé. Kolika způsoby lze vybrat výrobků tak, aby a) aby žádý ebyl vadý b) aby právě jede byl vadý 0 c) aby ejvýše jede byl vadý 6 d) právě dva byly vadé 0 e) ejvýše dva byly vadé f) alespoň dva byly vadé 6. Kolik růzých přímek je určeo 0 body, jestliže a) žádé tři eleží v přímce 4 b) čtyři z ich leží v přímce Ve třídě je 0 chlapců a dívek. Kolika způsoby lze vybrat a) dvoučleou službu b) trojčleou skupiu ve složeí chlapec a dívky 660 c) trojčleou skupiu, ve které bude Petr 0 d) trojčleou skupiu ve složeí dívky a chlapec, ale eí to Petr Na šachovici, která má polí, je vyzačea hlaví a vedlejší diagoála. Kolika způsoby je možé a polích šachovice rozmístit tři stejé figury tak, aby byly všechy tři a hlaví, ebo všechy tři a vedlejší diagoále? A) 6 B) 0 C) 0 D) E) B. Petr si vylosuje jedu otázku ze skupiy (0 otázek) a dvojici otázek ze skupiy ( 0 otázek). Kolik růzých trojic otázek lze udělat tak, aby jeda byla vždy ze skupiy a další dvě ze skupiy? Do fiále turaje v žákovské kopaé, v ěmž se utká každé družstvo s každým, se probojovala 4 družstva. Každé utkáí bude trvat dvakrát 4 miut a mezi každým poločasem a každým zápasem je desetimiutová přestávka. Jaká je miimálí cea, kterou orgaizátor zaplatí za proájem hřiště, jestliže za každou započatou hodiu zaplatí 00 Kč? 00 Kč

3 VARIACE, PERMUTACE. Zmešíme-li počet prvků o,zmeší se počet variací. třídy bez opakováí o 6. Urči původí počet prvků. 9. Urči počet prvků, je-li počet variací 4.třídy bez opakováí z ich vytvořeých 0 krát větší ež počet variací. třídy bez opakováí. 7. Urči počet všech přirozeých čísel větších ež 00 a meších ež 000, v jejichž zápisech se vyskytují cifry,, 4, 7,, a to každá ejvýše jedou a) Kolik růzých pěticiferých čísel lze vytvořit z číslic 0,,,,4,, jestliže se číslice eopakují. Kolik z těchto čísel je dělitelých? Kolik čísel je sudých? 600, 6, b) Kolik růzých pěticiferých čísel lze vytvořit z číslic 0,,,,4,, jestliže se číslice opakují. Kolik z těchto čísel kočí? 640, 00. Kolik šestimístých kódů lze vytvořit z lichých číslic a samohlásek (obojí se může opakovat) tak, že prví tři místa tvoří číslice a a zbývajících místech jsou samohlásky? Kolika způsoby lze postavit do řady a poličku 0 růzých českých kih a růzých aglických kih tak, že budou ejprve kihy české a pak aglické Rychlíkovou soupravu tvoří dva stejé zavazadlové vozy, jede jídelí vůz, čtyři stejé lůžkové vozy a dva stejé lehátkové vozy. Kolika způsoby lze vagóy seřadit? 70. Kolika způsoby lze sestavit rozvrh a jede de, připadá-li a teto de 6 růzých jedohodiových předmětů a ve třídě se vyučuje dvaácti předmětům. V kolika možostech je matematika? V kolika možostech je matematika prví hodiu? 66 0, 640, Kolika způsoby můžeme postavit 7 dětí a) do řady 040 b) do řady tak, aby ejvyšší dítě stálo uprostřed 70 c) do řady tak, aby ejvyšší dítě stálo a kraji 440 d) do řady tak, aby ejvyšší dítě estálo a kraji 600 e) do kruhu Kolika způsoby lze přemístit písmea ve slově MATEMATIKA? 00 PRAVDĚPODOBNOST. V obchodě je 0 hrců, z ich jsou vadé. Vybereme áhodě hrce. Urči pravděpodobost, že mezi vybraými je: a) právě vadý 0, b) aspoň vadý 0,70. Hodíme stejou micí krát po sobě. Urči pravděpodobost, že: a) líc pade častěji ež rub mice 0, b) líc pade právě dvakrát 0,7 c) výsledek všech tří hodů je stejý 0,. Hodíme dvakrát kostkou. Urči pravděpodobost, že a) pade součet 0,

4 b) padou obě čísla sudá 0, c) pade ejvýše jedou 6 0,97 d) pade aspoň jedo liché číslo 0,7 e) padou dvě 6 0,07 f) poprvé pade a podruhé sudé číslo 0,0 g) pade jedekrát a jedekrát sudé číslo 0,66 4. Čtyři studeti sportovího gymázia zadávali aketu. Pět set áhodě osloveých lidí jim odpovědělo a otázku, zda pravidelě jezdí a kole ebo a i lie bruslích. Jejich odpovědi jsou zpracováy v tabulce. Jezdí a kole Nejezdí a kole Jezdí a bruslích 90 0 Nejezdí a bruslích 0 0 a) S jakou pravděpodobostí mohl jede ze studetů vyhrát sázku, že prví osoba z áhodě osloveých jezdí pouze a i-lie bruslích? p 0,04 b) Jaká je pravděpodobost, že prví osoba z áhodě osloveých jezdí a kole? p 0,6 c) Jaké proceto lidí z dotázaých ejezdí a i-lie bruslích? 7%. Soubor karet je očíslová přirozeými čísly od do 4. Karty zamícháme a jedu z ich áhodě vytáheme. Určete pravděpodobost, že číslo karty je dělitelé číslem 4 ebo číslem 6. / 6. Hoza je a zkoušce, která obsahuje témata. U prvího tématu zá správé odpovědi a 60% otázek, ve druhém tématu umí správě odpovědět a otázek ze 0 otázek. Při zkoušce si vylosuje po jedé otázce z každého tématu. Jaká je pravděpodobost, že správě zodpoví obě tažeé otázky? a) 0, b) 0,4 c) 0,6 d) 0,6 b Jaká je pravděpodobost, že bude zát správou odpověď alespoň a jedu z obou tažeých otázek? a) 0, b) 0,7 c) 0, d) 0,9 c 7. Obr. : a b c d obr.: a b c d e f g h e f g h i j k l i j k l Jaká je pravděpodobost, že při áhodém výběru písmea z zadaých se trefím do tučě vyzačeých písme obou obrázků? a) 0, b)0,4 c)0, d)0, e)žádá možost d Jaká je pravděpodobost, že při áhodém výběru písmea z zadaých se trefím do tučě vyzačeých písme aspoň jedoho obrázku? a) 0,9 b)0,7 c)0,67 d)0, e)žádá možost b. Z pečlivě promíchaého balíku karet bylo odebráo sedm karet. Mezi zbývajícími kartami v balíku zůstává devět srdcových karet. Jaká je pravděpodobost, že v dalším tahu z balíku ebude vytažea srdcová karta? 0,7 9. Balíček deseti karet obsahuje čtyři esa a karty, 6, 7,, 9 a 0. Přiřaďte ke každému jevu pravděpodobost (A E), s íž může astat. a) Čtveřici áhodě vybraých karet tvoří po sobě jdoucí čísla. E b) Ve čtveřici áhodě vybraých karet eí žádé eso. B

5 c) Čtveřici áhodě vybraých karet tvoří dvě po sobě jdoucí čísla a dvě esa. A A) /7 B) /4 C) / D) / E) /70 0. Mezi kartami jsou 4 sedmičky. a) Jaká je pravděpodobost, že mezi dvěma áhodě vybraými kartami bude aspoň jeda sedmička? asi 0, b) Čtyři hráči si vytáhou po dvou kartách. Jaká je pravděpodobost, že žádý hráč evytáhe ai jedu sedmičku? asi 0,. V osudí je bílých a 7 červeých kostek. a) Jaká je pravděpodobost, že v.tahu vytáheme červeou, v.tahu bílou a ve.tahu červeou kostku, jestliže po každém tahu vrátíme kostku zpět? 4,7% b) Jaká je pravděpodobost, že v.tahu vytáheme červeou, v.tahu bílou a ve.tahu červeou kostku, jestliže kostky evracíme?,9%

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly.

2. Znát definici kombinačního čísla a základní vlastnosti kombinačních čísel. Ovládat jednoduché operace s kombinačními čísly. 0. KOMBINATORIKA, PRAVDĚPODOBNOST, STATISTIKA Dovedosti :. Chápat pojem faktoriál a ovládat operace s faktoriály.. Zát defiici kombiačího čísla a základí vlastosti kombiačích čísel. Ovládat jedoduché operace

Více

7. KOMBINATORIKA, BINOMICKÁ VĚTA. Čas ke studiu: 2 hodiny. Cíl

7. KOMBINATORIKA, BINOMICKÁ VĚTA. Čas ke studiu: 2 hodiny. Cíl 7. KOMBINATORIKA, BINOMICKÁ VĚTA Čas ke studiu: hodiy Cíl Po prostudováí této kapitoly budete schopi řešit řadu zajímavých úloh z praxe, týkajících se počtu skupi, které lze sestavit ( vybrat ) z daé možiy

Více

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál:

P(n) = n * (n - 1) * (n - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: PERMUTACE a VARIACE 2.1 Permutace P() = * ( - 1) * ( - 2) *... 2 * 1 To odpovídá zápisu, ve kterém využíváme faktoriál: ( )! P = Jedá se o vzorec pro počet permutací z prvků bez opakováí. 2.2 Variace bez

Více

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace

Název školy: Gymnázium Jana Nerudy, škola hl. města Prahy. Předmět, mezipředmětové vztahy: matematika a její aplikace Název: Kombiatoria Autor: Mgr. Haa Čerá Název šoly: Gymázium Jaa Nerudy, šola hl. města Prahy Předmět, mezipředmětové vztahy: matematia a její apliace Ročí: 5. ročí Tématicý cele: Kombiatoria a pravděpodobost

Více

1. K o m b i n a t o r i k a

1. K o m b i n a t o r i k a . K o m b i a t o r i k a V teorii pravděpodobosti a statistice budeme studovat míru výskytu -pravděpodobostvýsledků procesů, které mají áhodý charakter, t.j. při opakováí za stejých podmíek se objevují

Více

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených.

!!! V uvedených vzorcích se vyskytují čísla n a k tato čísla musí být z oboru čísel přirozených. Kombiatoria Kombiatoria část matematiy, terá se zabývá růzými číselými "ombiacemi". Využití - apř při hledáí počtu možých tipů ve sportce ebo jiých soutěžích hrách, v chemii při spojováí moleul... Záladím

Více

9.1.12 Permutace s opakováním

9.1.12 Permutace s opakováním 9.. Permutace s opakováím Předpoklady: 905, 9 Pedagogická pozámka: Pokud echáte studety počítat samostatě příklad 9 vyjde tato hodia a skoro 80 miut. Uvažuji o tom, že hodiu doplím a rozdělím a dvě. Př.

Více

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3.

6. KOMBINATORIKA 181. 6.1. Základní pojmy 181 6.1.1. Počítání s faktoriály a kombinačními čísly 182. 6.2. Variace 184. 6.3. Zálady matematiy Kombiatoria. KOMBINATORIKA 8.. Záladí pojmy 8... Počítáí s fatoriály a ombiačími čísly 8.. Variace 8.. Permutace 85.. Kombiace 87.5. Biomicá věta 89 Úlohy samostatému řešeí 9 Výsledy úloh

Více

9.1.13 Permutace s opakováním

9.1.13 Permutace s opakováním 93 Permutace s opakováím Předpoklady: 906, 9 Pedagogická pozámka: Obsah hodiy přesahuje 45 miut, pokud emáte k dispozici další půlhodiu, musíte žáky echat projít posledí dva příklady doma Př : Urči kolik

Více

KOMBINATORIKA KOMBINATORICKÉ PRAVIDLO SOUČINU A SOUČTU, VARIACE, PERMUTACE, FAKTORIÁLY KOMBINATORICKÉ PRAVIDLO SOUČINU A SOUČTU

KOMBINATORIKA KOMBINATORICKÉ PRAVIDLO SOUČINU A SOUČTU, VARIACE, PERMUTACE, FAKTORIÁLY KOMBINATORICKÉ PRAVIDLO SOUČINU A SOUČTU Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ Mgr. Tomáš MAŇÁK 7. červa 03 Název zpracovaého celku: KOMBINATORIKA KOMBINATORICKÉ PRAVIDLO SOUČINU A SOUČTU, VARIACE, PERMUTACE, FAKTORIÁLY Motivačí příklad

Více

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou

Rovnice. RNDr. Yvetta Bartáková. Gymnázium, SOŠ a VOŠ Ledeč nad Sázavou Rovice RNDr. Yvetta Bartáková Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Rovice kombiatorické VY INOVACE_5 9_M Gymázium, SOŠ a VOŠ Ledeč ad Sázavou Skupiy prvků, kde záleží a pořadí Bez opakováí Počet Vk( )

Více

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby.

Jestliže nějaký objekt A můžeme vybrat m způsoby a jiný objekt B lze vybrat n způsoby, potom výběr buď A nebo B je možné provést m+n způsoby. V kapitole Ituitiví kobiatorika jse řešili příklady více éě stejý způsobe a stejých pricipech. Nyí si je zobecíe a adefiujee obvyklou teriologii. pravidlo součtu: Jestliže ějaký objekt A ůžee vybrat způsoby

Více

A 2.C. Datum: 13.5.2010

A 2.C. Datum: 13.5.2010 Jméno: Řešení Datum: 13.5.2010 A 2.C 1) Vojenskou kolonu budou tvořit dva terénní vozy UAZ, tři auta Praga V3S a čtyři Tatry 138. Kolika způsoby lze kolonu seřadit, jestliže: a) Na pořadí vozidel nejsou

Více

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů?

5) Ve třídě 1.A se vyučuje 11 různých předmětů. Kolika způsoby lze sestavit rozvrh na 1 den, vyučuje-li se tento den 6 různých předmětů? 0. Kombinatorika, pravděpodobnost, statistika Kombinatorika ) V restauraci mají na jídelním lístku 3 druhy polévek, 7 možností výběru hlavního jídla, druhy moučníku. K pití si lze objednat kávu, limonádu

Více

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál.

Při určování počtu výběrů skupin daných vlastností velmi často používáme vztahy, ve kterých figuruje číslo zvané faktoriál. Kombinatorika Kombinatorika se zabývá vytvářením navzájem různých skupin z daných prvků a určováním počtu takových skupin. Kombinatorika se zabývá pouze konečnými množinami. Při určování počtu výběrů skupin

Více

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů.

Náhodu bychom mohli definovat jako součet velkého počtu drobných nepoznaných vlivů. Náhodu bychom mohli defiovat jako součet velkého počtu drobých epozaých vlivů. V rámci přírodích věd se setkáváme s pokusy typu za určitých podmíek vždy astae určitý důsledek. Např. jestliže za ormálího

Více

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika

Přijímací řízení akademický rok 2013/2014 Bc. studium Kompletní znění testových otázek matematika Přijímací řízeí akademický rok 0/0 c. studium Kompletí zěí testových otázek matematika Koš Zěí otázky Odpověď a) Odpověď b) Odpověď c) Odpověď d) Správá. Které číslo doplíte místo 8? 6 6 8 C. Které číslo

Více

8.2.1 Aritmetická posloupnost

8.2.1 Aritmetická posloupnost 8.. Aritmetická posloupost Předpoklady: 80, 80, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Př. : V továrě dokočí každou hodiu motáž

Více

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti

Aritmetická posloupnost, posloupnost rostoucí a klesající Posloupnosti 8 Aritmetická posloupost, posloupost rostoucí a klesající Poslouposti Posloupost je fukci s defiičím oborem celých kladých čísel - apř.,,,,,... 3 4 5 Jako fukci můžeme také posloupost zobrazit do grafu:

Více

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů.

Cvičení 3 - teorie. Teorie pravděpodobnosti vychází ze studia náhodných pokusů. Cvičeí 3 - teorie Téma: Teorie pravděpodobosti Teorie pravděpodobosti vychází ze studia áhodých pokusů. Náhodý pokus Proces, který při opakováí dává ze stejých podmíek rozdílé výsledky. Výsledek pokusu

Více

9) Určete počet všech čtyřciferných přirozených čísel,

9) Určete počet všech čtyřciferných přirozených čísel, Kombinatorika konzultační příklady 1) Z města A do města B vedou 2 cesty. Z města B do města C vedou 3 cesty. Kolika způsoby lze dojít z města A do města C? 2) Určete počet všech přirozených trojciferných

Více

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení

Odhad parametru p binomického rozdělení a test hypotézy o tomto parametru. Test hypotézy o parametru p binomického rozdělení Odhad parametru p biomického rozděleí a test hypotézy o tomto parametru Test hypotézy o parametru p biomického rozděleí Motivačí úloha Předpokládejme, že v důsledku realizace jistého áhodého pokusu P dochází

Více

Digitální učební materiál

Digitální učební materiál Digitální učební materiál Projekt Šablona CZ.1.07/1.5.00/34.0415 Inovujeme, inovujeme III/2 Inovace a zkvalitnění výuky prostřednictvím ICT (DUM) DUM č. VY_32_INOVACE_CH29_1_17 ŠVP Podnikání RVP 64-41-L/51

Více

8.2.1 Aritmetická posloupnost I

8.2.1 Aritmetická posloupnost I 8.2. Aritmetická posloupost I Předpoklady: 80, 802, 803, 807 Pedagogická pozámka: V hodiě rozdělím třídu a dvě skupiy a každá z ich dělá jede z prvích dvou příkladů. Čley posloupostí pak při kotrole vypíšu

Více

Aritmetická posloupnost

Aritmetická posloupnost /65 /65 Obsh Obsh... Aritmetická posloupost.... Soustv rovic, součet.... AP - předpis... 5. AP - součet... 6. AP - prvoúhlý trojúhelík... 7. Součet čísel v itervlu... 8 Geometrická posloupost... 0. Soustv

Více

Kombinatorika, pravděpodobnost, statistika

Kombinatorika, pravděpodobnost, statistika Kombiatoria, pravděpodobost, statistia Kombiatoria, pravděpodobost, statistia Obsah 9. Kombiatoria... 70 9.. Fatoriály... 70 9.. Variace bez opaováí... 75 9.. Permutace bez opaováí... 8 9.4. Kombiace bez

Více

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY

Předmět: Ročník: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ 15. 9. 2012 Název zpracovaného celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY Předmět: Ročík: Vytvořil: Datum: MATEMATIKA TŘETÍ MGR. JÜTTNEROVÁ. 9. 0 Název zpracovaého celku: KOMBINACE, POČÍTÁNÍ S KOMBINAČNÍM ČÍSLY DEFINICE FAKTORIÁLU Při výpočtech úloh z kombiatoriky se používá!

Více

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ

KOMBINATORIKA INVESTICE DO ROZVOJE VZDĚLÁVÁNÍ KOMBINATORIKA Gymázium Jiřího Wolera v Prostějově Výuové materiály z matematiy pro vyšší gymázia Autoři projetu Studet a prahu. století - využití ICT ve vyučováí matematiy a gymáziu INVESTICE DO ROZVOJE

Více

KOMBINATORIKA. 1. cvičení

KOMBINATORIKA. 1. cvičení KOMBINATORIKA 1. cvičení TYPY VÝBĚRŮ Uspořádanost výběru uspořádaný výběr = VARIACE, záleží na pořadí vybraných prvků neuspořádaný výběr = KOMBINACE, nezáleží na pořadí vybraných prvků Opakované zařazení

Více

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce

MATEMATICKÁ INDUKCE. 1. Princip matematické indukce MATEMATICKÁ INDUKCE ALEŠ NEKVINDA. Pricip matematické idukce Nechť V ) je ějaká vlastost přirozeých čísel, apř. + je dělitelé dvěma či < atd. Máme dokázat tvrzeí typu Pro každé N platí V ). Jeda možost

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol PRAVDĚPODOBNOST

Více

6. FUNKCE A POSLOUPNOSTI

6. FUNKCE A POSLOUPNOSTI 6. FUNKCE A POSLOUPNOSTI Fukce Dovedosti:. Základí pozatky o fukcích -Chápat defiici fukce,obvyklý způsob jejího zadáváí a pojmy defiičí obor hodot fukce. U fukcí zadaých předpisem umět správě operovat

Více

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna.

6 Intervalové odhady. spočteme aritmetický průměr, pak tyto průměry se budou chovat jako by pocházely z normálního. nekonečna. 6 Itervalové odhady parametrů základího souboru V předchozích kapitolách jsme se zabývali ejprve základím zpracováím experimetálích dat: grafické zobrazeí dat, výpočty výběrových charakteristik kapitola

Více

1 Trochu o kritériích dělitelnosti

1 Trochu o kritériích dělitelnosti Meu: Úloha č.1 Dělitelost a prvočísla Mirko Rokyta, KMA MFF UK Praha Jaov, 12.10.2013 Růzé dělitelosti, třeba 11 a 7 (aeb Jak zfalšovat rodé číslo). Prvočísla: které je ejlepší, které je ejvětší a jak

Více

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus

Aplikovaná informatika. Podklady předmětu Aplikovaná informatika pro akademický rok 2006/2007 Radim Farana. Obsah. Algoritmus Podklady předmětu pro akademický rok 006007 Radim Faraa Obsah Tvorba algoritmů, vlastosti algoritmu. Popis algoritmů, vývojové diagramy, strukturogramy. Hodoceí složitosti algoritmů, vypočitatelost, časová

Více

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého

Jevy A a B jsou nezávislé, jestliže uskutečnění jednoho jevu nemá vliv na uskutečnění nebo neuskutečnění jevu druhého 8. Základy teorie pravděpodobnosti 8. ročník 8. Základy teorie pravděpodobnosti Pravděpodobnost se zabývá matematickými zákonitostmi, které se projevují v náhodných pokusech. Tyto zákonitosti mají opodstatnění

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8.. Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Myslím, že jde o jedu z velmi pěých hodi. Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým

Více

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7]

f B 6. Funkce a posloupnosti 3 patří funkci dané předpisem y = 2 x + 3. [všechny] 1) Rozhodněte, která z dvojic [ ;9][, 0;3 ][, 2;7] 6. Fukce a poslouposti ) Rozoděte, která z dvojic [ ;9[, 0; [, ; patří fukci daé předpisem y +. [všecy ) Auto má spotřebu 6 l beziu a 00 km. Na začátku jízdy mělo v plé ádrži 6 l beziu. a) Vyjádřete závislost

Více

S1P Příklady 01. Náhodné jevy

S1P Příklady 01. Náhodné jevy S1P Příklady 01 Náhodné jevy Pravděpodobnost, že jedinec z jisté populace se dožije šedesáti let, je 0,8; pravděpodobnost, že se dožije sedmdesáti let, je 0,5. Jaká je pravděpodobnost, že jedinec zemře

Více

8.1.2 Vzorec pro n-tý člen

8.1.2 Vzorec pro n-tý člen 8 Vzorec pro -tý čle Předpolady: 80 Pedagogicá pozáma: Přílady a hledáí dalších čleů posloupostí a a objevováí vzorců pro -tý čle do začé míry odpovídají typicým příladům z IQ testů, teré studeti zají

Více

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN

OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Úloha obchodího cestujícího OKRUŽNÍ A ROZVOZNÍ ÚLOHY: OBCHODNÍ CESTUJÍCÍ. FORMULACE PŘI RESPEKTOVÁNÍ ČASOVÝCH OKEN Nejprve k pojmům používaým v okružích a rozvozích úlohách: HAMILTONŮV CYKLUS je typ cesty,

Více

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou

veličiny má stejný řád jako je řád poslední číslice nejistoty. Nejistotu píšeme obvykle jenom jednou 1 Zápis číselých hodot a ejistoty měřeí Zápis číselých hodot Naměřeé hodoty zapisujeme jako číselý údaj s určitým koečým počtem číslic. Očekáváme, že všechy zapsaé číslice jsou správé a vyjadřují tak i

Více

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu):

Zformulujme PMI nyní přesně (v duchu výrokové logiky jiný kurz tohoto webu): Pricip matematické idukce PMI) se systematicky probírá v jié části středoškolské matematiky. a tomto místě je zařaze z důvodu opakováí matka moudrosti) a proto, abychom ji mohli bez uzarděí použít při

Více

PRAVDĚPODOBNOST A STATISTIKA

PRAVDĚPODOBNOST A STATISTIKA RVDĚODONOST STTISTIK Gymázium Jiřího Wolkera v rostějově Výukové materiály z matematiky pro vyšší gymázia utoři projektu Studet a prahu. století - využití ICT ve vyučováí matematiky a gymáziu Teto projekt

Více

1.3. POLYNOMY. V této kapitole se dozvíte:

1.3. POLYNOMY. V této kapitole se dozvíte: 1.3. POLYNOMY V této kapitole se dozvíte: co rozumíme pod pojmem polyom ebo-li mohočle -tého stupě jak provádět základí početí úkoy s polyomy, kokrétě součet a rozdíl polyomů, ásobeí, umocňováí a děleí

Více

Programování v Matlabu

Programování v Matlabu Programováí v Matlabu Obsah: m-fukce a skripty; Krokováí laděí) fukcí/skriptů; Podmíěý příkaz; Cyklus s předem zámým počtem opakováí iteračí cyklus); Cyklus řízeý podmíkou Zoltá Szabó FBMI 2007 http://webzam.fbmi.cvut.cz/szabo/matlab/

Více

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika

Přijímací řízení akademický rok 2013/2014 NavMg. studium Kompletní znění testových otázek matematika a statistika Přijímcí řízeí kdemický rok /4 NvMg studium Kompletí zěí testových otázek mtemtik sttistik Koš Zěí otázky Odpověď ) Odpověď b) Odpověď c) Odpověď d) Správá odpověď efiičí obor fukce defiové předpisem f

Více

8.1.3 Rekurentní zadání posloupnosti I

8.1.3 Rekurentní zadání posloupnosti I 8.. Rekuretí zadáí poslouposti I Předpoklady: 80, 80 Pedagogická pozámka: Podle mých zkušeostí je pro studety pochopitelější zavádět rekuretí posloupost takto (sado kotrolovatelou ukázkou), ež dosazováím

Více

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( )

f x a x DSM2 Cv 9 Vytvořující funkce Vytvořující funkcí nekonečné posloupnosti a0, a1,, a n , reálných čísel míníme formální nekonečnou řadu ( ) DSM Cv 9 Vytvořující fukce Vytvořující fukcí ekoečé poslouposti a0, a,, a, reálých čísel mííme formálí ekoečou řadu =. f a i= 0 i i Příklady: f = + = + + + + + ) Platí: (biomická věta). To zameá, že fukce

Více

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace

Konec srandy!!! Mocniny s přirozeným mocnitelem I. Předpoklady: základní početní operace Koec srady!!!.6. Mociy s přirozeým mocitelem I Předpoklady: základí početí operace Pedagogická pozámka: Zápis a začátku kapitoly je víc ež je srada. Tato hodia je prví v druhé části studia. Až dosud ehrálo

Více

Teorie. Kombinatorika

Teorie. Kombinatorika Teorie Kombinatorika Kombinatorika Jak obecně vybrat k prvkové množiny z n prvkové množiny? Dvě možnosti: prvky se v množině neopakují bez opakování. prvky se v množině opakují s opakováním. prvky jsou

Více

8. Základy statistiky. 8.1 Statistický soubor

8. Základy statistiky. 8.1 Statistický soubor 8. Základy statistiky 7. ročík - 8. Základy statistiky Statistika je vědí obor, který se zabývá zpracováím hromadých jevů. Tvoří základ pro řadu procesů řízeí, rozhodováí a orgaizováí, protoţe a základě

Více

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY

DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY DISKRÉTNÍ MATEMATIKA PRO INFORMATIKY URČENO PRO VZDĚLÁVÁNÍ V AKREDITOVANÝCH STUDIJNÍCH PROGRAMECH IVAN KŘIVÝ ČÍSLO OPERAČNÍHO PROGRAMU: CZ..07 NÁZEV OPERAČNÍHO PROGRAMU: VZDĚLÁVÁNÍ PRO KONKURENCESCHOPNOST

Více

Sekvenční logické obvody(lso)

Sekvenční logické obvody(lso) Sekvečí logické obvody(lso) 1. Logické sekvečí obvody, tzv. paměťové čley, jsou obvody u kterých výstupí stavy ezávisí je a okamžitých hodotách vstupích sigálů, ale jsou závislé i a předcházejících hodotách

Více

8.2.7 Geometrická posloupnost

8.2.7 Geometrická posloupnost 87 Geometrická posloupost Předpokldy: 80, 80, 80, 807 Pedgogická pozámk: V hodiě rozdělím třídu dvě skupiy kždá z ich dělá jede z prvích dvou příkldů Větši studetů obou skupi potřebuje pomoc u tbule Ob

Více

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz.

Kombinatorika. Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. Variace 1 Kombinatorika Autor: Mgr. Jaromír JUŘEK Kopírování a jakékoliv další využití výukového materiálu je povoleno pouze s uvedením odkazu na www.jarjurek.cz. 1. Kombinatorika, faktoriály, kombinační

Více

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková

kombinatorika září, 2015 Kombinatorika Opakovací kurz 2015 Radka Hájková Kombinatorika Opakovací kurz 2015 Radka Hájková 1) Děti z hudební školy Písnička, mezi nimiž byla i dvojčata Dita a Zita, psaly v rámci hudební nauky písemnou práci z not. Kolik možností oznámkování mohla

Více

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948

Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 Projekt ŠABLONY NA GVM Gymnázium Velké Meziříčí registrační číslo projektu: CZ.1.07/1.5.00/34.0948 IV-2 Inovace a zkvalitnění výuky směřující k rozvoji matematické gramotnosti žáků středních škol VARIACE

Více

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení

Kolika způsoby může při hodu dvěma kostkami padnout součet ok: a) roven 7 b) nejvýše 5 řešení 2. intermezzo - Tucet dalších příkladů. Příklad 1: Čtyři studenti jisté vysoké školy skládají zkoušku z matematiky. Kolik existuje případů, že každý z nich bude mít jinou známku? Počítejte s čtyřstupňovou

Více

MATICOVÉ HRY MATICOVÝCH HER

MATICOVÉ HRY MATICOVÝCH HER MATICOVÉ HRY FORMULACE, KONCEPCE ŘEŠENÍ, SMÍŠENÉ ROZŠÍŘENÍ MATICOVÝCH HER, ZÁKLADNÍ VĚTA MATICOVÝCH HER CO JE TO TEORIE HER A ČÍM SE ZABÝVÁ? Teorie her je ekoomická vědí disciplía, která se zabývá studiem

Více

2 Písemná práce - základní kombinatorická pravidla Stručné řešení, výsledky... 31

2 Písemná práce - základní kombinatorická pravidla Stručné řešení, výsledky... 31 Obsah 1 Kombiatorika - sbírka vybraých úloh 2 1.1 Základí kombiatorická pravidla....................... 2 1.2 Faktoriály, kombiačí čísla, biomická věta................. 13 1.3 Úlohy s omezujícími podmíkami.......................

Více

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64.

Vyšší mocniny. Předpoklady: Doplň místo obdélníčků správné číslo. a) ( 2) 3. = c) ( ) = 1600 = e) ( 25) 2 0,8 0, 64. 81 Vyšší mociy Předpoklady: 0081 Př 1: Doplň místo obdélíčků správé číslo a) ( ) = b) = 0, 0000 e) ( ) = 0, ( 0) = 100 = f) ( ) = 8 a) ( ) = 8 b) 0, 0 0, 0000 = ( ) 0,8 0, 0 = 100 = e) ( ) = f) ( ) = 8

Více

2 STEJNORODOST BETONU KONSTRUKCE

2 STEJNORODOST BETONU KONSTRUKCE STEJNORODOST BETONU KONSTRUKCE Cíl kapitoly a časová áročost studia V této kapitole se sezámíte s možostmi hodoceí stejorodosti betou železobetoové kostrukce a prakticky provedete jede z možých způsobů

Více

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1.

DIM PaS Připomenutí poznatků ze střední školy. Faktoriály a kombinační čísla základní vzorce: n = k. (binomická věta) Příklady: 1. DIM PaS. Připomeutí pozatků ze středí školy Faktoriály a kombiačí čísla základí vzorce: ( )( 2 )...2.! =. 0! = =! ( k)! k! ( )...( k ). + = k! = k + + = k + k + 2 2 ( a + b) = a + a b+ a b +... + a b +...

Více

12. N á h o d n ý v ý b ě r

12. N á h o d n ý v ý b ě r 12. N á h o d ý v ý b ě r Při sledováí a studiu vlastostí áhodých výsledků pozáme charakter rozděleí z toho, že opakovaý áhodý pokus ám dává za stejých podmíek růzé výsledky. Ty odpovídají hodotám jedotlivých

Více

Náhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č.

Náhoda. Pravděpodobnost výhry při sázce na barvu: p = 18/37 = 0,486 Průměrný zisk při n sázkách částky č: - n.č + 2.č.n.p = n.č. Náhoda při i hřeh Martigale: Vsadíšřeěme dolar a barvu, terou si vybereš (červeáči čerá) a budeš stále sázet je a i. Roztočíš ruletu a čeáš Poud prohraješ, zdvojásobíš sázu, taže vsadíš příště dolary.

Více

Opakovací test. Kombinatorika A, B

Opakovací test. Kombinatorika A, B VY_32_INOVACE_MAT_193 Opakovací test Kombinatorika A, B Mgr. Radka Mlázovská Období vytvoření: listopad 2012 Ročník: čtvrtý Tematická oblast: matematické vzdělávání Klíčová slova: maturita, přijímací zkoušky,

Více

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5.

Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Příklad 1: Házíme dvěma kostkami. Stanovte pravděpodobnost jevu, že na kostkách padne součet menší než 5. Řešení: Výsledky pokusu jsou uspořádané dvojice. První člen dvojice odpovídá hodu 1. kostkou a

Více

b c a P(A B) = c = 4% = 0,04 d

b c a P(A B) = c = 4% = 0,04 d Příklad 6: Z Prahy do Athé je 50 km V Praze byl osaze válec auta ovou svíčkou, jejíž životost má ormálí rozděleí s průměrem 0000 km a směrodatou odchylkou 3000 km Jaká je pravděpodobost, že automobil překoá

Více

množina všech reálných čísel

množina všech reálných čísel /6 FUNKCE Základí pojmy: Fukce sudá a lichá, Iverzí fukce Nepřímá úměrost, Mociá fukce, Epoeciálí fukce a rovice Logaritmus, logaritmická fukce a rovice Opakováí: Defiice fukce, graf fukce Defiičí obor,

Více

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL

1 POPISNÁ STATISTIKA V PROGRAMU MS EXCEL Elea Mielcová, Radmila Stoklasová a Jaroslav Ramík; Statistické programy POPISNÁ STATISTIKA V PROGRAMU MS EXCEL RYCHLÝ NÁHLED KAPITOLY Žádý výzkum se v deší době evyhe statistickému zpracováí dat. Je jedo,

Více

pravděpodobnostn podobnostní jazykový model

pravděpodobnostn podobnostní jazykový model Pokročilé metody rozpozáváířeči Předáška 8 Rozpozáváí s velkými slovíky, pravděpodobost podobostí jazykový model Rozpozáváí s velkým slovíkem Úlohy zaměřeé a diktováíči přepis řeči vyžadují velké slovíky

Více

Opakovací test. Posloupnosti A, B

Opakovací test. Posloupnosti A, B VY INOVACE_MAT_189 Opkovcí test Poslouposti A, B Mgr. Rdk Mlázovská Období vytvořeí: prosiec 01 Ročík: čtvrtý Temtická oblst: mtemtické vzděláváí Předmět: mtemtik, příprv k mturitě, příprv VŠ, opkováí,

Více

Pracovní list č. 4 Počítáme s pravděpodobností

Pracovní list č. 4 Počítáme s pravděpodobností racovní list č. 4 očítáme s pravděpodobností Cíl cvičení: Tento pracovní list je určen pro cvičení předmětu Kvantitativní metody II (přednáška 3.1). Je zaměřen především pro práci s kalkulačkou, program

Více

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t.

Algebraický výraz je číselný výraz s proměnou. V těchto výrazech se vyskytují vedle reálných čísel také proměnné. Například. 4a 4,5x + 6,78 7t. ročík - loeý lgebrický výrz, lieárí rovice s ezáou ve jeovteli Loeý lgebrický výrz Lieárí rovice s ezáou ve jeovteli Doporučujee žáků zopkovt vzorce tpu ( + pod úprvu výrzu souči Loeý výrz Číselé výrz

Více

2.4. INVERZNÍ MATICE

2.4. INVERZNÍ MATICE 24 INVERZNÍ MICE V této kapitole se dozvíte: defiici iverzí matice; základí vlastosti iverzí matice; dvě základí metody výpočtu iverzí matice; defiici celočíselé mociy matice Klíčová slova této kapitoly:

Více

1. Číselné obory, dělitelnost, výrazy

1. Číselné obory, dělitelnost, výrazy 1. Číselé obory, dělitelost, výrazy 1. obor přirozeých čísel - vyjadřující počet prvků možiy - začíme (jsou to kladá edesetiá čísla) 2. obor celých čísel - možia celých čísel = edesetiá, ale kladá i záporá

Více

Vzorový příklad na rozhodování BPH_ZMAN

Vzorový příklad na rozhodování BPH_ZMAN Vzorový příklad a rozhodováí BPH_ZMAN Základí charakteristiky a začeí symbol verbálí vyjádřeí iterval C g g-tý cíl g = 1,.. s V i i-tá variata i = 1,.. m K j j-té kriterium j = 1,.. v j x ij u ij váha

Více

MATEMATIKA základní úroveň obtížnosti

MATEMATIKA základní úroveň obtížnosti MATEMATIKA základní úroveň obtížnosti DIDAKTICKÝ TEST Maximální bodové hodnocení: 50 bodů Hranice úspěšnosti: 33 % 1 Základní informace k zadání zkoušky Didaktický test obsahuje 26 úloh. Časový limit pro

Více

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů.

Z mých cvičení dostalo jedničku 6 studentů, dvojku 8 studentů, trojku 16 studentů a čtyřku nebo omluveno 10 studentů. 1. Příklad Hodíme 60krát šestistěou hrací kostkou. Jedotlivé stěy padly v ásledujícím poměru: 7:9:10:6:15:13. Proveďte test a 5% hladiě výzamosti, zda je kostka v pořádku. H 0 : π 1 = 1/6, π = 1/6, π 3

Více

Odhady parametrů 1. Odhady parametrů

Odhady parametrů 1. Odhady parametrů Odhady parametrů 1 Odhady parametrů Na statistický soubor (x 1,..., x, který dostaeme statistickým šetřeím, se můžeme dívat jako a výběrový soubor získaý realizací áhodého výběru z áhodé veličiy X. Obdobě:

Více

Pravděpodobnost a statistika

Pravděpodobnost a statistika 1. KOMBINATORIKA Průvodce studiem Na střední škole se někteří z vás seznámili se základními pojmy z kombinatoriky. V této kapitole tyto pojmy zopakujeme a prohloubíme vaše znalosti. Předpokládané znalosti

Více

Iterační výpočty projekt č. 2

Iterační výpočty projekt č. 2 Dokumetace k projektu pro předměty IZP a IUS Iteračí výpočty projekt č. 5..007 Autor: Václav Uhlíř, xuhlir04@stud.fit.vutbr.cz Fakulta Iformačích Techologii Vysoké Učeí Techické v Brě Obsah. Úvodí defiice.....

Více

-1- Finanční matematika. Složené úrokování

-1- Finanční matematika. Složené úrokování -- Fiačí ateatika Složeé úrokováí Při složeé úročeí se úroky přičítají k počátečíu kapitálu ( k poskytutí úvěru, k uložeéu vkladu ) a společě s í se úročí. Vzorec pro kapitál K po letech při složeé úročeí

Více

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE

1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE 1. ZÁKLADY VEKTOROVÉ ALGEBRY 1.1. VEKTOROVÝ PROSTOR A JEHO BÁZE V této kapitole se dozvíte: jak je axiomaticky defiová vektor a vektorový prostor včetě defiice sčítáí vektorů a ásobeí vektorů skalárem;

Více

Intervalové odhady parametrů některých rozdělení.

Intervalové odhady parametrů některých rozdělení. 4. Itervalové odhady parametrů rozděleí. Jedou ze základích úloh mtematické statistiky je staoveí hodot parametrů rozděleí, ze kterého máme k dispozici áhodý výběr. Nejčastěji hledáme odhady dvou druhů:

Více

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109

( n) ( ) ( ) 9.1.11 Kombinatorické úlohy bez opakování. Předpoklady: 9109 9.1.11 Kombinatorické úlohy bez opakování Předpoklady: 9109 Pedagogická poznámka: Tato hodina slouží jednak ke zopakování probraného, ale zejména k praktickému nácviku kombinatoriky v situaci, ve které

Více

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D.

MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ, PH.D. MATEMATIKA PŘÍKLADY K PŘÍJÍMACÍM ZKOUŠKÁM BAKALÁŘSKÉ STUDIUM MGR. RADMILA STOKLASOVÁ PH.D. Obsah MNOŽINY.... ČÍSELNÉ MNOŽINY.... OPERACE S MNOŽINAMI... ALGEBRAICKÉ VÝRAZY... 6. OPERACE S JEDNOČLENY A MNOHOČLENY...

Více

Deskriptivní statistika 1

Deskriptivní statistika 1 Deskriptiví statistika 1 1 Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 1145/2004. Základí charakteristiky souboru Pro lepší představu používáme k popisu vlastostí zkoumaého jevu určité charakteristiky

Více

Petr Otipka Vladislav Šmajstrla

Petr Otipka Vladislav Šmajstrla VYSOKÁ ŠKOLA BÁŇSKÁ TECHNICKÁ UNIVERZITA OSTRAVA PRAVDĚPODOBNOST A STATISTIKA Petr Otipka Vladislav Šmajstrla Vytv ořeo v rámci projektu Operačího programu Rozv oje lidských zdrojů CZ.04..03/3..5./006

Více

Nové symboly pro čísla

Nové symboly pro čísla Nové symboly pro čísl V pitole Ituitiví ombitori jsme řešili tyto dv typy příldů. Stále se v ich opují součiy přirozeých čísel, t j jdou z sebou, ědy ž do, ědy sočí dříve. Proto si zvedeme dv ové symboly

Více

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004.

1 Tyto materiály byly vytvořeny za pomoci grantu FRVŠ číslo 1145/2004. Náhodá veličia Tyto materiály byly vytvořey za pomoci gratu FRVŠ číslo 45/004. Náhodá veličia Většia áhodých pokusů má jako výsledky reálá čísla. Budeme tedy dále áhodou veličiou rozumět proměou, která

Více

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností

4.2 Elementární statistické zpracování. 4.2.1 Rozdělení četností 4.2 Elemetárí statstcké zpracováí Výsledkem statstckého zjšťováí (. etapa statstcké čost) jsou euspořádaá, epřehledá data. Proto 2. etapa statstcké čost zpracováí, začíá většou jejch utříděím, zpřehleděím.

Více

PRAVDĚPODOBNOST A JEJÍ UŽITÍ

PRAVDĚPODOBNOST A JEJÍ UŽITÍ PRAVDĚPODOBNOST A JEJÍ UŽITÍ Základním pojmem teorie pravděpodobnosti je náhodný jev. náhodný jev : výsledek nějaké činnosti nebo pokusu, o němž má smysl prohlásit že nastal nebo ne. Náhodné jevy se označují

Více

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1

Matice. nazýváme m.n reálných čísel a. , sestavených do m řádků a n sloupců ve tvaru... a1 Matice Matice Maticí typu m/ kde m N azýváme m reálých čísel a sestaveých do m řádků a sloupců ve tvaru a a a a a a M M am am am Prví idex i začí řádek a druhý idex j sloupec ve kterém prvek a leží Prvky

Více

Kombinatorika. RNDr. Antonín Slavík, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165.

Kombinatorika. RNDr. Antonín Slavík, Ph.D. online prostředí, Operační program Praha Adaptabilita, registrační číslo CZ.2.17/3.1.00/31165. Kombiatorika RNDr Atoí Slavík, PhD Kurz vzikl v rámci projektu Rozvoj systému vzdělávacích příležitostí pro adaé žáky a studety v přírodích vědách a matematice s využitím olie prostředí, Operačí program

Více

8.2.10 Příklady z finanční matematiky I

8.2.10 Příklady z finanční matematiky I 8..10 Příklady z fiačí matematiky I Předoklady: 807 Fiačí matematika se zabývá ukládáím a ůjčováím eěz, ojišťováím, odhady rizik aod. Poměrě důležitá a výosá discilía. Sořeí Při sořeí vkladatel uloží do

Více

Univerzita Karlova v Praze Pedagogická fakulta

Univerzita Karlova v Praze Pedagogická fakulta Uverzta Karlova v Praze Pedagogcká fakulta SEMINÁRNÍ PRÁCE Z OBECNÉ ALGEBRY DĚLITELNOST CELÝCH ČÍSEL V SOUSTAVÁCH O RŮZNÝCH ZÁKLADECH / Cfrk C. Zadáí: Najděte pět krtérí pro děltelost v jých soustavách

Více

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n

D = H = 1. člen posloupnosti... a 1 2. člen posloupnosti... a 2 3. člen posloupnosti... a 3... n. člen posloupnosti... a n /9 POSLOUPNOSTI Zákldí pojmy: Defiice poslouposti Vlstosti poslouposti Určeí poslouposti Aritmetická posloupost Geometrická posloupost Užití poslouposti. Defiice poslouposti Př. Sestrojte grf fukce y =.x

Více